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Combined Field Integral Equation Based Theory of
Characteristic Mode

Qi I. Dai, Qin S. Liu, Hui Gan, Weng Cho Chew

Abstract—Conventional electric field integral equation based
theory is susceptible to the spurious internal resonance problem
when the characteristic modes of closed perfectly conducting
objects are computed iteratively. In this paper, we present a
combined field integral equation based theory to remove the
difficulty of internal resonances in characteristic mode analysis.
The electric and magnetic field integral operators are shown
to share a common set of non-trivial characteristic pairs (values
and modes), leading to a generalized eigenvalue problem which is
immune to the internal resonance corruption. Numerical results
are presented to validate the proposed formulation. This work
may offer efficient solutions to characteristic mode analysis which
involves electrically large closed surfaces.

Index Terms—Characteristic mode, combined field integral
equation, closed surface.

I. INTRODUCTION

CHARACTERISTIC modes (CM) are originally defined
by Garbacz as a basis to diagonalize the scattering and

perturbation matrices of a conducting object [1]. The theory
was later refined by Harrington and Mautz [2, 3], where an
electric field integral equation (EFIE) based derivation was
formulated. The EFIE based theory for characteristic mode
analysis becomes most widely accepted due to its math-
ematical elegance, reliability and convenience for practical
applications. In [4], Nalbantoğlu adopted the magnetic field
integral equation (MFIE) to determine the characteristic modes
of simple bodies of revolution. Unfortunately, this work has
not drawn much attention as it appears to provide no advantage
over the EFIE based approach.

Theory of Characteristic mode (TCM) was recently pop-
ularized in the antenna community by Cabedo-Fabres [5] as
it has useful applications in antenna shape synthesis, input
impedance matching, and radar cross-section control, etc. Al-
though TCM has been shown promising for systematic antenna
design, the theoretical and numerical aspects are relatively less
addressed. Characteristic mode analysis requires one to solve
a generalized eigenvalue problem as X̄Jn = λnR̄Jn, where
the dense matrix pair (X̄, R̄) is generated from the EFIE
impedance matrix Z̄. When the problem scale is small, one can
use Schur decomposition to find all eigenpairs (eigenvalues
and eigenvectors) of the generalized eigenvalue problem with
a computational complexity of O(N3), where N is the number
of unknowns. This becomes increasingly unaffordable as the
problem scale increases. However, in many applications, only
Jn with small |λn| are desired. Iterative eigensolvers such
as the Lanczos and Arnoldi methods can be used for this
purpose. For instance, the commercial software FEKO incor-
porates the ARnoldi PACKage (ARPACK) which implements

the Implicitly Restarted Arnoldi Method (IRAM) to compute
a few characteristic modes of interest of more complicated
geometries [6–8]. Such iterative methods are normally more
efficient than the direct eigen-decomposition, since they only
require a number of matrix-vector multiplication (MVM)
operations, each of which has a computational complexity
of O(N2). The complexity of each MVM can be further
reduced to O(N logN) if a modified multilevel fast multipole
algorithm (MLFMA) is employed [9–11].

Usually, one can easily obtain good approximations to the
eigenvalues of largest magnitude with Krylov methods such
as IRAM [7]. Fast convergence to the desirable spectrum
requires one to transform the aforementioned generalized
eigenvalue problem to a standard one as X̄−1R̄Jn = λ−1n Jn.
Hence, a number of X̄−1u has to be computed, where u are
arbitrary vectors. In many cases, X̄−1u can only be computed
iteratively since the direct decomposition of X̄ is not feasible.
An equivalent eigenvalue problem for computing characteristic
modes is given by Z̄−1R̄Jn = (1+iλn)−1Jn, which calls for
iterative solutions of EFIEs Z̄−1u. Apparently, it is favored to
solve Z̄−1u as there exists efficient techniques to precondition
EFIEs. However, if the EFIE based TCM is applied to closed
conducting surfaces, Z̄ becomes ill-conditioned when the
operating frequency is selected close to frequencies of spurious
internal resonances. The internal resonance problem is even
more severe for electrically-large objects.

