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ABSTRACT 

 

This study investigated pedestrian jaywalking at signalized crosswalks. Observational surveys 

were conducted at 7 crosswalks in different areas in Hong Kong, after which pedestrian 

information and site condition data were incorporated into a database. A binary logit model 

was used to identify possible factors that determine the probability of pedestrian jaywalking. 



To address the variation in the effects of the explanatory variables among pedestrians and the 

unobserved heterogeneity across sites, we used a random parameter model and a random effect 

model, respectively. The results showed that the random parameter model performed the best 

in terms of goodness-of-fit. It was found that the signal when a pedestrian arrives at the 

crosswalk is critical for decision making, and the jaywalking of surrounding pedestrians also 

influences the pedestrian’s decision to cross. The gender and walking speed of the pedestrian, 

vehicle flow, and site location and condition of the crosswalk were also found to significantly 

determine the probability of pedestrian jaywalking. 

 

Keywords: Pedestrian crossing behavior; Jaywalking; Signalized crosswalks; Random 

parameter model; Random effect model 

 

INTRODUCTION 

 

Signal control has been widely used around the world for more than 100 years. It provides a 

safe, economic, and efficient means of coordinating conflicting traffic flows at junctions, and 

is particularly popular in densely populated cities with heavy vehicle and pedestrian traffic 

loads. Signalized junctions are the most common type of junction in Hong Kong. Although 

pedestrian-vehicle collisions at signalized junctions have been reduced by 35% in the past 5 

years, 387 pedestrian-vehicle crashes were still recorded, which comprised nearly 25% of the 

accidents that occurred at signalized junctions. Drivers should be aware of the traffic 

regulations as they must pass a written test on the Road Users’ Code before obtaining their 

licenses, so pedestrian jaywalking is the most likely cause of pedestrian-vehicle accidents at 

signalized junctions in Hong Kong. 

 



Studies have attempted to identify the factors that influence pedestrian crossing behavior. In 

terms of individual characteristics, it was observed that male pedestrians tend to jaywalk more 

than female pedestrians (Tiwari et al., 2007, Rosenbloom, 2009, Brosseau et al., 2013). A 

similar tendency was observed in questionnaire surveys based on the theory of planned 

behavior, which investigated pedestrians’ attitudes toward jaywalking (Diaz, 2002, Zhou et al., 

2009). However, Ren et al. (2011) observed that middle-aged female pedestrians had the lowest 

compliance rate in China. The elderly were also found to be more patient and less likely to 

jaywalk (Guo et al., 2011, Zhuang & Wu, 2011, Ren et al., 2011, Brosseau et al., 2013). Oxley 

(1997) conducted an experiment on pedestrian traffic judgment and observed that older adult 

pedestrians generally adopted a less safe crossing strategy and performed worse than younger 

pedestrians on two-way undivided roads, although their performance was similar to that of 

younger pedestrians on one-way divided roads. The differences associated with age-related 

physical, perceptual, and cognitive deficits were further discussed and validated in an 

experimental study of the age differences in pedestrians’ gap selection (Oxley, 2005). Holland 

and Hill (2009) pointed out that driving experience also affected pedestrians’ decisions to make 

unsafe crossings. Surprisingly, pedestrians with driving experience left smaller safety margins, 

although they were more likely to look both ways before crossing than non-drivers. Ren et al. 

(2011) suggested that a possible reason for the low compliance rate of female pedestrians in 

China was that fewer of them had driving licenses. They showed that individual characteristics 

affect pedestrians’ judgement of the traffic conditions and gap selection. In view of this, Koh 

and Wong (2014) used a binary logit model to predict the proportion of pedestrians who accept 

a gap, and hence jaywalk. They found that the type of gap (location and sequence of oncoming 

vehicles) and the stage of crossing (near end or far end) influenced pedestrians’ crossing 

decisions.  

