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Abstract

This paper investigates a new class of linear multi-agent network systems, in which nodes are coupled by dynamic edges in
the sense that each edge has a dynamic system attached as well. The outputs of the edge dynamic systems form the external
inputs of the node dynamic systems, which are termed “neighboring inputs” representing the coupling actions between nodes.
The outputs of the node dynamic systems are the inputs of the edge dynamic systems. Several cooperative output regulation
problems are posed, including output synchronization, output cooperation and master-slave output cooperation. Output
cooperation is specified as making the neighboring input, a weighted sum of edge outputs, track a predefined trajectory by
cooperation of node outputs. Distributed cooperative output regulation controllers depending on local state and neighboring
inputs are presented, which are designed by combining feedback passivity theories and the internal model principle. A simulation
example on the cooperative current control of an electrical network illustrates the potential applications of the analytical
results.

Key words: Multi-agent, dynamic edge, output cooperation, output synchronization, feedback passivity, internal model
principle, electrical network.

1 Introduction

With the popularity of intelligent devices and the fast
development of communication technology, multi-agent
network systems (or the closely related subject of com-
plex dynamic networks) have attracted more and more
attentions in the control literature during the past
decade [1–11], because interactions and cooperations
between units become increasingly important. Such a
network system is often described by a graph, where
nodes represent the dynamic subsystems and edges the
interactions between these subsystems. One significant
feature of these systems is that they can achieve some
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collective behaviours, such as synchronization, swarm-
ing, formations and so on, with each node running a
decentralized or distributed feedback controller, rather
than a centralized controller.

Among these collective behaviors, consensus and syn-
chronization are the most extensively studied ones.
The term consensus arose to mean that all the agents
have variables of interest converge to one common
value. Since the seminal work [12], where conditions
were presented for consensus of undirected multi-agent
systems with first-order integrators, many significant
results have been reported for first-order or second-
order multi-agent systems. Readers can refer to recent
surveys [13, 14] and earlier surveys [15, 16] for details.
The term synchronization arose to mean that all the
agents have variables converge to one time-varying tra-
jectory, a common behavior in both time and space. In
fact, synchronization has a long history study in the
field of physics, including phase synchronization, limit-
cycle synchronization and chaos synchronization. Most
results are for nonlinear identical systems, but recent
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results have extended to non-identical nodes with re-
laxed synchronization concepts [8,17,18]. For nonlinear
synchronization in networks of dynamic systems, refer
to survey [19]. There are several works reported for syn-
chronization of linear multi-agent systems with focuses
on the output feedback in recent years [20–23].

Whereas consensus or synchronization requires that
agents are going to have an identical states, output
synchronization might occur with non-identical agents
and is often more interesting. Xiang et. al. studied out-
put synchronization in networks of identical agents by
using the output regulation method [24]. Kim et. al.
studied output synchronization in networks of single-
input and single-output non-identical agents [25]. Wang
et. al. presented an internal model controller for out-
put synchronization for more general heterogeneous
multi-agents systems [26]. It is proved in [27] that the
internal model principle is a necessary and sufficient
condition for non-trivial output synchronizations. Grip
et. al. studied the output synchronization problem of
general right-invertible linear node systems with no
knowledge about their own state or output but there
is a knowledge of the relative outputs [28]. An almost
output synchronization was addressed in [29], where the
output synchronization error due to the disturbances is
optimized in terms of the H∞ norm.

In most studies on consensus, agents do not have in-
teractions with each other before their controllers are
added. The received or measured neighboring informa-
tion forms virtual edges between agents. Each edge can
be thought of as a simple algebraic map to get a rela-
tive error between two connected agents. However, there
are many real large systems in which their subsystems
are inherently coupled to each other, such as power net-
works, ecological systems and so on. Such a system was
seldom described by a graph and studied by graph the-
ories, partly because the network structure is not got-
ten enough attention. Previous studies on these large
systems focus on stability analysis or decentralized con-
trollers whose purpose is to overcome the coupling influ-
ences on stability [30–33].

This paper presents a new class of inherently coupled
multi-agent network systems that has both dynamic
nodes and dynamic edges. Outputs of edge dynamic sys-
tems combine to form external inputs of node dynamic
systems, which are termed neighboring inputs; while
the outputs of node dynamic systems are the inputs of
edge dynamic systems. Several cooperative output reg-
ulation problems are studied, including output synchro-
nization, output cooperation and master-slave output
cooperation. Output cooperation in this study means
that the nodes have their outputs cooperate for some
objective that is specified as making the neighboring
inputs track some reference trajectories. The proposed
controller is distributed in the sense that the feedback
information contains not only the local state of the

agent itself, but also the neighboring input which con-
tains some indirect information of neighboring agents.
There are several works about adaptively adjusting the
edge weights [34,35]. The dynamics on the edge weights
is different from those considered in this paper. In [36],
a fairly related but different work was reported. There
the agents interact with each other by the controllers
placed on edges, so it is the edge dynamics rather than
the node dynamics to be designed to achieve output
synchronization.

The development here is passivity-based. The edge dy-
namics is assumed to be strictly passive and the node
dynamics to be feedback passive from the neighboring
input to the nodal local output. There are several works
which exploit passivity for seeking consensus or synchro-
nization of multi-agent systems. In [37], output synchro-
nization in networks of nonlinear systems that are input-
output passive was investigated. In [38], a passivity-
based design is proposed for a coordination problem of
second-order multi-agent systems by making the feed-
back channel to be passive. These results are not ap-
plicable here, because of non-Hurwitz exosystems being
considered (due to the internal model principle). The
closed-loop system is no longer formed by a negative
feedback interconnection of two passive systems.

The main originality of this paper is two fold. One is the
new model with dynamic edges and the output cooper-
ation problem thereof. The other is the idea combining
the tools of passification and internal model, and the so-
lution based on it. The first tool together with the pas-
sivity of edge dynamics leads to a decentralized way to
solve the problems and the second tool ensures a no-bias
trajectory tracking.

The remainder of this paper is organized as follows:
Section 2 presents the new multi-agent network system
with dynamic edges and specifies two problems of out-
put cooperation and output synchronization. Section 3
addresses the output synchronization problem by three
subsections of internal model control, passification de-
sign and solution for output synchronization. Sections 4
and 5 address the output cooperation and the master-
slave output cooperation problems, respectively. Section
6 provides a numerical simulation showing applications
of the developed results on cooperative current control
of an electrical network. Section 7 concludes this paper.
All the proofs are placed in the Appendix. A brief ver-
sion without proofs has been presented in [39].

2 Problem Formulation

Consider a multi-agent system of N nodes and M edges,
where the node dynamics have the form of{

ẋi = Aixi +Biui +Divi
yi = Cixi

, i = 1, 2, · · · , N, (1)
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Fig. 1. A motivation example of dynamic edges

where xi ∈ Rni is the state of node i, ui ∈ Rmi the input,
yi ∈ Rp the output and vi ∈ Rp is the neighboring input
to represent influences from other nodes. Ai, Bi, Ci and
Di are constant matrices with compatible dimensions.

Differently from previous formulations where vi is an al-
gebraic function of xi and xj with node j being a neigh-
boring node of node i, we consider here that all the nodes
are coupled by dynamic edges, that is, each edge has a
dynamic system model as well,{

żi = Eizi + Fisi
wi = Gizi

, i = 1, 2, · · · ,M, (2)

where zi ∈ Rnei , si ∈ Rmei and wi ∈ Rp are the state,
input and output of edge i, respectively. Ei, Fi and Gi
are constant matrices with compatible dimensions.

A1) Matrices Bi, Di and Fi are assumed to be of full
column rank; Ci and Gi are assumed to be of full row
rank.