The difficulty of internal resonances has been well addressed
in many radiation and scattering problems, where the com-
bined field integral equation (CFIE) is an effective remedy
[12]. Although a full-rank Z̄ can be obtained by combing the
electric and magnetic field integral operators, it is not trans-
parent to update the vector u consistently in the eigenanalysis
where characteristic modes are iteratively computed. In this
paper, an MFIE based TCM is formulated, which is inspired
by the very brief result documented in [4]. Then, a CFIE based
TCM can be formulated as the EFIE and MFIE based TCMs
share the same set of non-trivial characteristic pairs (trivial and
spurious ones form the null space of the impedance matrix).
Moreover, the corresponding characteristic mode expansion of
any excited surface current is obtained. Since EFIE can be
preconditioned with a Calderón multiplicative preconditioner
(CMP) [13–15], we can further formulate a CMP-CFIE based
TCM, which is free from internal resonances, and can be easily
solved using iterative eigensolvers after being transformed to
a standard eigenvalue problem.
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II. EFIE BASED TCM

The EFIE for an arbitrarily shaped perfect electric conductor
(PEC) object relates the tangential incident field Einc and the
scattered field Esca on the PEC surface S as

n̂×Esca(r) = ZE(r, r′)·J(r′) = −n̂×Einc(r), r ∈ S (1)

where

ZE(r, r′) · J(r′) = n̂× LE(r, r′) · J(r′) (2)

In the above, we denote

LE(r, r′) · J(r′) = ikη

∫
S

dr′G(r, r′) · J(r′), (3)

and J(r′) is the induced surface electric current, n̂ is the unit
normal of S. The Green’s dyadic is

G(r, r′) =

[
I +
∇∇
k2

]
g(r, r′) (4)

with the unit dyad denoted as I. The scalar Green’s function
is

g(r, r′) =
eikR

4πR
, R = |r− r′| (5)

where r and r′ denote the field and source points, respec-
tively. Moreover, the wavenumber is k = ω

√
µε, while the

wave impedance is η =
√
µ/ε, where the permittivity and

permeability of the homogeneous medium are denoted by ε
and µ, respectively.

The most widely adopted TCM is formulated on top of
EFIE. As suggested by Harrington and Mautz [3], the char-
acteristic modes of arbitrary PEC objects can be found by
solving the operator eigenvalue problem given by

XE(r, r′) · Jn(r′) = λnRE(r, r′) · Jn(r′), r ∈ S (6)

where

RE =
1

2
(ZE + Z∗E) , XE =

1

2i
(ZE −Z∗E) (7)

with the complex conjugate denoted by ∗, and Jn(r′) denotes
the characteristic currents, and λn denotes the characteristic
values. An equivalent TCM to (6) is easily obtained as

ZE(r, r′) · Jn(r′) = (1 + iλn)RE(r, r′) · Jn(r′), r ∈ S (8)

Approximating the characteristic currents with expansion
functions fj(r

′), and weighting the two operator eigenvalue
problems (6) and (8) with testing functions ti(r), one can
obtain two matrix eigenvalue equations as

X̄EJn = λnR̄EJn (9)

and
Z̄EJn = (1 + iλn)R̄EJn (10)

In the above, R̄E and X̄E are taken as the real and imaginary
parts of the EFIE impedance matrix Z̄E , respectively, while
Z̄E is the matrix representation of the operator ZE . The
eigenvectors Jn contain basis expansion coefficients as entries.
For EFIEs, Rao-Wilton-Glisson (RWG) and n̂×RWG basis
functions are chosen as fj and ti, respectively.

Characteristic values λn is important as |λn| indicates the
modal behavior. When λn = 0, the corresponding Jn is an
externally resonant mode which is efficient in radiating energy.
When λn > 0 (λn < 0), Jn is an inductive (capacitive) mode
which stores predominantly magnetic (electric) energy. When
|λn| = ∞, Jn corresponds to the internal resonance (trivial
and spurious) modes of the closed PEC surface (ZE ·Jn = 0),
which has no contribution to radiated or scattered fields. In
this case, Z̄E , R̄E and X̄E are rank-deficient, and it is not
feasible to convert generalized eigenvalue problems (9) and
(10) to standard ones as

X̄−1E R̄EJn = (λn)−1Jn (11)

and
Z̄−1E R̄EJn = (1 + iλn)−1Jn (12)

whose desired spectra can be easily found iteratively.
TCM may be formulated using Yaghjian’s augmented EFIE