 



In addition to the pedestrian characteristics and types of gap, the environment and site 

conditions may also affect the decision making of pedestrians. Lavalette et al. (2009) found 

that the number of lanes of traffic, the presence of pedestrian crossing signals, and the presence 

of a central traffic island influenced pedestrians’ decision making at crossings. Kruszyna and 

Rychlewski (2013) investigated the influence of approaching trams on pedestrian behavior at 

signalized crosswalks in Portland. Li and Fernie (2010) suggested that the weather also 

influenced the compliance rate, particularly for pedestrians crossing a signalized two-stage 

crossing with a center refuge island in the winter. The waiting time was also found to increase 

the probability of pedestrians jaywalking (Tiwari, 2007, Li and Ferinie, 2010), and Li (2013) 

proposed a model for pedestrians’ intended waiting time. To reduce the high incidence of 

jaywalking and, hence, improve pedestrian safety at signalized crosswalks, pedestrian 

countdown signals have been introduced in recent years to prevent pedestrians from 

overestimating the waiting time (Keegan and Mahony, 2003) and taking the risk to jaywalk. 

This measure has been proven to effectively reduce the number of pedestrians starting to cross 

before the signal eventually turns green (Schattler et al., 2002). 

 

Among the approaches used to identify the factors associated with pedestrian jaywalking 

behavior, ANOVA has been used to analyze the differences among groups of pedestrians (Li 

and Ferinie, 2010, Ren, et al., 2011) and logistic regression has been used to represent the 

effects of explanatory variables in determining the probability of jaywalking (Rosenbloom, 

2009, Brosseau et al., 2013). ANOVA is useful for evaluating the influence of demographic 

factors, whereas logistic regression models are capable of linking the effects of the factors with 

the probability of jaywalking. However, the effects of explanatory variables are considered to 

be constant and fixed among all pedestrians in the simple logistic regression models, which 

may lead to misleading outcomes if considerable variation exists in the effects among 



individual pedestrians. In addition, although numerous previous studies have observed 

pedestrian crossing behavior at different sites, few studies have discussed the possible 

unobserved site differences. 

 

In this study, observational surveys were conducted in 7 crosswalks in Hong Kong. The 

relevant individual-specific factors and site-specific factors were extracted and incorporated 

into a binary logit model to identify the contributory factors that determine the probability of 

jaywalking. To address the heterogeneity across pedestrians and sites, a random parameter 

model was used to accommodate the variation in the effects of the explanatory variables, and 

a random effect models was used to account for the unobserved heterogeneity across sites.  

 

In Hong Kong, the sequence of pedestrian signals is a steady green signal, a flashing green 

signal, and a steady red signal. Pedestrians are only allowed to start crossing when the steady 

green signal is illuminated. The flashing green signal indicates that the pedestrians already on 

the crosswalk should continue and finish crossing at a reasonable speed. However, pedestrians 

who have not started crossing should wait until the next steady green signal. No pedestrians 

are allowed to cross during the red signal. In this study, pedestrians who entered a crosswalk 

during the flashing green signal or the red signal were regarded as jaywalkers according to the 

traffic regulations in Hong Kong. No countdown signals are provided at pedestrian crosswalks. 

DATA 

In this study, seven signalized junctions were randomly selected from different areas of Hong 

Kong (Table 1). There were 4 sites in urban areas, including 2 in Hong Kong Island and 2 in 

Kowloon, and the other 3 were in the New Territories. Video recording was conducted at each 

site for about 90 minutes, during which pedestrian movements were captured for further 

analysis. Preliminary analysis had previously been conducted based on the Travel 



Characteristic Survey 2011 to determine the period with the highest pedestrian flow on a typical 

working day from the video recording. In total, 7230 pedestrians who arrived during flashing 

green or red signals were recorded at the 7 sites. The number of observations varied from site 

to site, mainly depending on the populations of the areas. Table 1 lists the numbers of 

observations obtained at each site with the corresponding signal cycle time and average flow. 

The signal cycle times ranged from 90 seconds to 130 seconds. The crosswalk at Hung Hom 

had the lowest average pedestrian arrival rate at 2.7 ped/min, while the site at Tsuen Wan had 

the highest at 79.7 ped/min. 

 

To identify the factors that influenced the pedestrians’ decisions to jaywalk, the pedestrian 

walking trajectories were manually tracked, and a series of variables were further extracted to 

build the dataset, including the demographic characteristics of the pedestrians, the pedestrian 

and traffic flow characteristics, the geometric design data, and the signal scheme of the 

junctions. The variables included are listed as Table 2 and Table 3. Table 2 gives the 

proportions for the categorical variables, and Table 3 provides the descriptive statistics of the 

continuous variables.  