The N ×M incidence matrix H describes the coupling
relationship between the nodes, and is defined as

hij =


+1, node i is at the positive end of edge j,

−1, node i is at the negative end of edge j,

0, otherwise.

(3)
The orientation of each edge only reflects that the influ-
ence of an edge on two nodes connected by the edge are
opposite and can be set arbitrarily. The node neighbor-
ing input vi and the edge input si are assumed to satisfy

vi = −
M∑
j=1

hijwj , i = 1, 2, · · · , N,

si =

N∑
j=1

hjiyj , i = 1, 2, · · · ,M

. (4)

The dynamic edges model above, as well as the cooper-
ative output regulation problem to be defined later, can
be illustrated using an electrical power network that as
a strongly nonlinear interconnected system, is very dif-
ficult for analysis and control. Fig. 1 illustrates a sim-
plified power network, where four generator nodes have
output voltage yi for the local load, and are coupled to
each other by the transmission line that is a dynamic
system due to the presence of inductance. Neighboring
input vi influencing node output yi is formed by the edge
outputs wj that is in turn determined by the node out-
put yi. Therefore, both regulating the node output and
regulating the neighboring input are cooperative behav-
iors between nodes.

The network in Fig. 1 can also be described by a multi-
agent model without dynamic edges by incorporating the
dynamic edges into the node systems. Clearly there are
multiple ways to do this. Fig. 1(b) provides an example,
where edge 1 and edge 5 are placed into the node 2
and the remained edges are placed into nodes one to
one. Such a model has at least two drawbacks, compared
with the dynamic edge model in Fig. 1(a). One is that
incorporation of edges losses structural information of
edges and moreover the optimal incorporation is difficult
to find. The other is that the coupling is not uniform
between nodes.

Our goal is to design ui for each node i, i = 1, · · · , N ,
which depends on the information of xi and vi, so as to
cooperatively regulate the neighboring inputs to track
some trajectories given by

ν̇i = Sηνi, v̄i = Qvνi, i = 1, · · · , N, (5)

where νi ∈ Rq is the state of neighboring input reference
system,Qv ∈ Rp×q is the output matrix, and Sη ∈ Rq×q
satisfies

A2) Matrix Sη has all eigenvalues locate on the imagi-
nary axis with the algebraic multiplicity of 1.
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Remark 1 Assumption A2) means that there is
a symmetric positive definite matrix Pη such that
PηSη + STη Pη ≤ 0.

Formally, the following problem is proposed,

Output Cooperation Problem: Given a multi-agent
system consisting of dynamic systems (1) and (2) with
the relationships (3) and (4), design a distributed control
law depending on local states xi and neighboring inputs
vi such that the closed-loop system has each neighboring
input asymptotically converge to its reference trajectory
given by (5), namely,

vi → v̄i, for all i = 1, 2, · · · , N. (6)

There are many real scenarios requiring the output coop-
eration, among which regulating neighboring input, as
illustrated in Fig. 1, corresponds to the output current
control of generators. Cooperatively pushing an elastic
object along the predefined trajectory by mobile robots
is another example of output cooperation, since the ob-
ject has dynamics due to the elastic contact with robots.
The output cooperation is also valid for the conventional
multi-agent system without dynamic edges. In such a
case, wi = G′iFisi for some matrix G′i and the goal be-
comes making some weighted sum of nodal outputs track
given trajectories.

One of the challenging points of the output cooperation
problem is that the variable to be regulated is not a
node state variable but a combination of outputs of edge
dynamic systems that are driven by the node outputs.

Notice that the node outputs are the inputs of edge sys-
tems. According to the internal model principle it is nec-
essary for output cooperation problem that the node
output has the mode of Sη. In this consideration, we
propose another cooperative output regulation problem
synchronizing the node outputs to a common trajectory
yη that is given by

η̇0 = Sηη0, yη = Qηη0, (7)

where η0 ∈ Rq is the exosystem state, yη ∈ Rp the
exosystem output, and Qη the output matrix.

Output Synchronization Problem: Given a multi-
agent system consisting of dynamic systems (1) and (2)
with the relationships (3) and (4), design a distributed
control law depending on local states xi and neighbor-
ing inputs vi such that all the nodes have their outputs
in the closed-loop system asymptotically converge to a
nontrivial common trajectory yη.

Remark 2 Output synchronization considered here not
only is of important significance by itself, but also, as
seen later, plays a key step for developing results of the

output cooperation problem. It should be pointed out that
yη defined above is a family of trajectories given that the
initial condition η0(0) is arbitrary. This means that yη is
not known before output synchronization; whereas v̄i in
the output cooperation problem are predefined and known
all the time.

An assumption for the edge dynamic system is made as
follows,

A3) The edge dynamic system (Ei, Fi, Gi) is strictly
positive real in the sense defined in [40].

In the output synchronization state, si = 0, subse-
quently wj = 0 since Ei is Hurwitz, and then vi = 0.
Therefore, the output synchronization problem can be
regarded as a special case of output cooperation prob-
lem with νi(0) = 0.

The network topology is assumed to satisfy

A4) The network is connected, namely, the row rank of
the incidence matrix H is N − 1.

This assumption implies that only 1 is the null space base
of HT , i.e., HT1 = 0, where 1 denotes the vector with
all elements being 1. Define a matrix T ∈ R(N−1)×N

satisfying T1 = 0 and TTT = IN−1 and an induced
matrix H̄ = TH. It can be verified that H̄ is of full row
rank. Matrices H̄ and T will be often used in the rest of
this paper.

Before to end this section, let us return to the electrical
network in Fig. 1. If Sη = [0, w;−w, 0] for some angle
frequencyw, then the output cooperation and output syn-
chronization problems are to make the output currents
track some given sinusoid and to make the output volt-
ages not only synchronize but also be a sinusoid with fre-
quency w, respectively. Although the most difficult fre-
quency synchronization problem is avoided by setting a
common Sη, the development below shows that the anal-
ysis and control is still a challenging problem even for
an electrical network that is linear when the frequency
is fixed and known. Assumptions for node dynamics are
given in the next section along with the controller design.

3 Output synchronization

3.1 Internal model controller

Since all the node outputs should synchronize on a tra-
jectory that is unknown but determined by (Sη, Qη), see
(7), a natural starting point is that each node makes its
output track a reference trajectory, which is independent
of others and produced by

η̇i = Sηηi, yηi = Qηηi, i = 1, 2, · · · , N, (8)
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where ηi ∈ Rq is the exosystem state, and yηi ∈ Rp the
exosystem output. The tracking error is defined by

ei = yi − yηi = Cixi −Qηηi. (9)

An internal model controller to make ei → 0 has the
form of {

ζ̇i = G1iζi +G2i(yi −Qηηi)
ui = Kxixi +Kζiζi

(10)

where ζi ∈ Rci is the controller state, matrix pair
(Gi1, Gi2) incorporates a p-copy internal model of ma-
trix Sη, and Kxi and Kηi are feedback gains to be
designed in the next subsection.

The p-copy internal model is a crucial skill to address
robust output regulation problem with p dimensional
outputs , which is recalled as follows for readability [41].

Definition 1 (p-copy internal model) Given a ma-
trix Sη, a pair (G1, G2) is said to incorporate a p-copy
internal model of Sη if the pair (G1, G2) admits the fol-
lowing form

G1 = Tp

[
S1 S2

0 Gp1

]
T−1
p , G2 = Tp

[
S3

Gp2

]
, (11)

where S1, S2, S3 are arbitrary matrices with compatible
dimensions, Tp is any non-singular matrix with same
dimension as G1 and (Gp1, Gp2) is described as follows

Gp1 = diag [α1, · · · , αp]︸ ︷︷ ︸
p−tuple

, Gp1 = diag [β1, · · · , βp]︸ ︷︷ ︸
p−tuple

, (12)

where for i = 1, · · · , p, αi is a constant square matrix
of dimension di for some integer di and βi is a constant
column vector of dimension di such that

(i) αi and βi are controllable.
(ii) The minimal polynomial of Sη divides the charac-

teristic polynomial of αi.