(AEFIE) [16]. By demanding that the normal component of
the electric flux density D(r) = εE(r) be equal to the surface
charge density on S, or

n̂ ·E(r)− 1

iωε
∇ · J(r) = 0, r ∈ S (13)

one has

LE(r, r′) · J(r′) +
iη

k
n̂∇ · J(r) = −Einc(r), r ∈ S (14)

Taking n̂× and n̂· on both sides of (14) yield two equations
with consistent solutions. The resultant matrix equations form
an over-determined system whose solution can be solved using
the method of least squares. This scheme is immune to the
internal resonance corruption. Such AEFIE based TCM may
be constructed as

=m[LE(r, r′)] · Jn(r′) +
iη

k
n̂∇ · Jn(r)

= λn<e[LE(r, r′)] · Jn(r′)
(15)

with r ∈ S, which can be solved using a similar discretization
method. Also of note is that this scheme may fail when a
sphere is studied.

III. MFIE BASED TCM

To obtain an MFIE based TCM, we first consider the
characteristic field En radiated by a characteristic current Jn,
that is

∇×∇×En − k2En = ikηJn (16)

According to Harrington and Mautz [2], the scattering operator
which operates on incoming waves to yield outgoing waves
is diagonalized when characteristic fields En are chosen as
the basis of outgoing waves, and their complex conjugates
E∗n as the basis of incoming waves. Based on that Jn is
real (equiphase), one can easily argue that En + E∗n is a
source-free field using (16). Hence, if source-free fields are
written in a linear superposition form, i.e.,

∑
n an(En + E∗n),

due to linearity, it is sufficient to consider a fictitious single
mode incident field Einc = En + E∗n which impinges upon
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a closed PEC surface. The induced surface current Js due to
this incident field is determined by

ZE(r, r′) · Js(r
′) = −n̂× [En(r) + E∗n(r)]

= −n̂× [LE(r, r′) + L∗E(r, r′)] · Jn(r′)

= −2RE(r, r′) · Jn(r′), r ∈ S
(17)

Due to Equation (8), it is obvious that

Js =
−2

1 + iλn
Jn (18)

One can also investigate the same problem with MFIE. It
is easy to argue that the outgoing En corresponds to Hn and
the incoming E∗n corresponds to −H∗n by using

H =
−i
kη
∇×E (19)

Therefore, the corresponding incident magnetic field is given
by Hinc = Hn −H∗n, which is also source-free. The induced
surface current Js is determined by

ZH(r, r′) · Js(r
′) = It ·Hinc(r)

= It · [Hn(r)−H∗n(r)] , r ∈ S+
(20)

where S+ represents a surface which is infinitesimally larger
than S, It = −n̂× n̂× = I− n̂n̂ extracts the tangential field
components, and

ZH(r, r′) · J(r′) = J(r)× n̂− It · KH(r, r′) · J(r′) (21)

with

KH(r, r′) · J(r′) = ∇×
∫
S

dr′G(r, r′) · J(r′)

=

∫
S

dr′∇g(r, r′)× J(r′)

(22)

When r ∈ S, one has

ZH(r, r′) · J(r′) =
J(r)

2
× n̂

− It · P.V.
∫
S

dr′∇g(r, r′)× J(r′)
(23)

Note that Hn(r) = KH(r, r′) · Jn(r′), Equation (20) gives
rise to

ZH(r, r′) · Js(r
′) = −2iXH(r, r′) · Jn(r′) (24)

where
XH =

1

2i
(ZH −Z∗H) (25)

Since (20) and (17) govern the same physical problem, the
same surface currents are induced. Substituting (18) into (24),
the MFIE based TCM is obtained as

ZH(r, r′)·Jn(r′) = i(1+iλn)XH(r, r′)·Jn(r′), r ∈ S (26)

An equivalent form is given by

RH(r, r′) · Jn(r′) = −λnXH(r, r′) · Jn(r′), r ∈ S (27)

where
RH =

1

2
(ZH + Z∗H) (28)

Normally, EFIE and MFIE share a common set of character-
istic pairs (currents and values) except the null space modes.
Note that internal resonance modes of EFIE hardly radiate,
while those of MFIE are induced currents which radiate
efficiently. Hence, they do not enter the common set [12].