 

As shown in Table 2, only the pedestrians who arrived at the crosswalks during the flashing 

green (14.7%) or red (85.3%) signal were recorded. More than 60% of these pedestrians entered 

the crosswalks before the pedestrian signal finally turned green, i.e. jaywalked. It was found 

that 57% of the pedestrians who arrived at the crosswalks during the red signal jaywalked, and 

100% of those who arrived during the flashing green signal jaywalked without waiting for 

another cycle. Some of the pedestrians may have thought that it was too long to wait for another 

cycle, and some may have been confused about the exact meaning of the flashing green signal 

and were unaware they were actually jaywalking. 



 

The gender and age of the pedestrians were identified during the video tracking. The gender 

was easy to identify according to the pedestrians’ appearance, and more than 90% of the 

observations were successfully distinguished. To accommodate the remaining unidentified 

cases, two dummy variables M, F were used to represent male pedestrians as M = 1 and F = 0, 

female pedestrians as M = 0 and F = 1, and the unidentified pedestrians as M = 0 and F = 0. 

However, most of the pedestrians (96.1%) could not be identified as either elderly or children, 

and they were thus generally regarded as adults. As previously mentioned, there were four sites 

(two in Hong Kong Island and two in Kowloon) in urban areas, and three sites in the New 

Territories. We obtained 5064 observations (70.0%) from the four urban sites and 2166 

observations (30.0%) from the other three sites in the New Territories. 

 

The walking speed of each pedestrian was measured at 1 s intervals and then the average 

walking speed was computed. The mean of the average walking speed was 1.22 m/s, as shown 

in Table 3, which is similar to the findings of Lam et al. (2002) on pedestrian walking speeds 

at crosswalks in commercial areas in Hong Kong (75.38 m/min, i.e. 1.26 m/s). However, 

according to the Transport Planning and Design Manual (Transport Department, 2001), an 

assumed walking speed of 1.2 m/s is generally used to determine the flashing green period for 

the distance between the curbs in Hong Kong, although a walking speed of 0.9 m/s may be 

considered in exceptional cases to accommodate the elderly, people with disabilities, or 

exceptionally heavy pedestrian flows. Of the 1061 pedestrians who arrived during the flashing 

green signal, 668 (63.0%) walked slower than 1.2 m/s, and 377 (35.5%) walked slower than 

0.9 m/s. This implies that the majority of pedestrians normally walk slower than 1.2 m/s, and 

that they are at risk of a vehicle accident if they do not pay attention to the duration of the 

flashing green signal and fail to speed up.  



 

The total number of pedestrians in the cycle was used in the dataset instead of the average 

pedestrian arrival rate, as a simple number of pedestrians is more straightforward and easy to 

observe. Russell et al. (1976) and Reed and Sen (2005) found that pedestrians were encouraged 

to follow when observing someone else jaywalking. The percentage of pedestrians who 

jaywalked in the same cycle was used as a proxy of a situation variable to represent the follower 

behavior and estimate the influence of other jaywalkers on a pedestrian. In addition to the 

surrounding pedestrians, the average vehicle flow in a cycle and the pedestrian crossing time 

were used to measure the risk of vehicle-pedestrian accidents. Finally, the geometric data of 

the junctions and the signal phasing scheme were taken into account, as these represent the site 

conditions and the corresponding waiting times. 

 

METHODS 

Basic binary logit model 

 

The binary logit model was used to represent how the individual-specific and site-specific 

factors influence the pedestrians’ jaywalking behavior. The response variable for the ith 

pedestrian 1iY =   if he/she jaywalks, and 0iY = if he/she does not. Denote the probability of 

1iY =  as πi, then it follows a binomial distribution as  
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where Xik is the kth explanatory variable for the ith pedestrian, and βk (k = 1,…, p) are the 

regression coefficients. In using the basic binary logit model, each pedestrian was regarded as 

an individual observation, and parameters β were assumed to be constant for all individuals at 

all sites, i.e., a fixed-parameter model. 