Here for Sη satisfying Assumption A2), the minimal
polynomial is the same as the characteristic polynomial
and di = q. Let aq(λ) = λq + a1λ

q−1 + · · ·+ aq−1λ+ aq
be the minimal polynomial of Sη. A general way to show
how the internal model forces the tracking error to be
zero is to select (αi, βi) in the controllable canonical form
described by

αi =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−aq −aq−1 · · · −a1

 , βi =


0
...

0

1

 . (13)

Taking p = 1 for example, the first equation in (10)
becomes

ζ̇i = αiζ + β(yi −Qηηi). (14)

When the closed-loop system is exponentially sta-
ble, the system steady state is driven by the exosys-
tem, namely, there are matrices Θ and Π such that
ζi → Θηi and xi → Πηi. Substituting ζi = Θηi into
(14) yields θ2 = θ1Sη, θ3 = θ1S

2
η , · · · , θq = θ1S

q−1
η and

θqSη +
∑q
i=1 aiθq−i+1 = yi − Qηηi, where θi denotes

the ith row of Θ. The left side of the last equality is
nothing but θ1(Sdη + a1S

d−1
η + · · ·+ ad) = 0 due to the

Cayley-Hamilton theorem. This means that yi → Qηηi
and CiΠ = Qη. In summary, the Lemma 1.27 in [41] is
simplified as follows,

Lemma 1 The zero tracking error is guaranteed by
the p-copy internal model controller (10) if the resulted
closed-loop system is exponentially stable.

3.2 Passification design

With controller (10), the dynamics of node system (1)
becomes

˙̂xi = Âix̂i + D̂ivi + D̂ηiηi, yi = Ĉix̂i (15)

where x̂i = [xTi , ζ
T
i ]T ,

Âi =

[
Ai +BiKxi BiKζi

G2iCi G1i

]
, D̂i =

[
Di

0

]
,

D̂ηi =

[
0

−G2iQη

]
, Ĉi =

[
Ci 0

]
.

In a single-node system, it is enough to make Âi be Hur-
witz for output regulation. Here for cooperation among
nodes, an extra passification is required for the design of
feedback gains Kxi,Kζi.

A5) The feedback gains Kxi and Kζi are designed in

such a way that Âi is Hurwitz and the closed-loop
system (Âi, D̂i, Ĉi) is passive.

Making Âi Hurwitz requires that node i satisfies the
following assumptions,

A51) Matrix pair (Ai, Bi) is stabilizable.
A52) For any eigenvalue λ of Sη,

rank

([
Ai − λI Bi
Ci 0

])
= ni + p.

There has been plentiful works on the passification de-
sign (see [42] [43] for surveys of this area) to make a
system be a ”direct” passivation with respect to input,
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but seldom works are reported for rendering a system an
“indirect” passivation with respect to the disturbances
input. Arcak and Kokotović [44] presented the feasi-
ble condition for rendering a single-input-single-output
(SISO) system strictly positive real with respect to the
disturbance input. The feasibility condition for the in-
direct passification design required in Assumption A5)
is still open problem. However, if the node system is re-
stricted to the direct passification case, i.e, Bi = Di, one
feasibility condition can be stated as follows,

A53) CiBi is symmetric positive definite (SPD).

A54) The polynomial ϕ0(λ) = det
[
Ai−λI Bi
Ci 0

]
is Hur-

witz, i.e, minimum phase condition,

The combination of the two assumptions is called the
hyper minimum phase condition [45]. As illustrated be-
low, this condition is also valid for the passification by
the internal mode controller (10) with assumption A2).

Theorem 1 Given a node system (1) with Bi = Di and
with assumptions A2), A53) and A54), there exist feed-
back gains Kxi and Kζi such that the closed-loop system
(15) satisfies Assumption A5).

Assumption A53) restricts that the system is of the uni-
form relative degree one. Assumption A54) together with
A2) implies A52). Since our main focus is not on the pas-
sification design, in this paper we use Assumption A5)
instead of A51)∼A54) to leave the possibility for more
general node systems that could be of indirect passifica-
tion.

3.3 Solution for output synchronization

Since Âi and Sη have no common eigenvalue, the follow-
ing Sylvester equation has a unique solution Πi,

ΠiSη = ÂiΠi + D̂ηi, (16)

and, since matrix pair (Gi1, Gi2) incorporates a p-copy
internal model of matrix Sη, the solution Πi further sat-
isfies

ĈiΠi = Qη, (17)

which implies that ei → 0 under controller (10) if no
coupling between nodes, i.e., vi = 0. In the presence of
coupling, making ei → 0 is a decentralized servomecha-
nism problem [30], because ηi is independent of x̂i and
ζi. For this goal, the following result is given,

Theorem 2 Given a multi-agent system consisting of
(1)∼(4) with assumption A1) and exosystem (8), if as-
sumptions A2), A3) and A5) hold, then ei will exponen-
tially converge to zero for all i = 1, · · · , N , under con-
troller (10).

Node i



iy


i ˆ
iAiv iy

Node 1

Node N

T
pH I

v y s

1E

2E



ME

pH I w

Fig. 2. A block diagram representation for the interconnec-
tion of multi-agent systems (1)∼(4) with controller (18).

The above theorem implies that when the exosystem ηi,
whose output the node i will track, have the same dy-
namic model for all the nodes, then the decentralized
internal model controller can realize the output track-
ing for the networks coupled by dynamic edges if some
passivity properties are satisfied.

Now we consider the output synchronization problem. If
these ηi are synchronous to each other, then yi− yj → 0
can be further obtained by controller (10). But in gen-
eral, ηi 6= ηj due to different initial conditions 1 . Mean-
while, the synchronization errors, either yi−yj or ηi−ηj ,
are not directly available for synchronization seeking of
ηi. Here neighboring input vi is the only available infor-
mation that indirectly reflects the synchronization error.
Our idea is to adjust the exosystem dynamics (8) by us-
ing vi in order to synchronize ηi. With this alteration,
the following dynamic controller is presented,

η̇i = Sηηi + εBηvi

ζ̇i = G1iζi +G2i(yi −Qηηi)
ui = Kxixi +Kζiζi

, (18)

where Bη ∈ Rq×p is the input matrix of the exosystem,
ε is a positive scalar expressing the strength of adjusting
the dynamics of output reference, and (Gi1, Gi2), Kxi

andKζi are the same as those in (10). The block diagram
of the resulting closed-loop system is shown in Fig. 2.

Theorem 3 Given a multi-agent system consisting of
(1)∼(4) with assumption A1). If Assumptions A2)∼A5)
hold and Bη is designed such that (Sη, Bη, Qη) is passive,
namely, Bη = P−1

η QTη , then there is a scalar ε∗ > 0
such that for all 0 < ε < ε∗, controller (18) will solve
the output synchronization problem. And moreover, the
steady output trajectory is given by

yi(t)→ Qηe
Sηt

1

N

N∑
i=1

ηi(0), i = 1, 2, · · · , N. (19)

1 In real, the same initial state can not be achieved because
of among others the different staring time between nodes.
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As shown in Fig. 2, the signal channel from reference
output yηi to sj is not direct, but goes indirectly through
output yi of dynamic system x̂i. Critically, it is no longer
passive from yηi to yi due to ĈiD̂ηi = 0. This in turn
results in the adjusting strength of an upper bound ε∗

since the closed-loop system is not a feedback intercon-
nection of two passive systems.

4 Output Cooperation

This section addresses the output cooperation problem
making the influences between nodes, the neighboring
inputs vi, track some predefined trajectories v̄i. Similar
with the output synchronization problem, the trick is to
adjust output reference ηi according to tracking error
vi − v̄i.