To obtain discretized eigenvalue problems, RWG and
n̂×RWG basis functions are chosen as fj and ti, respectively.
To achieve better accuracy, one can use Buffa-Christiansen
(BC) or Chen-Wilton (CW) basis functions as expansion
functions ti. Hence, (27) and (26) lead to

R̄HJn = −λnX̄HJn (29)

and
Z̄HJn = i(1 + iλn)X̄HJn (30)

where R̄H and X̄H are the real and imaginary parts of
Z̄H , respectively, while Z̄H is the matrix representation of
operator ZH . Both R̄H and Z̄H become ill-conditioned near
frequencies of internal resonances.

IV. CFIE BASED TCM

Following the construction of CFIE for radiation or scatter-
ing problems [17], the CFIE based TCM is formulated as

[αZE(r, r′) + (1− α)ηZH(r, r′)] · Jn(r′)

= (1 + iλn) [αRE(r, r′) + (1− α)iηXH(r, r′)] · Jn(r′)
(31)

where r ∈ S, and α is the combination coefficient. After
discretization, the matrix eigenvalue equation is written as

Z̄CJn = (1 + iλn)K̄CJn (32)

where

Z̄C = αZ̄E + (1− α)ηZ̄H (33a)
K̄C = αR̄E + (1− α)iηX̄H (33b)

Since Z̄C is full-rank even at frequencies of internal reso-
nances, (32) is transformed to a standard eigenvalue equation
as

Z̄−1C K̄CJn = (1 + iλn)−1Jn (34)

which can be iteratively solved.
Characteristic mode expansion of excited currents is for-

mulated as follows. Consider an excitation problem which is
determined by the CFIE as

[αZE(r, r′) + (1− α)ηZH(r, r′)] · J(r′)

= −αn̂×Einc(r) + (1− α)ηIt ·Hinc(r)
(35)

where r ∈ S. The discretization of (35) gives rise to

Z̄CI = Finc (36)

where I is a column vector containing the expansion coeffi-
cients of RWGs fj , and Finc is the vector representation of
the mixed fields −αn̂×Einc + (1− α)ηIt ·Hinc.

Normally, Z̄C is not a symmetric matrix. One can construct
an auxiliary eigenvalue problem of (32) as

Z̄T
CJa

n = (1 + iλn)K̄T
CJa

n (37)
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where the superscript T denotes the transpose of a matrix. The
K̄C-orthogonality is therefore obtained as(

J̄a
)T

K̄C J̄ = Ī (38)

where matrices J̄a and J̄ contain characteristic currents Ja
n

and Jn as columns, respectively, and Ī is the identity matrix.
We assume I to be a linear superposition of Jn, that is

I = J̄a (39)

where a is a vector containing the modal coefficients as entries.
Using the orthogonality condition, then(

J̄a
)T

Z̄C J̄ = Σ̄ (40)

where the diagonal matrix Σ̄ = diag[1+iλ1, 1+iλ2, · · · ], one
can obtain the modal coefficients as

a =
(
Σ̄
)−1 (

J̄a
)T

Finc (41)

Taking α = 1, the above is reduced to the conventional EFIE
case where Z̄C becomes symmetric.

V. CMP-CFIE BASED TCM

In scattering or radiation problems, a Calderón multiplica-
tive preconditioner (CMP) has been used to accelerate the
convergence of CFIE solutions [14, 15]. Similarly, we can
obtain the CMP-CFIE based TCM as[
α

η
ZE(ik) · ZE(k) + (1− α)ηZH(k)

]
Jn

= (1 + iλn)

[
α

η
ZE(ik) · RE(k) + (1− α)iηXH(k)

]
Jn

(42)
The discretization of the above simply follows [14, 15], which
leads to

Z̄CCJn = (1 + iλn)K̄CCJn (43)

where

Z̄CC =
α

η
Z̃EḠ−1Z̄E + (1− α)ηZ̄H (44a)

K̄CC =
α

η
Z̃EḠ−1R̄E + (1− α)iηX̄H (44b)

In the above, Z̃E is the matrix representation of operator
ZE(ik) with BCs and n̂×BCs chosen as the expansion and
testing functions, respectively, and Ḡ is the Gramian matrix
linking n̂×RWGs and BCs [13]. It has been shown that Z̄CC

is well-conditioned even at frequencies of internal resonances.