 

The same set of parameters β were applied to all observations at all sites. However, random 

variations in the effects of the explanatory variables among pedestrians and random effects 

across sites could have existed. Therefore, the random parameter binary logit model was used 

to account for the effect of the heterogeneity among pedestrians, and the random effect binary 

logit model was used to accommodate the unobserved heterogeneity across sites. 

 

Random parameter binary logit model 

 

To account for individual pedestrian’s taste variations, a randomly distributed term was 

introduced for each coefficient, and the random parameter binary logit model was thus 

formulated as 
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where βik is the coefficient of the kth explanatory variable for the ith pedestrian, and µik is 

normally distributed with a mean of 0 and variance σk
2. In general practice, a random parameter 

βik is introduced if the corresponding standard deviation σk is significantly larger than 0, 

otherwise, a fixed coefficient βk is used for the corresponding explanatory variable Xik. 

 

Random effect binary logit model 

 

The pedestrian movements were captured from 7 crosswalks with different characteristics in 

Hong Kong. Therefore, observations in the same site were grouped as panel data, and a random 



effect binary logit model was used to account for both the within-site correlations and the inter-

site heterogeneity. Hence, the random effect binary logit model is as follows: 
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where πij is the probability that the ith pedestrian at the jth crosswalk jaywalks, Xijk is the kth 

explanatory variable for the ith pedestrian at jth crosswalk, and µj is the random intercept with 

a mean of 0 and variance σj
2. Hence, the random effects µj vary across different crosswalks but 

remain constant for all of the pedestrians at the same crosswalk. 

 

Goodness-of-fit 

 

The Akaike information criterion (AIC) is widely applied to evaluate the quality of models for 

a given set of data. Although the likelihood values of models can always be improved by adding 

predictors, a penalty term for the number of estimated parameters is introduced to deal with the 

trade-off between the goodness of fit and the model complexity. The formula for AIC is given 

as  

 AIC 2 2ln( )K L= −  (4) 

where K is the number of estimated parameters in the model and L is the maximum likelihood 

of the given set of data for the model. Therefore, the model with a lower AIC value is 

considered to be a better statistical fit. 

 

To further evaluate the overall fit of the model, McFadden’s adjusted pseudo R2 is used to 

compare the log-likelihood value of the model at convergence with that of the model with all 

parameters set to zero. The formula for the index is 
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where LL(β) and LL(0) are the log-likelihood values of the proposed and null models, 

respectively. The value of the index varies between 0 for no fit and 1 for a perfect fit. In practice, 

a value of around 0.4 is generally considered to be an excellent fit (Ortuzar and Willumsen, 

2011). 

 

Finally, the likelihood-ratio test can be used to compare the goodness-of-fit of two competing 

models and to decide whether the null model should be rejected in favor of the alternative 

model. The test statistic is defined as twice the difference between the log-likelihoods: 

 [ ]2 ( ) ( )null alternativeD LL LL= − −β β  (6)                                                       

Comparing the chi-square distribution with degrees of freedom Kalternative – Knull, the null model 

can be rejected if the value exceeds the critical value at the 95% confidence level. 

 

In this study, the likelihood-ratio test was first conducted to compare the basic binary logit 

model with the random effect binary logit model. Then, a second likelihood-ratio test was 

conducted between the random effect binary logit model and the random parameter binary logit 

model. The degree of freedom had to be 1 for the first test, because the number of parameters 

in the random effect binary logit model was one more than that of the basic model. However, 

the degrees of freedom for the second test were dependent on the number of random parameters 

in the random parameter binary logit model. 

 

RESULTS 

 

STATA 13 was used to estimate the three binary logit models. Before the models were finalized, 

a Pearson’s correlation test was conducted to identify the explanatory variables that were 

independent of each other and to eliminate the highly correlated variables to ensure an unbiased 



estimation (Table 4). Not surprisingly, the correlation analysis indicated that the two dummy 

variables of gender, M and F, were highly correlated. This meant that either of the two dummy 

variables could be included in the model to represent pedestrian gender. Average vehicle flow 

was found to be highly correlated with cycle time and pedestrian red signal time, as the longer 

the time for vehicles, the larger the average vehicle flow. High correlations also existed among 

the geometric design variables and the signal phasing variables, including the number of lanes 

at the crosswalk, the numbers of approaches and approach lanes at the junction, the number of 

traffic streams at the junction, the number of signal stages, the cycle time, and the red signal 

time. These are all related to the size of the junction; i.e., the larger the junction, the longer the 

time to clear the vehicle traffic, and hence the longer the red signal time for pedestrians and the 

longer the cycle time. Only one or two of these variables can be included in the model. 