Suppose that the node output is just its reference, yi =
yηi a perfect tracking, then the output reference system
(8) can be regarded as a dynamic controller for the edge
dynamic systems in the sense that yηi is the control in-
put to regulate vi → v̄i, replacing yi with yηi . In this
consideration, the dynamics of ηi should be altered to
incorporate a p-copy model of Sη. In summary the con-
troller is given by,

˙̄ηi = GS η̄i + εGB(vi −Qvνi)
ζ̇i = G1iζi +G2i(yi −GQη̄i)
ui = Kxixi +Kζiζi

, (20)

where η̄i ∈ Rpq. Controllable matrix pair (GS , GB) in-
corporates a p-copy model of Sη. A possible choice for
GS , GB and GQ is

GS = Ip ⊗ Sη,

GB =


B1
η · · · 0
...

. . .
...

0 · · · Bpη

 , GQ =


Q1
η · · · 0

...
. . .

...

0 · · · Qpη

 (21)

where Biη denotes the ith column of Bη and Qiη the ith
row of Qη. It can be verified that

(Ip ⊗ Pη)GS +GTS (Ip ⊗ Pη) ≤ 0, (Ip ⊗ Pη)GB = GTQ.
(22)

Remark 3 WithQvνi ≡ 0, controller (20) reduces to an
output synchronization controller, especially the same as
(18) when p = 1. In this consideration, the output syn-
chronization problem is a special one of the output coop-
eration problem. Noting that an edge can be regarded as a
filter of the output error between nodes that the edge con-
nects, the regulation of neighboring inputs is regulating
the weighted sum of the filtered output synchronization
errors.

The analysis developed below consists of three parts, the
separate node dynamics, the separate edge dynamics,
and the whole coupled dynamics.

Firstly, we turn back to node dynamics (15) with vi and
ηi being replaced by v̄i and η̄i, respectively,

˙̂xi = Âix̂i + D̂η̄iη̄i + D̂iQvνi, (23)

where D̂η̄i =

[
0

−G2iGQ

]
. The dynamics of x̂i in sys-

tem (23) is driven by η̄i and νi. Since Âi is Hurwitz
and Sη has no stable eigenvalues, there is a unique so-

lution Π̄i =
[
Π̄1i, Π̄2i

]
with Π̄1i ∈ R(ni+ci)×pq, Π̄2i ∈

R(ni+ci)×q satisfying

Π̄i

[
GS 0

0 Sη

]
= ÂiΠ̄i +

[
D̂η̄i D̂iQv

]
, (24)

and

ĈiΠ̄1i = GQ, ĈiΠ̄2i = 0. (25)

Secondly, we consider the edge dynamics (2) with a per-
fect output tracking of the node system; replacing yi by
GQη̄i, together with the first equation in (20) and refer-
ence system (5), obtains the following dynamic systems



żj = Ejzj + Fj

N∑
i=1

hijGQη̄i,

˙̄ηi = GS η̄i + εGB(−
M∑
j=1

hijGjzj −Qvνi),

ν̇i = Sηνi,

. (26)

where j = 1, 2, · · · ,M for the first equation and i =
1, 2, · · · , N for the last two equations.

Introduce a coordinates transformation η̃i = (Ti⊗Ipq)η̄,

ν̃i = (Ti ⊗ Ipq)ν, i = 1, · · · , N − 1, η̃N =
∑N
i=1 η̄i,

and ν̃N =
∑N
i=1 νi, where η̄ = [η̄T1 , · · · , η̄TN ]T , ν =

[νT1 , · · · , νTN ]T , and Ti is the ith row of T , defined after
assumption A4). Define

z =


z1

...

zM

 , η̃ =


η̃1

...

η̃N−1

 , Z =

[
z

η̃

]
, ν̃ =


ν̃1

...

ν̃N−1

 .
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With them, the system (26) can be transformed into

Ż = AνZ + Bν ν̃, ˙̃ν = (IN−1 ⊗ Sη)ν̃ (27a)

˙̃ηN = GS η̃N − εGBQv ν̃N , ˙̃νN = Sη ν̃N (27b)

where

Aν =

[
EM H̄TF (IN−1 ⊗GQ)

−ε(IN−1 ⊗GB)H̄G IN−1 ⊗GS

]
,

Bν =

[
0

−ε(IN−1 ⊗GBQv)

]
,

with EM being defined in (B.2), H̄TF and H̄G defined

in (B.10). Here the fact that
[
T
1T

]
[ TT 1/N ] = IN is used.

Theorem 4 Given system (26) with assumptions
A1)∼A4) and with ε > 0, then there is a matrix

Π̃ = [Π̃T
z , Π̃

T
η ]T satisfying

Π̃(IN−1⊗Sη) = AνΠ̃+Bν , −H̄GΠ̃z = IN−1⊗Qv (28)

such that z → Π̃z ν̃, η̃ → Π̃η ν̃ and

vi −Qvνi → Qvν0(t), (29)

where ν0(t) is the solution of the following dynamic sys-
tem,

ν̇0 = Sην0, ν0(0) = − 1

N

N∑
i=1

νi(0).

It can be seen that system (26) contains two separated
parts, (27a) and (27b). The former can realize output
tracking with the internal model principle by itself but
cannot achieve the neighboring input tracking in general
even if each node has a perfect tracking performance that
yi = GQη̄. For system (27b) a nonzero ν̃N (ν̃N = Nν0)
will leads to an unbounded η̃N , which means that at
least some η̄i are unbounded as well. This causes that yi
will converge to infinity although the edge dynamics has
bounded states and bounded inputs (weighted sums of
yi).

To avoid these problems, the following zero sum condi-
tion is made,

A6) The trajectories of neighboring input reference sys-

tems are in the manifold
∑N
i=1 νi = 0.

Remark 4 Under the zero sum condition, all the neigh-
boring input vi will asymptotically track their reference
Qvνi, since ν0(0) = 0.

At last, we are ready to present our main result for out-
put cooperation,

Theorem 5 Given a multi-agent system consisting of
(1)∼(4). If Assumptions A1)∼A6) hold, then there is a
scalar ε∗ > 0 such that for all 0 < ε < ε∗, controller
(20) with (21) and (22) will solve the output cooperation
problem. And moreover, the sum of node output ys =∑N
i=1 yi satisfies

ys(t)→ GQe
GSt

N∑
i=1

η̄i(0). (30)

It can be seen that the different initial conditions of out-
put reference systems cause different steady outputs yi,
although the steady neighboring inputs vi are the same
for any initial condition. This in turn means that for
a given output cooperation target v̄i, there are infinite
feasible solutions for node outputs.

5 Master-slave output cooperation

In order for a well-posed output cooperation problem,
the zero sum condition of assumption A6) is required.
Even a small violation of this condition will cause some
reference outputs to diverge to infinity. To solve this
problem, one possible way is to keep some nodes free,
running without the requirements on their neighboring
inputs. Such nodes are called master nodes, in the sense
that they do not receive any command so that their out-
put reference is not changed. The controller for a master
node is given by (10). The remaining nodes are called
slave nodes whose controller is designed as (20). The
output reference of slave node is changed to fit in with
command v̄i.