VI. NUMERICAL RESULTS

In this study, the discretized standard eigenvalue prob-
lems are solved with the popular IRAM embedded in MAT-
LAB R2014b on an Intel Core i7-4700MQ CPU with 2.40
GHz clock rate. In each IRAM iteration, we compute the
MVM Z̄−1u with the generalized minimal residual (GMRES)
method, where Z̄ can be Z̄E , Z̄H , Z̄C , Z̄CC , etc. In each
GMRES iteration, an MVM in the form of Z̄u is directly
computed for convenience, where Z̄ is explicitly stored. For
large-scale applications, one can apply MLFMA to compute
MVMs such as Z̄u, R̄u and X̄u implicitly with a complexity

Fig. 1. Condition numbers of EFIE, MFIE and CFIE matrices. It clearly
indicates that CFIE removes the corruption due to internal resonance modes.

of O(N logN) [11]. In the following examples, the total
number of IRAM (outer) iterations is denoted as Nout, and
the average number of GMRES (inner) iterations in each
IRAM (outer) iteration is denoted as Nin. The GMRES error
tolerance is set to 10−10 unless specified otherwise.

We first consider a perfectly conducting sphere with a radius
of 1 m where 2 280 unknowns are used. The condition numbers
of matrices Z̄E , X̄E , Z̄H , R̄H and Z̄C are plotted in Fig. 1,
where the frequency is swept at a step of 1 MHz. The spikes in
the condition numbers of Z̄E correspond to spurious internal
resonances of EFIE. It is obvious that Z̄E and X̄E have the
same condition numbers at most frequencies except that X̄E

seems to have multiple spikes around each internal resonance
frequency. This renders it difficult to compute characteristic
modes using (11) and (12). Although MFIE is usually well-
conditioned, it also suffers from internal resonances as several
spikes are observed in the condition numbers of Z̄H . So does
R̄H except that it is more poorly-conditioned. Hence, (29) and
(30) may not be suitable for characteristic mode computation
when the operating frequency is near internal resonances.
On the other hand, CFIE is free from the internal resonance
corruption as no spikes are observed in the condition numbers
of Z̄C within the entire frequency band. By setting the CFIE
combination coefficient α to 0.5, Z̄C has a small condition
number ranging from 8 to 17.

A finer frequency sweep is performed with respect to the
spikes of Z̄E . Two lowest frequencies of internal resonances
are located with better accuracies, which are listed in Table I,
with the condition numbers of Z̄E , X̄E , Z̄H , R̄H and Z̄C

provided. It clearly shows that Z̄C is immune to the internal
resonance corruption which the other matrices are susceptible
to. At the internal resonance frequency 131.192 MHz, we
excite the sphere by a ẑ-polarized plane wave propagating
along ŷ-direction. The induced current computed by EFIE,
as shown in Fig. 2(a), is incorrect as it is dominated by
a spurious internal resonance mode. By solving a standard
eigenvalue problem Z̄Eun = ζnun, one can easily find the
internal resonance mode which corresponds to the smallest
|ζn| (around zero). The induced current can be correctly solved
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TABLE I
CONDITION NUMBERS OF EFIE, MFIE, AND CFIE MATRICES AT

INTERNAL RESONANCES (SPHERE)

Freq (MHz) Z̄E X̄E Z̄H R̄H Z̄C

131.192 1.02 × 106 1.06 × 106 839 2 437 13

185.005 6.13 × 105 6.44 × 105 275 388 9

for by CFIE with a combination coefficient α = 0.5, as shown
in Fig. 2(b).

We then compute 100 modes with the smallest |λn| by
EFIE, MFIE and CIFE, and list the first few characteristic
values λn in Table II. It is observed that the discrepancies
between the results computed by EFIE and MFIE are larger
for the first 3 characteristic values, which correspond to MFIE
internal resonance modes. Since MFIE is not implemented
to generate so accurate solutions as EFIE, the numerically
computed internal resonance frequencies of the two are not
exactly the same, and CFIE leads to complex λn with small
imaginary parts. Even so, the real parts of λn obtained by
CFIE agree well with EFIE results.