 

Finally, 8 explanatory variables (gender, signal at arrival, walking speed, number of pedestrian 

in the cycle, percentage of pedestrian jaywalking in the cycle, average vehicle flow in the cycle, 

crossing time, and number of stage) were included in the model. The estimation results and the 

average marginal effects for the basic (fixed parameter), random effect, and random parameter 

binary logit models are shown in Tables 4 and 5, respectively. The parameter estimates of all 

modeling approaches are significant at the 5% level. The signs of all parameters are consistent 

across the three models.  

 

In terms of goodness-of-fit, all three models have acceptable overall fit with the McFadden’s 

adjusted pseudo R2 values in the 0.26 ~ 0.29 range. Both the random effect and random 

parameter binary logit models have lower AIC values and larger values of McFadden’s 

adjusted pseudo R2 than the basic binary logit model. Unobserved heterogeneities thus exist 

across sites and also among pedestrians, and hence the two models provide statistically superior 



fit compared to the basic binary logit model. The statistic of the likelihood-ratio test between 

the basic model and the random effect models is 240.66, which is much greater than χ2 (1, 99%) 

= 6.64, i.e., the basic model is rejected in favor of the random effect model. Similarly, the 

statistic of the likelihood-ratio test between the random effect model and the random parameter 

model is 103.50, which again is much larger than χ2 (3, 99%) = 11.34. This result shows that 

the random parameter model is statistically superior to the random effect model. Therefore, we 

mainly focus on the latter model in the following section. 

 

DISCUSSION 

 

In the random parameter model, 4 of the 8 variables (gender, walking speed, percentage of 

pedestrians jaywalking, and crossing time) produced statistically significant random 

parameters (all were normally distributed). Table 5 shows that the gender variable (M: 0, F: 1) 

resulted in a random parameter with a mean of − 0.360 and a standard deviation of 0.156 (98.95 % 

of the distribution is negative). This suggests that male pedestrians were less patient and more 

likely to jaywalk than female pedestrians, which is in line with the findings of most previous 

studies (Tiwari et al., 2007, Rosenbloom, 2009, Brosseau et al., 2013). The average marginal 

effect shows that female pedestrians are 5% less likely to jaywalk.  

 

The signal at arrival resulted in a fixed parameter and was found to significantly determine the 

probability of jaywalking. According to the marginal effects in Table 6, the pedestrians who 

arrived at the crosswalk during the red signal were 33.9% less likely to jaywalk. This suggests 

that those who arrived at the crosswalks during the flashing green periods probably seized the 

remaining time before the vehicle traffic discharged, and directly walked across to avoid 

waiting for one more cycle time.  



 

The average walking speed resulted in a random parameter with a mean of 3.251 and a standard 

deviation of 0.978 (nearly 100% of the distribution is greater than 0), which implies that there 

was considerable variation in the effect of walking speed. However, jaywalking pedestrians 

were found to walk faster, as they had to seize gaps in the traffic flow when crossing to avoid 

having accidents. The average walking speed was 1.22 m/s, as reported in Table 3, so the 

marginal effect (0.349 in the random parameter model) can be interpreted as indicating that a 

0.1 m/s increase in walking speed resulted in a 3.49% increase in the probability of jaywalking.  