Without loss of generality, we assume that the first l
nodes are slave nodes and the remaining N− l nodes are
master nodes, and present the following result,

Theorem 6 Given a multi-agent system consisting of
(1)∼(4). If the nodes have controllers described by

˙̄ηi = GS η̄i + εGB(vi −Qvνi)
ζ̇i = G1iζi +G2i(yi −GQη̄i)
ui = Kxixi +Kζiζi

, i = 1, · · · , l,

(31a){
ζ̇i = G1iζi +G2i(yi −Qηηi)
ui = Kxixi +Kζiζi

, i = l + 1, · · · , N,

(31b)
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1v 2v
1u 2u

Fig. 3. A wire connecting two voltage sources.

where 0 ≤ l ≤ N − 1, and both νi and ηi are the state of
exosystems satisfying{

ν̇i = Sηνi, i = 1, 2, · · · , l
η̇j = Sηηj , j = l + 1, · · · , N . (32)

If assumptions A1)∼A5) are satisfied, then there is a
positive scalar ε∗ such that for all 0 < ε < ε∗,

vi → Qvνi, yj → Qηηj (33)

for all i = 1, · · · , l and j = l + 1, · · · , N .

It can be seen that the master node plays an output
tracking role to make its output yi track a given reference
Qηηi; while the slave node plays an output cooperation
role to make its neighboring input track given reference
Qvνi. Theorem 6 implies that if the two kinds of nodes
simultaneously exist in the network, they can definitely
realize their targets without the so-called zero sum con-
dition. Recalling Theorem 2, the number of slave nodes
can reach l = 0. The above master-slave configuration
is illustrated by the control of microgrids working in the
islanded mode [46]. One inverter, as a master generator,
works in the voltage control mode to provide the funda-
mental voltage and other inverters, as slave generators,
work in the current control mode to inject the desired
powers into the microgrids.

Here the feasibility of multiple master nodes can be ex-
plained by the example in Fig. 3. Two nodes can have
arbitrary output voltages u1 and u2 but the output cur-
rents (neighboring inputs) v1 and v2 must satisfy the
zero sum condition v1 + v2 = 0. Therefore the case that
all the nodes are master nodes, i.e., l = 0, is feasible but
the case that all the nodes are slave nodes, i.e., l = N ,
is not allowed.

6 Example on electrical network

A simple electrical network consisting of two sources,
two loads and one transmission line is selected as an
application example to illustrate the analytic results. We
consider the sources with their current being the control
input. Fig. 4 shows the electrical network. Node 1 and 2
are sources, and node 3 is the ground. A transmission line
connects the outputs of two sources, which means that
both sources jointly provide currents for loads connected
to node 1 and 2. In the model, every edge contains a
non-ideal inductor, i.e., modeled by a resistance and an
inductance.

12i

Node 3

1y
1fCSource 1 1y 2y

3y

12R 12L

13R
13L

23R

23L13i 23i

Electrical Network

1u

1v

2y
2fCSource 2 2u

2v

Node 2Node 1

Network Topology

Fig. 4. The electrical network of three nodes

The incidence matrix is

H =


1 1 0

−1 0 1

0 −1 −1

 . (34)

For the edges, the following dynamic functions can be
established,

L12i̇12 = −R12i12 + y1 − y2, (35a)

L13i̇13 = −R13i13 + y1 − y3, (35b)

L23i̇23 = −R23i23 + y2 − y3. (35c)

And for the sources,

Cf1u̇f1 = u1 − v1, y1 = uf1, (36a)

Cf2u̇f2 = u2 − v2, y2 = uf2. (36b)

Suppose the desired output is a 50hz sinewave, that
is, Sη =

[
0 −w
w 0

]
, with w = 100π. Here we consider

a master-slave output cooperation problem as follows.
Node 3 is the ground that can not be controlled. So it
can be taken as a master node with a perfect voltage
tracking performance, satisfying y3 ≡ η3 with

η̇3 = Sηη3, η3(0) = 0. (37)

Both node 1 and node 2 are slave nodes, being re-
quired to make their neighboring inputs (output cur-
rents) track desired currents, v̄1 = 10 sin(wt+ π/6) and
v̄2 = 10 cos(wt), respectively. The desired currents are
produced by the following dynamic systems,

ν̇i = Sηνi, ν̄i = Qvνi, with Qv = [1, 0], (38)

where the initial conditions are

ν1(0) =

[
5

−5
√

3

]
, ν2(0) =

[
10

0

]
. (39)

Such a configuration of output cooperation corresponds
to the scenario where two sources work in the current
control mode.
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Take z1 = i12, z2 = i13, z3 = i23 and xi = ufi, i = 1, 2.
Notice that

v1 = i12 + i13,

v2 = −i12 + i23.
(40)

The electrical network is just a multi-agent system con-
sisting of (1)∼(4), with assumption A1) and A4) being
satisfied. The physical parameters of the network are
listed in Table 1. Assumption A2) can be also verified
with Pη = I2.

Table 1
Parameters of the electrical network

R12 L12 R13 L13

0.05Ω 0.01mH 9Ω 1mH

R23 L23 Cf1 Cf2

8Ω 5mH 50µF 30µF

According to Theorem 6, the following controllers are
designed for two source nodes,

˙̄ηi = GS η̄i + εGB(vi − ν̄i)
ζ̇i = G1iζi +G2i(yi −GQη̄i)
ui = Kxixi +Kζiζi

, i = 1, 2, (41)

where

GS = Sη, GQ =
[
0 1
]
, GB = PηG

T
Q =

[
0

1

]
,

G11 = Sη, G21 =

[
1

1

]
, Kx1 = −1,

Kζ1 = [−500, −500], G12 =

[
0 1

−w2 0

]
, G22 =

[
0

1

]
,

Kx2 = −2, Kζ2 = [0, −500].

It can be verified that assumption A5) is satisfied for
both source nodes under the controller gains defined
above. All the conditions in Theorem 6 are satisfied,
therefore, there is ε for the above controller to make the
electrical network realize the output cooperation.

Simulation results with ε = 20 made in the Matlab en-
vironment are shown in Fig. 5. The electrical network is
built by making use of the SimPowerSystems Toolbox.
After the transition time, each generator adjusts its out-
put to make the neighboring input of itself converge to
the desired one. As shown in the middle figure of Fig. 5,
the tracking error is in the order of 10−3 and is still de-
creasing. A less ε leads to a longer transition phase, but
the error will always ultimately decay to zero.

0 1 2 3 4 5 6 7 8
−40

−20

0

20

40
Tracking errors of neighboring inputs

Time[sec]
 

 

v1
v2

7.5 7.55 7.6 7.65 7.7 7.75 7.8 7.85 7.9 7.95 8
−2

−1

0

1

2 x 10−3 Tracking errors of neighboring inputs

Time[sec]

 

 

v1
v2

7.8 7.82 7.84 7.86 7.88 7.9 7.92 7.94 7.96 7.98 8
−20

−10

0

10

20
Neighboring inputs

Time[sec]

 

 

v1
v2

Fig. 5. The trajectories of the neighboring inputs of both
nodes and their tracking errors; the top: the trajectories of
tracking errors; the middle: an enlargement of the top; the
bottom: an enlargement of the trajectories of the neighboring
inputs.

7 Conclusion

A new class of multi-agent network systems was pre-
sented, where the nodes are not directly coupled but
indirectly coupled by dynamic systems, called dynamic
edges. The node dynamics can be directly controlled
and are influenced by the neighboring input which is a
weighted sum of the edge outputs; while the edge dy-
namics can not be directly controlled due to its input
being the node outputs. Distributed controllers designed
by a combination of feedback passivity theories and the
internal model principle were presented for output syn-
chronization, output cooperation and master-slave out-
put cooperation, respectively. A simulation example of
cooperative current control of an electrical network il-
lustrates the efficacy of the analytic results.

The developments were based on the exact matrices,
but they can be extended to the uncertain case in that
the tools of both passification and internal model prin-
ciple are good at coping with the uncertain systems. Al-
though the network is heterogeneous, the controller re-
quires some common parameters, e.g.,Bη,Cη and ε. How
to relax such a common requirement and how to get the
upper bound of ε are the goals of our future researches.