At frequencies of spurious internal resonances, EFIE may
not be able to find correct modal currents. For example, we
plot in Fig. 3(a) the third modal current J3 computed by EFIE
at 131.192 MHz. It is not consistent with those found by EFIE
at a lower frequency, e.g., 128 MHz [Fig. 3(c)], or a higher
frequency, e.g., 136 MHz [Fig. 3(d)]. However, the correct
modal current can be obtained with CFIE even at internal
resonances, as shown in Fig. 3(b). Furthermore, in Fig. 4,
we plot the normalized quantities |JT

n Z̄EJn| and |JT
n Z̄HJn|

for the first 100 modes, where Jn are computed by CFIE at
131.192 MHz. Obviously, the first 3 modes correspond to null
space modes of Z̄H which are well radiating. Moreover, J68

(λ68 = −739), J69 (λ69 = −864) and J70 (λ70 = −2731) are
null space modes of Z̄E which are poorly radiating. They have
similar current patterns as shown in Fig. 2(a). Table III shows
Nout, Nin and CPU times of different TCMs, where EFIE and
EFIE? denote the cases of using (12) and (11), respectively.
It is obvious that CFIE based TCM is the most efficient, even
though EFIE? involves real number evaluation only. Besides,
in Table IV, we compare a few characteristic values computed
by EFIE, MFIE and CFIE when the operating frequency is
shifted to 128 MHz. In this case, better consistency is observed
between the results of EFIE (CFIE) and MFIE based TCMs.

We next consider a cuboid with a dimension of 2.0× 1.6×
1.2 m where 1 311 edges are used. The lowest frequency of
spurious internal resonances is found to be 119.88 MHz using
a fine frequency sweep. By setting the operating frequency
to 119.880 MHz, we excite the cuboid with a ẑ-polarized
plane wave propagating along ŷ-direction. The induced current
computed by EFIE is incorrect as it is dominated by a spurious
internal resonance mode [Fig. 5(a)], which again corresponds
to a null space vector of Z̄E . The correct induced current
is computed by CMP-CFIE with a combination coefficient
α = 0.9 as demonstrated in Fig. 5(b). Table V lists the
condition numbers of Z̄E , Z̄H , Z̄C , and Z̄CC at an internal

(a) (b)

Fig. 2. Surface currents of a sphere excited by a plane wave at 131.192 MHz:
(a) Incorrect current computed by EFIE which is dominated by a spurious
internal resonance mode. (b) Correct induced current computed by CFIE (0.5).

TABLE II
CHARACTERISTIC VALUES (CVS) COMPUTED BY EFIE, MFIE, AND

CFIE AT INTERNAL RESONANCE 131.192 MHZ (SPHERE)

CVs EFIE MFIE CFIE
λ1 0.0503 0.2457 0.0503 − 0.0005i

λ2 0.0508 0.2697 0.0508 − 0.0004i

λ3 0.0509 0.5293 0.0509 − 0.0004i

λ4 1.2628 1.2716 1.2680 − 0.0026i

λ5 1.2660 1.2720 1.2680 − 0.0031i

λ6 1.2666 1.2722 1.2682 − 0.0026i

λ7 1.2670 1.2727 1.2683 − 0.0022i

λ8 1.2675 1.2734 1.2693 − 0.0027i

λ9 −1.3233 −1.3293 −1.3277 − 0.0026i

λ10 −1.3237 −1.3299 −1.3280 − 0.0029i

resonance frequency, e.g., 119.88 MHz, and a non-internal
resonance frequency, e.g., 121 MHz, respectively. It is obvious
that the CFIE matrix Z̄C is well-conditioned at the internal
resonance frequency, while the CMP-CFIE one Z̄CC is even
better conditioned. This is reflected by the eigen-spectral
distributions of Z̄E , Z̄C and Z̄CC , as plotted in Fig. 6.