 

In addition to the abovementioned individual-specific factors, individual pedestrians were 

likely to be influenced by surrounding pedestrians who arrived during the same cycle. The 

results in Table 5 indicate that both a larger number of pedestrians in the cycle and a higher 

percentage of those jaywalking in the cycle increased the probability that a particular pedestrian 

would jaywalk. The number of pedestrians in the cycle resulted in a fixed parameter of 0.005, 

and the percentage of pedestrians jaywalking in the cycle resulted in a random parameter with 

a mean of 5.276 and a standard deviation of 0.964 (nearly 100% of the distribution is greater 

than 0). The marginal effects of the random parameter model (0.001 for the total number of 

pedestrians and 0.567 for the percentage of pedestrians jaywalking) indicated that 1 additional 

jaywalking pedestrian resulted in a much greater increase in the probability of a particular 

pedestrian jaywalking than simply one more pedestrian in the same cycle. The two parameter 

estimates imply that the more pedestrians in a cycle, the greater the likelihood an individual 

will jaywalk, and the other pedestrians would then be encouraged by the first rule breaker and 

proceed to jaywalk. This result is the opposite of Rosenbloom’s (2009) finding that the 

tendency to cross on a red signal is lower when there are more people waiting at the curb, due 

to the power of social control. 



Pedestrians also typically observe and assess the site conditions. The average vehicle flow 

resulted in a fixed parameter of −0.025, indicating that a higher average vehicle flow decreased 

the probability of jaywalking, as the higher the vehicle flow, the shorter the gaps between 

vehicles, and hence the higher the risk of an accident. Crossing time was also found to be 

crucial in determining the probability of jaywalking and resulted in a random parameter with a 

mean of 0.194 and a standard deviation of 0.054 (nearly 100% of the distribution is greater 

than 0). The marginal effect (0.021 in the random parameter model) implies that a second 

increase in crossing time resulted in a 2% increase in the probability of jaywalking. The number 

of stages resulted in a fixed parameter of 1.734. The marginal effect (0.186 in the random 

parameter model) implies that one additional stage of the signal scheme resulted in an 18.6% 

increase in the probability of jaywalking. The results of both crossing time and number of 

stages indicated that pedestrians may be more likely to jaywalk at larger signalized 

intersections with longer kerb-to-kerb distance and more signal stages. 

 

CONCLUSION 

 

This study investigated the contributory factors of pedestrians’ jaywalking behavior at 

signalized crosswalks. The crossing movements of 7230 pedestrians were captured at 7 

crosswalks in Hong Kong. The information on the pedestrian behavior, the vehicle traffic flow, 

and the site-specific factors were incorporated into our proposed binary logit models to 

determine the probability of pedestrian jaywalking. To address the heterogeneity issues, the 

random parameter model was used to accommodate the variation in the effects of the 

explanatory variables among pedestrians, while the random effect model was used to account 

for the unobserved heterogeneity across sites.    

 



The random parameter model was found to be more suitable for addressing the heterogeneous 

effects of the explanatory variables among pedestrians. The pedestrian characteristics (gender, 

walking speed), the behavior of surrounding pedestrians (total number of pedestrians and the 

proportion of jaywalkers), the vehicle traffic, the timing of arrival and the length of signal, and 

the location of the crosswalk were found to significantly determine the probability of pedestrian 

jaywalking. The results imply that pedestrians with superior physical ability are generally less 

patient and more likely to take the risk of jaywalking.  

 

The results also revealed some critical issues relating to the current policies and design of 

signalized pedestrian crosswalks in Hong Kong. The significance of the flashing green signal 

is ambiguous to some pedestrians, as it seems that most pedestrians are not aware that starting 

to cross during the flashing green signal period is also illegal. Because Hong Kong is a densely 

populated city, it would be well worth considering providing more informative signals rather 

than simply promoting the regulation. Furthermore, it was also found that the majority of 

pedestrians normally walked slower than 1.2 m/s, which is the speed commonly used in the 

design of signalized pedestrian crossings to determine the length of the flashing green signal. 

This may lead pedestrians to overestimate the remaining time before the vehicle traffic streams 

discharge, and hence rather take the risk of jaywalking than wait for the length of another cycle. 

A possible measure that policy makers could consider is to introduce a signal countdown with 

the conventional graphic signal, which has been shown to significantly increase the proportion 

of pedestrians who start to cross during the green signal (Keegan and O’Mahony, 2003) and to 

effectively enhance pedestrian safety (Schattler et al., 2002). The text “Don’t walk/Walk” may 

also be considered to give clear instructions to pedestrians.  