A A preliminary lemma

Lemma 2 Given a matrix W =

[
W1 W2 +W5

W3 W4

]
. If

there are symmetric positive definite matrices Pw and
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Qw such that

PwW1 +WT
1 Pw ≤ 0, (A.1a)

QwW4 +WT
4 Qw < 0, (A.1b)

PwW2 = −WT
3 Qw, (A.1c)

and W1 is Hurwitz, then there is a constant ε̄ such that
for all ‖W5‖ < ε̄ there is a block diagonal symmetric pos-
itive definite matrix P̄ = diag(P̄w, Qw) for some P̄w > 0
satisfying

P̄W +WT P̄ < 0. (A.2)

Proof: The proof is constructive. Since W1 is Hurwitz,
there is a symmetric positive definite matrix Pr satisfy-
ing the following Lyapunov equation,

PrW1 +WT
1 Pr = −I. (A.3)

By (A.1b), there is positive scalar ε1 such that QwW4 +
WT

4 Qw < −ε1. Take P̄w = Pw + ε̄Pr to obtain

P̄W +WT P̄ =[
−ε̄I + PwW1 +WT

1 Pw ?

(PwW5 + ε̄Pr(W2 +W5))T QwW4 +WT
4 Qw

]

<

[
−ε̄I ?

(PwW5 + ε̄Pr(W2 +W5))T −ε1I

]
(A.4)

where ? denotes the symmetric part. By Finsler lemma
[47], it can be verified that the above matrix is symmetric
negative definite, if

−ε1I + ε̄−1‖PwW5 + ε̄Pr(W2 +W5)‖2 < 0,

which can be further enlarged by

a2
r ε̄

3 + 2awar ε̄
2 + a2

w ε̄− ε1 < 0, (A.5)

where ar = ‖Pr‖ and aw = ‖Pw‖ + ‖PrW2‖. Selecting
ε̄ < min{1, ε1

(ar+aw)2 } makes (A.5) true to complete the

proof.

Actually, if ar and aw are such that (1 − ar) 3
√
ε1 > aw,

then all ε̄ < 3
√
ε1 satisfies (A.5). This means that ε̄ is not

always restricted to be a small value since if ε1 is a large
value, then ε̄ can be as well a high value.

B Proof of Theorems

B.1 Proof of Theorem 1

Proof: As shown in [45], the hyper minimum phase con-
dition implies that there is a SPD matrix Ps and a matrix
Kxi such that (Ai + BiKxi)Ps + Ps(Ai + BiKxi)

T < 0

and CiPs = DT
i = BTi . Meanwhile, the incorporation of

p-copy internal model of Sη and assumption A2) imply
that there is a SPD matrix Pg such thatG1iPg+PgG

T
1i ≤

0. DesignKζi byKζi = −GT2iP−1
g . Let P̂ = diag(Ps, Pg).

It can be verified that

ÂP̂ + P̂ ÂT ≤ 0, ĈiP̂ = D̂i, (B.1)

which means that system (Âi, D̂i, Ĉi) is passive. Let G2i

be such that not only (G1i, G2i) is controllable but also
(Gi1, G

T
2iP
−1
g ) is observable, which together with (B.1)

implies that Â is Hurwitz.

B.2 Proof of Theorem 2

Proof: The closed-loop system has the following com-
pact form

˙̂
X = ÂX̂ + D̂ηη, η̇ = (IN × Sη)η, (B.2)

where X̂ = [x̂T1 , · · · , x̂TN , zT1 , · · · , zTM ]T , η = [ηT1 , η
T
2 , · · · ,

ηTN ]T ,

Â =

[
AN −HDG

HTFC EM

]
, AN =


Â1 · · · 0
...

. . .
...

0 · · · ÂN

 ,

HDG =


h11D̂1G1 · · · h1M D̂1GM

...
...

...

hN1D̂NG1 · · · hNM D̂NGM

 ,

HTFC =


h11F1Ĉ1 · · · hN1F1ĈN

...
...

...

h1MFM Ĉ1 · · · hNMFM ĈN

 ,

EM =


E1 · · · 0
...

. . .
...

0 · · · EM

 , D̂η =


D̂η1 · · · 0

...
. . .

...

0 · · · D̂ηN

 .
According to Lemma 1, in order for ei → 0, it suffices to
show Â is Hurwitz.

With assumption A3), there exists a positive definite
matrix Qj such that

QjEj + ETj Qj < 0, QjFj = GTj , j = 1, 2, · · · ,M,
(B.3)

and with assumption A5), there exists a positive definite

matrix P̂i such that

P̂iÂi + ÂTi P̂i ≤ 0, P̂iD̂i = ĈTi , i = 1, 2, · · · , N,
(B.4)
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Define P = diag(P̂1, · · · , P̂N ) and Q = diag(Q1, · · · ,
QM ). It can be seen that PHDG = (QHTFC)T . There-

fore by Lemma 2, Â is Hurwitz, and subsequently all zi,
xi are bounded for bounded external inputs ηi. More-
over, ei → 0 for all i = 1, 2, · · · , N by Lemma 1 due to
the incorporation of a p-copy internal model in controller
(10).

B.3 Proof of Theorem 3

Proof: The closed-loop system with controller (18) has
the form of

˙̂xi = Âix̂i − D̂i

M∑
j=1

hijwj + D̂ηiηi, i = 1, · · · , N,

żj = Ejzj + Fj

N∑
i=1

hijyi, j = 1, · · · ,M,

η̇ = (IN ⊗ Sη)η − ε(H ⊗Bη)w,
(B.5)

Consider error vectors exi = x̂i − Πiηi. From (16), it
follows that

ėxi = Âiexi − D̂i

M∑
j=1

hijwj + εΠiBη

M∑
j=1

hijwj , (B.6)

for all i = 1, · · · , N . Noticing (17), the dynamics of zj
can be written by

żj = Ejzj + Fj

N∑
i=1

hijĈiexi + Fj

N∑
i=1

hijQηηi, (B.7)

for all j = 1, · · · ,M . Recall matrix T ∈ R(N−1)×N sat-
isfying T1 = 0 and TTT = IN−1, which has been given
after assumption A4), and introduce a coordinate trans-
formation by η̃i = (Ti ⊗ Iq)η, i = 1, · · · , N − 1, and

η̃N =
∑N
i=1 ηi, where Ti denotes the ith row of T . The

third formula in (B.5) can be transformed into
˙̃ηi = Sη η̃i − εBη

M∑
j=1

h̄ijwj , i = 1, · · ·, N − 1.

˙̃ηN = Sη η̃N

(B.8)

where h̄ij is the ith row and jth column element of ma-
trix H̄. Accordingly, equation (B.7) can be rewritten by

żj = Ejzj +Fj

N∑
i=1

hijĈiexi +Fj

N−1∑
i=1

h̄ijQη η̃i. (B.9)

Since η̃N freely runs, it suffices to consider the dynamics
of exi, zj and η̃k, with i = 1, · · · , N , j = 1, · · · ,M and

k = 1, · · · , N−1, respectively. Define a stacked vector by
X̄ = [eTx1, · · · , eTxN , zT1 , · · · , zTM , η̃T1 , · · · , η̃TN−1]T , whose
dynamics is governed by

˙̄X = ĀX̄ (B.10)

where

Ā =


AN −HDG+ εΠB 0

HTFC EM H̄TF (IN−1 ⊗Qη)

0 −ε(IN−1 ⊗Bη)H̄G IN−1 ⊗ Sη



H̄TF =


h̄11F1 · · · h̄(N−1)1F1

...
...

...

h̄1MFM · · · h̄(N−1)MFM

 ,

H̄G =


h̄11G1 · · · h̄1MGM

...
...

...

h̄(N−1)1G1 · · · h̄(N−1)MGM

 ,

ΠB =


h11Π1BηG1 · · · h1MΠ1BηGM

...
...