At the internal resonance frequency 119.88 MHz, we com-
pute 50 modes with the smallest characteristic values |λn|
by EFIE, CFIE, and CMP-CFIE, respectively, and list the
first few characteristic values in Table VI. Good agreement is
observed except for that λn resulted from CFIE or CMP-CFIE
are not purely real. This is due to the accuracy inconsistency
between EFIE and MFIE solutions. Some characteristic cur-

TABLE III
ITERATION NUMBERS AND CPU TIMES OF EFIE AND CFIE AT INTERNAL

RESONANCE 131.192 MHZ (SPHERE)

TCM EFIE EFIE? CFIE
Nout 100 101 100

Nin 381.4 391.2 78.6

CPU time (secs) 789.9 300.5 99.9
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(a) (b)

(c) (d)

Fig. 3. Sphere modal current J3: (a) Pattern inconsistent with others,
computed by EFIE at 131.192 MHz. (b) Correct pattern computed by CFIE
(0.5) at 131.192 MHz. (c) Correct pattern computed by EFIE at 128 MHz.
(d) Correct pattern computed by EFIE at 136 MHz. The corresponding
characteristic values of the 4 currents are 0.0509, 0.0509−0.0004i, 0.1100,
and −0.0382, respectively.

Fig. 4. Normalized quantities |JT
n Z̄EJn| and |JT

n Z̄HJn| of the first 100
modes where Jn are computed by CFIE at 131.192 MHz.

rents cannot be correctly computed by the EFIE based TCM
at spurious internal resonances. We demonstrate the current
pattern of J3 as an example, which is shown in Fig. 7(a).
The correct current patterns can be obtained by CFIE and
CMP-CFIE based TCMs, which are shown in Figs. 7(b) and
(c), respectively. When the operating frequency is shifted off
the internal resonance one, the correct current mode can be
found among the EFIE results after mode tracking, as shown
in Fig. 7(d). A comparison of the normalized far field patterns
of this current at 119.88 MHz and 121 MHz are plotted in
Fig. 8(a) and (b), respectively, where good agreement between
the results of EFIE and CFIE is observed. Table VII shows

TABLE IV
CHARACTERISTIC VALUES (CVS) COMPUTED BY EFIE, MFIE, AND

CFIE AT 128 MHZ (SPHERE)

CVs EFIE MFIE CFIE
λ1 0.1094 0.1157 0.1095 − 0.0004i

λ2 0.1099 0.1159 0.1099 − 0.0003i

λ3 0.1100 0.1183 0.1100 − 0.0003i

λ4 −1.2755 −1.2814 −1.2797 − 0.0026i

λ5 −1.2760 −1.2819 −1.2799 − 0.0029i

λ6 −1.2779 −1.2837 −1.2818 − 0.0027i

λ7 −1.2795 −1.2851 −1.2833 − 0.0026i

λ8 −1.2808 −1.2861 −1.2844 − 0.0025i

λ9 1.3824 1.3881 1.3846 − 0.0025i

λ10 1.3828 1.3885 1.3846 − 0.0032i

TABLE V
CONDITION NUMBERS OF EFIE, MFIE, CFIE AND CMP-CFIE

MATRICES (CUBOID)

Freq (MHz) Z̄E Z̄H Z̄C Z̄CC

119.88 7.4305 × 105 106 58 10

121 276 65 44 10

(a) (b)

Fig. 5. Surface currents of a cuboid excited by a plane wave at 119.88 MHz:
(a) Incorrect induced current computed by EFIE which is dominated by a
spurious internal resonance mode. (b) Correct induced current computed by
CMP-CFIE (0.9).

Nout, Nin and CPU times of different TCMs. It is obvious
that both CFIE and CMP-CFIE based TCMs are more efficient
than the EFIE based one. The speed-accuracy trade-off needs
to be considered as setting α large suppresses the imaginary
parts of λn but increases the CPU time. Based on the results
presented in [15, 18], the CMP-CFIE scheme is promising for
large-scale applications where the conventional EFIE fails to
function.

In the last example, we demonstrate the characteristic mode
expansion with a NASA almond where 1 884 edges are used.
We first solve a scattering problem where the almond is
illuminated by a x̂-polarized plane wave propagating along
−ẑ-direction at 26.81 MHz. The induced current computed by
EFIE is corrupted by an internal resonance mode, as shown
in Fig. 9(a). However, by setting α to 0.5, one can use CFIE
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Fig. 6. Eigenvalues ζn of matrices Z̄E , Z̄C and Z̄CC at internal resonance.
No zero eigenvalues are found for CFIE and CMP-CFIE. CMP-CFIE has the
most compact eigen-spectral distribution.