 



Overall, our findings show that pedestrian crossing behavior is dependent on individual-

specific factors and site-specific factors. In the future, observational surveys conducted at more 

sites with different geometric features and signal phasing schemes would enable further 

insights to be obtained on the effects of site-specific factors. Other environmental factors, 

including weather, temperature, noise, and type of land use, would be well worth investigating 

with a more comprehensive dataset. 
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Table 1 Site locations 

Area District  
(Land use) Junction 

No. 
of 

Obs. 

Signal cycle 
time (s) 

Average 
pedestrian 
arrival rate 
(ped/min) 

West Island Central 
(Commercial) 

Queen’s Rd. 
Central* 
Pedder St. 

1832 120 31.0 

East Island Causeway Bay 
(Commercial) 

Morrison Hill Rd.* 

Leighton Rd. 1984 120 25.2 

West 
Kowloon 

Jordan 
(Commercial) 

Jordan Rd.* 

Nathan Rd. 1142 130 73.5 

East 
Kowloon 

Hung Hom 
(Residential) 

Hung Lok Rd.* 
Hung Lai Rd. 106 90 2.7 

West New 
Territories 

Tsuen Wan 
(Commercial 
/Residential) 

Sha Tsui Rd.* 

Chung On St. 1142 95 79.7 

Middle New 
Territories 

Sha Tin 
(Industrial) 

Ngan Shing St.* 
Siu Lek Yuen Rd. 128 110 5.1 

East New 
Territories 

Tseung Kwan 
O (Residential) 

King Ling St.* 
Choi Ming St. 896 110 8.6 

*The selected crosswalk 

  



Table 2 Summary of categorical variables 

Categorical variables Attributes Count 
(Proportion) 

   
Jaywalking Yes:1 4586 (63.4%) 
 No: 0 2644 (36.6%) 
   
Gender Male: (1, 0) 3357 (46.4%) 

Represented by two dummy variables  
(M, F) 

Female: (0, 1) 3265 (45.2%) 
Unidentified: (0, 0) 608 (8.4%) 

   
Age Adults: 0 6948 (96.1%) 
 Kids: 1 140 (1.9%) 
 Elderly: 2 142 (2.0%) 
   
Signal at arrival Flashing green: 0 1061 (14.7%) 
 Red: 1 6169 (85.3%) 
   
District Urban: 1 5064 (70.0%) 
 New Territories 

(NT): 0 
2166 (30.0%) 

   
 

 

Table 3 Summary of continuous variables 

Continuous variables Range Mean S.D. 
    
Walking speed (m/s) Min: 0.16;  Max: 4.56 1.22 0.41 
Total number of pedestrians in the cycle Min: 1;       Max: 207 84.44 58.26 
Percentage jaywalking in the cycle Min: 0;       Max: 1 0.42 0.19 
Average vehicle flow in the cycle 
(veh/min) 

Min: 0.6;    Max: 20.4 10.80 4.10 

Crossing time (s) Min:2;        Max: 85 10.5 7.98 
    
Geometric design    

Number of lanes at the crosswalk Min: 1;       Max: 6 3.14 1.42 
Number of approaches at the junction Min: 1;       Max: 4 2.79 1.13 
Number of approach lanes at the 

junction 
Min: 3;       Max: 13 8.51 3.94 

Number of traffic streams at the 
junction 

Min: 1;       Max: 9 4.50 2.47 

Signal phasing scheme    
Number of signal stages Min: 2;       Max: 4 3.34 0.85 
Cycle time (s) Min: 90;     Max: 130 119.72 6.56 
Pedestrian red signal time (s) Min: 67;     Max: 100 93.90 8.61 

  



Table 4 Pearson correlation test of variable

Variables  

M
 

F 

A
ge 

Signal at arrival 

D
istrict 

W
alking speed 

N
o. of pedestrians in 

the cycle 

Percentage of 
jayw

alking 

A
verage vehicle flow

 