...

hN1ΠNBηG1 · · · h̄NMΠNBηGM


With (B.3) and (B.4) and using Lemma 2, there is upper
bound ε̄ such that for all 0 < ε < ε̄, such that

P

[
AN −HDG+ εΠB

HTFC EM

]
+

[
AN −HDG+ εΠB

HTFC EM

]T
P < −ε1I (B.11)

for some positive scalar ε1, where P = diag(P̃1, · · · , P̃N ,
Q1, · · · , QM ) is a block diagonal symmetric positive ma-
trix with QiFi = GTi , for all i = 1, · · · ,M .

Consider the Lyapunov function V̂ =
∑N
i=1 e

T
xiP̃iexi +∑M

j=1 z
T
j Qjzj + ε−1

∑N−1
i=1 η̃Ti Pη η̃i. Its time derivative

along system (B.10) yields

˙̂
V ≤ −ε1

N∑
i=1

eTxiexi − ε1
M∑
j=1

zTi zi

+ ε−1
N−1∑
i=1

η̃Ti (PηSη + STη Pη)η̃i ≤ 0, (B.12)

by which, the invariant set of D = {X̄ :
˙̂
V = 0} is a

subset of {X̄ : exi = 0, zj = 0,∀i, j}. According to the
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Lasalle’s theorem, as t→∞, X̄(t) ∈ D, so exi → 0 and
zj → 0 for all i, j. The latter means that sj → 0 due to
Fj of full column rank, which in a compact form is

(HT ⊗ Ip)Y → 0 (B.13)

where Y = [yT1 , y
T
2 , · · · , yTN ]T . With assumption A4),

the null space of HT has dimension 1 and is spanned by
vector 1, therefore,

yi → yk, ∀ i, k, (B.14)

which, together with exi → 0, means that

Qηηi −Qηηk → 0, ∀ i, k. (B.15)

Notice that the sum of all ηis, namely η̃N , has the fol-
lowing dynamics

˙̃ηN = Sη η̃N , with η̃N (0) =

N∑
i=1

ηi(0). (B.16)

Combining (B.15) and (B.16) yields

yi → Qηηi →
1

N
Qη η̃N , (B.17)

which is just (19).

B.4 Proof of Theorem 4

Proof: According to Lemma 1, it is enough to show the
internal stability of system (27a) in which state vari-
able Z is driven by exosystem ν̃. Consider the Lyapunov

function V1 =
∑M
j=1 z

T
j Qjzj + ε−1

∑N−1
i=1 η̃Ti (Ip⊗Pη)η̃i,

whose time derivative along (27a) with ν = 0 is given by

V̇1 ≤
M∑
j=1

zTj (QjEj + ETj Qj)zj ≤ 0. (B.18)

By Lasalle’s lemma, zj → 0, which together with Fj be-
ing of full column rank, means that H̄T (IN−1⊗GQ)η̃ →
0. Furthermore, because of H̄T being of full column rank,
GQη̃i → 0. Noting that matrix pair (GS , GQ) is observ-
able, one has η̃i → 0. This means the system (27a) is
internal stable. Notice matrix pair (GS , GB) is a p-copy
model of Sη, hence according to Lemma 1

−
M∑
j=1

h̄ijGjzj −Qv ν̃i → 0, (B.19)

which means that (28) holds.

Notice that (B.19) is equivalent to (T ⊗I)(v−Q̄vν)→ 0
with Q̄v = (IN ⊗Qv). Therefore

v − Q̄ν → 1⊗ ν0 (B.20)

for some ν0 ∈ Rp. By the fact (1T ⊗ Ip)v = 0, it follows
that

−Qv
N∑
i=1

νi = −Qv ν̃N → Nν0, (B.21)

that is, ν0 → − 1
NQv ν̃N , by which (29) is obtained.

B.5 Proof of Theorem 5

Proof: With controller (20), the closed-loop system has
the form of

˙̂xi = Âix̂i − D̂i

M∑
j=1

hijGjzj + D̂η̄iη̄i, i = 1, 2, · · · , N,

żj = Ejzj + Fj

N∑
i=1

hijyi, j = 1, 2, · · · ,M,

˙̄ηi = GS η̄i − εGB
M∑
j=1

hijGjzj − εGBQvνi,
i = 1, 2, · · · , N.

ν̇i = Sηνi, i = 1, 2, · · · , N.
(B.22)

With the same notations as those in (26) and (27), the
last three equations in (B.22) can be transformed into,

ż = EMz + H̄TF (IN−1 ⊗GQ)η̃

+


F1

∑N
i=1 hi1(yi −GQη̄i)

...

FM
∑N
i=1 hiM (yi −GQη̄i)

 , (B.23a)

˙̃η = (IN−1 ⊗GS)η̃

− ε(IN−1 ⊗GB)(H̄Gz + (IN−1 ⊗Qv)ν̃),
(B.23b)

˙̃ηN = GS η̃N , ν̃N ≡ 0, (B.23c)

where the last equation is from assumption A6). Con-
sider error vectors ēxi = x̂i − Π̄1iη̄i − Π̄2iνi, where Π̄1i

and Π̄2i are the solution of (24) and (25). Its dynamics
has the form of,

˙̄exi = Âiēxi − D̂i

 M∑
j=1

hijGjzj +Qvνi


+ εΠ̄1iGB

 M∑
j=1

hijGjzj +Qvνi

 . (B.24)
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Define

HG =


h11G1 · · · h1MGM

...
...

...

hN1G1 · · · hNMGM

 ,

Π1GB =


h11Π11GBG1 · · · h1MΠ11GBGM

...
...

...

hN1Π1NGBG1 · · · hNMΠ1NGBGM

 .

Consider errors ēx = [ēTx1, · · · , ēTxN ]T , ēz = z − Π̃z ν̃ and

ēη = η̃− Π̃η ν̃, where Π̃z and Π̃η are the solution of (28).

Noting that yi −GQη̄i = Ĉiēxi due to (25) and

[
T ⊗ Ip
1T ⊗ Ip

] (
HGΠ̃z ν̃ + (IN ⊗Qv)ν

)
=

[
H̄GΠ̃z ν̃ + (IN−1 ⊗Qv)ν̃

Qv ν̃N

]
= 0, (B.25)

their dynamics is governed by


˙̄ex = ANēx −HDGēz + εΠ1GB ēz

˙̄ez = EMēz +HTFCēx + H̄TF (IN−1 ⊗GQ)ēη

˙̄eη = −ε(IN−1 ⊗GB)H̄Gēz + (IN−1 ⊗Gs)ēη

.

(B.26)
Making use of Lemma 2, it can be verified that the above
system is Hurwitz along with the line of the proof of
Theorem 3. From (B.25), it follows that

HGΠ̃z ν̃ = −(IN ⊗Qv)ν, (B.27)

which, together with ēz → 0, implies that vi → Qvνi for
all i, and thus the output cooperation is realized.

On the other hand, from η̃N =
∑N
i=1 η̄i and ēxi → 0, it

follows that (30) holds.

B.6 Proof of Theorem 6

Proof: Firstly, we consider the edge dynamics by re-
placing yi by GQη̄i for i = 1, · · · , l and by Qηηi for

i = l + 1, · · · , N .

żj = Ejzj + Fj

l∑
i=1

hijGQη̄i

+ Fj

N∑
k=l+1

hkjQηηk, j = 1, · · · ,M,

η̄i = GS η̄i + εGB(−
M∑
j=1

hijGjzj −Qvνi),

i = 1, · · · , l,
ν̇i = Sηνi, i = 1, · · · , l,
η̇k = Sηηk, k = l + 1, · · · , N.