TABLE VI
CHARACTERISTIC VALUES (CVS) COMPUTED BY EFIE, CFIE, AND

CMP-CFIE AT INTERNAL RESONANCE 119.88 MHZ (CUBOID)

CV EFIE CFIE CMP-CFIE
λ1 0.2389 0.2391 + 0.0011i 0.2390 + 0.0013i

λ2 −0.4643 −0.4639 + 0.0022i −0.4637 + 0.0041i

λ3 0.4890 0.4892 + 0.0007i 0.4891 + 0.0010i

λ4 0.4979 0.4980 + 0.0002i 0.4979 + 0.0004i

λ5 −0.6834 −0.6826 + 0.0038i −0.6823 + 0.0087i

to find the correct induced current as illustrated in Fig. 9(b).
We find a few important characteristic modes with the

CFIE based TCM, and use them to reconstruct the induced
current. Thus, only a few columns of J̄ and J̄a in (41) which
correspond to small |1 + iλn| are kept to compute the modal
coefficients. The first 100 modal coefficients an are plotted in
Fig. 10. It shows that not all modes with large |1 + iλn|−1
can be efficiently excited as their modal-source interaction(
J̄a
)T

Finc is negligible. Figs. 9(c) to (f) illustrate the currents
reconstructed using 5, 15, 25 and 75 characteristic modes,
respectively. Figure 11 plots RCSs (φ = 0◦) of the currents
computed with EFIE, CFIE, as well as those reconstructed
using different numbers of characteristic modes. It is obvious
that the reconstructed current and the associated RCS converge
to correct results as more modes are included. In this example,

TABLE VII
ITERATION NUMBERS AND CPU TIMES OF EFIE, CFIE, AND CMP-CFIE

AT INTERNAL RESONANCE 119.88 MHZ (CUBOID)

TCM EFIE CFIE CMP-CFIE
Nout 100 100 100

Nin 265.7 192.3 80.2

CPU time (secs) 240.0 141.2 44.2

(a) (b)

(c) (d)

Fig. 7. Cuboid modal current J3: (a) Pattern inconsistent with others,
computed by EFIE at 119.88 MHz. (b) Correct pattern computed by CFIE at
119.88 MHz. (c) Correct pattern computed by CMP-CFIE at 119.88 MHz. (d)
Correct pattern computed by EFIE at 121 MHz. The corresponding character-
istic values of the 4 modes are 0.4890, 0.4892+0.0007i, 0.4891+0.0041i,
and 0.4705, respectively.

(a) (b)

Fig. 8. Far field patterns of cuboid mode J3: (a) at 119.88 MHz. (b) at
121 MHz.

good agreement is observed when 75 modes are considered.
Hence, the system’s order can be greatly reduced from 1 884
to 75, which offers a model order reduction (MOR) based on
characteristic mode expansion.

VII. CONCLUSION

A CFIE based theory of characteristic mode (TCM) is
presented in this paper to overcome the difficulty of slow
convergence of EFIE solutions around frequencies of spurious
internal resonances. Since the MFIE based formulation shares
a common set of non-trivial characteristic pairs with the EFIE
based one, they are combined to form a generalized eigenvalue
problem which can be easily casted into a standard one
where the spurious internal resonance corruption is removed.
A CMP-CFIE based TCM is further formulated to enhance the
performance of the proposed scheme. MOR based on the char-
acteristic mode expansion is also presented which may serve
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Directly computed and reconstructed currents on a NASA almond
at internal resonance 26.81 MHz: (a) EFIE solution. (b) CFIE solution. (c)
Current reconstructed using 5 modes. (d) Current reconstructed using 15
modes. (e) Current reconstructed using 25 modes. (f) Current reconstructed
using 75 modes.

Fig. 10. Modal coefficients |an| of the first 100 characteristic modes.

as a useful tool in system design and optimization. The validity
and efficiency of the proposed scheme are demonstrated in a
few numerical experiments. It may be incorporated with fast
algorithms such as MLFMA to compute characteristic modes
of large-scale geometries.
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