(B.28)

Notice that HT

[
Il

0

]
is of full column rank, hence by the

similar way in the above theorems it can be derived that
the system consisting of zj , j = 1, · · · ,M and η̄i, i =
1, · · · , l, is internal stable. Therefore, there are unique
matrices Πν

zj , Πη
zj , Πν

η̄i and Πη
η̄i satisfying the following

matrix equation

Πν
zj(Il ⊗ Sη) = EjΠ

ν
zj + Fj

l∑
i=1

hijGQΠν
η̄i,

j = 1, · · · ,M, (B.29)

Πη
zj(IN−l ⊗ Sη) = EjΠ

η
zj + Fj

l∑
i=1

hijGQΠη
η̄i

+ Fj

N∑
k=l+1

hkjQη(ξk−lN−l ⊗ Iq), j = 1, · · · ,M, (B.30)

Πη
η̄i(IN−l ⊗ Sη) = GSΠη

η̄i, Πν
η̄i(Il ⊗ Sη) = GSΠν

η̄i,

i = 1, · · · , l, (B.31)

−
M∑
j=1

hijGjΠ
ν
zj = ξil ⊗Qv,

M∑
j=1

hijGjΠ
η
zj = 0,

i = 1, · · · , l, (B.32)

such that

zj → Πν
zj ν̂ + Πη

zj η̂, j = 1, · · · ,M,

η̄i → Πν
η̄iν̂ + Πη

η̄iη̂, i = 1, · · · , l, (B.33)

where ν̂ = [νT1 , · · · , νTl ]T , η̂ = [ηTl+1, · · · , ηTN ]T , Il is a
unit matrix with order l, and henceforth notation ξmn
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denotes the n-order row vectors with all elements be-
ing 0 but the mth element being 1, for example, ξil =
[0, · · · , 1

i
, · · · , 0] ∈ Rl.

Secondly, consider the node dynamics. The closed-loop
node dynamic system has the form of

{
˙̂xi = Âix̂i + D̂ivi + D̂η̄i η̄i, i = 1, · · · , l,
˙̂xi = Âix̂i + D̂ivi + D̂ηiηi, i = l + 1, · · · , N.

(B.34)

Replacing vi by −
∑M
j=1 hijGj(Π

ν
zj ν̂ + Πη

zj η̂), for all i =
1, · · · , N , yields

˙̂xi = Âix̂i + D̂iMiν̂ + D̂η̄iη̄i, i = 1, · · · , l
˙̂xi = Âix̂i + D̂iMiν̂ + D̂iNiη̂ + D̂ηi(ξ

i−l
N−l ⊗ Iq)η̂,

i = l + 1, · · · , N,
(B.35)

where Mi = −
M∑
j=1

hijGjΠ
ν
zj and Ni = −

M∑
j=1

hijGjΠ
η
zj ,

i = 1, · · · , N (Please note Ni = 0 for i = 1, · · · , l). Since

Âi is Hurwitz, there are unique matrices Πν
fi and Πη̄

fi,
i = 1, · · · , l, satisfying

Πν
fi(Il ⊗ Sη) = ÂiΠ

ν
fi + D̂iMi,

Πη̄
fiGs = ÂiΠ

η̄
fi + D̂η̄i,

ĈiΠ
ν
fi = 0, ĈiΠ

η̄
fi = GQ,

(B.36)

for the first l slave nodes, and there are unique matrices
Πν
li and Πη

li, i = l + 1, · · · , N , satisfying


Πν
li(Il ⊗ Sη) = ÂiΠ

ν
li + D̂iMi,

Πη
li(IN−l ⊗ Sη) = ÂiΠ

η
li + D̂iNi + ξi−lN−l ⊗ D̂ηi

ĈiΠ
ν
li = 0, ĈiΠ

η
li = ξi−lN−l ⊗Qη

(B.37)
for the remainder N − l master nodes. The last equation
of (B.36) and (B.37) comes from the incorporation of a
p-copy internal model in (31a) and (31b), respectively.

Finally, we are ready to consider the whole closed-loop
system under controller (31), which has the form of



˙̂xi = Âix̂i + D̂ivi + D̂η̄i η̄i, i = 1, · · · , l,
˙̄ηi = GS η̄i + εGB(vi −Qvνi), i = 1, · · · , l,
˙̂xi = Âix̂i + D̂ivi + D̂ηiηi, i = l + 1, · · · , N,
żj = Ejzj + Fj

∑N
i=1 hijyi, j = 1, · · · ,M,

˙̂ν = (Il ⊗ Sη)ν̂, ν̂ = [νT1 , · · · , νTl ]T ,

˙̂η = (IN−l ⊗ Sη)η̂, η̂ = [ηTl+1, · · · , ηTN ]T .

Consider the following error vectors,

êxi =

{
x̂i −Πν

fiν̂ −Πη̄
fiη̄i, i = 1, · · · , l

x̂i −Πν
liν̂ −Πη

liη̂, i = l + 1, · · · , N
(B.38)

êzj = zj −Πν
zj ν̂ −Πη

zj η̂, j = 1, · · · ,M, (B.39)

êη̄i = η̄i −Πν
η̄iν̂ −Πη

η̄iη̂, i = 1, · · · , l. (B.40)

Their dynamics are governed by

˙̂exi = Âiexi − D̂i

M∑
j=1

hijGj êzj + εΠη̄
fiGB

M∑
j=1

hijGj êzj ,

i = 1, · · · , l, (B.41)

˙̂exi = Âiexi − D̂i

M∑
j=1

hijGj êzj ,

i = l + 1, · · · , N,
(B.42)

˙̂ezj = Ej êzj + Fj

N∑
i=1

hijĈiexi + Fj

l∑
i=1

hijGQêη̄i,

j = 1, · · · ,M, (B.43)

˙̂eη̄i = GS êη̄i − εGB
M∑
j=1

hijGj êzj ,

i = 1, · · · , l, (B.44)

which can be further written in the following compact
form


˙̂ex
˙̂ez
˙̂eη

 =


AN −HDG+ ε

[
ΠLB

0

]
0

HTFC EM HT
LF (Il ⊗GQ)

0 −ε(Il ⊗GB)HLG Il ⊗Gs



êx

êz

êη

 ,
(B.45)

where êx = [êTx1, · · · , êTxN ]T , êz = [êTz1, · · · , êTzM ]T , êη =
[êTη1, · · · , êTηl]T ,

ΠLB =


h11Πη̄

f1GBG1 · · · h1MΠη̄
f1GBGM

...
...

...

hl1Πη̄
flGBG1 · · · hlMΠη̄

flGBGM

 ,
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HLG =


h11G1 · · · h1MGM

...
...

...

hl1G1 · · · hlMGM

 ,

HT
LF =


h11F1 · · · hlMF1

...
...

...

h1MFM · · · hlMFM

 .
Using the technique similar to that used for the proof of
Theorem 3 and using Lemma 2, it can be derived that
there is a positive scalar ε∗ such that for all 0 < ε < ε∗

the above system is exponentially stable, that is, all error
vectors êxi, êzj and êη̄i will converge to zero. According
to (B.32) and (B.37), it follows that vi → Qvνi for the
slave nodes and yj → Qηj for the master nodes.

References

[1] A. Pogromsky and H. Nijmeijer. Cooperative oscillatory
behavior of mutually coupled dynamical systems. IEEE
Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 48(2):152 –162, feb 2001.

[2] Y. Liu and K.M. Passino. Cohesive behaviors of multiagent
systems with information flow constraints. IEEE Trans.
Autom. Control, 51(11):1734 –1748, nov. 2006.

[3] J. Zhou and T. Chen. Synchronization in general complex
delayed dynamical networks. IEEE Transactions on Circuits
and Systems I: Regular Papers, 53(3):733–744, 2006.

[4] G. Xie and L. Wang. Consensus control for a class of networks
of dynamic agents. International Journal of Robust and
Nonlinear Control, 17(10-11):941–959, 2007.
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