C
rossing tim

e 

N
o. of lanes at the 

crossw
alk 

N
o. of approaches at 

the junction 

N
o. of approach lanes 

at the junction 

N
o. of traffic stream

s 
at the junction 

N
o. of signal stage 

C
ycle tim

e 

Pedestrian red signal 
tim

e 

M 1.00                  
F -0.84  1.00                 
Age 0.04  -0.03  1.00                
Signal at arrival 0.04  0.00  0.02  1.00               
District 0.00  0.06  -0.03  0.01  1.00              
Walking speed 0.16  -0.06  -0.07  0.08  0.19  1.00             
No. of pedestrians in 
the cycle -0.14  -0.08  0.09  -0.07  -0.10  -0.46  1.00            
Percentage of 
jaywalking 0.07  0.05  -0.05  -0.02  0.07  0.15  -0.51  1.00           
Average vehicle flow -0.07  -0.03  0.04  0.03  0.32  0.00  0.45  -0.40  1.00          
Crossing time -0.10  -0.03  0.10  -0.01  0.08  -0.54  0.49  -0.30  0.13  1.00         
No. of lanes at the 
crosswalk -0.02  -0.07  0.05  0.02  0.14  -0.11  0.30  -0.30  0.11  0.78  1.00        
No. of approaches at 
the junction 0.01  -0.11  0.07  0.06  -0.36  -0.04  0.19  -0.35  0.03  0.49  0.69  1.00       
No. of approach 
lanes at the junction 0.07  -0.07  0.04  0.14  0.11  0.32  -0.11  -0.26  0.24  0.26  0.57  0.76  1.00      
No. of traffic streams 
at the junction 0.05  -0.09  0.03  0.07  -0.43  0.09  -0.10  -0.18  -0.19  0.35  0.62  0.93  0.73  1.00     
No. of signal stage 0.05  -0.09  0.05  0.11  -0.51  0.19  -0.05  -0.26  0.09  -0.05  0.10  0.74  0.71  0.73  1.00    
Cycle time -0.08  -0.04  0.06  0.00  0.44  -0.18  0.67  -0.39  0.60  0.51  0.49  -0.02  0.10  -0.24  -0.31  1.00   
Pedestrian red signal 
time -0.08  0.02  0.02  -0.02  0.61  -0.12  0.51  -0.21  0.60  0.13  -0.01  -0.50  -0.24  -0.71  -0.55  0.84  1.00  



Table 5 Estimates and goodness-of-fit for the basic, random effect, and random parameter 

binary logit models 

Estimates Basic  Random 
Effect 

Random Parameter 

Variables    
Gender (M:0, F:1) − 0.408* − 0.405* − 0.360* 

s.d. Gender   0.156* 
Signal at arrival  
(Flashing green:0, Red:1) 

− 5.266* − 8.700* − 12.905* 

Walking speed (m/s) 1.267* 2.654* 3.251* 
s.d. Walking speed   0.978* 

No. of pedestrians in the cycle 0.161* 0.005* 0.005* 
Percentage of jaywalking 4.890* 4.580* 5.276* 

s.d. Percentage of 
jaywalking   0.964* 

Average vehicle flow (veh/min) − 0.094* − 0.029* − 0.025* 
Crossing time (s) 0.047* 0.110* 0.194* 
s.d. Crossing time   0.054* 

Number of stage 0.417* 0.954* 1.734* 
σj  1.095*  
    
Goodness-of-fit    
No. of observations 7230 7230 7230 
No. of parameters, K 8 9 12 
Log likelihood at zero, LL(0) − 5011.45 − 5011.45 − 5011.45 
Log likelihood at convergence, 
LL(β) − 3686.96 − 3566.63 − 3514.88 

AIC 7389.91 7151.25 7066.47 
McFadden’s adjusted pseudo R2 0.26 0.29 0.30 
    
Likelihood-ratio test   vs. basic 

model 
vs. random effect 

model 
2 2 ( ) ( )null alternativeLL LLχ   = − −β β   240.66 103.50 

Degrees of freedom  1 3 
Significance level  < 0.01 < 0.01 
Note: * = Significance at the 5% level 

 

  



Table 6 Average marginal effects for the basic, random effect, and random parameter binary 

logit models 

Variables Basic  Random 
Effect 

Random 
Parameter 

Gender (M:0, F:1) − 0.072* − 0.405* − 0.039* 
Signal at arrival (Flashing green:0, Red:1) − 0.421* − 8.699* − 0.339* 
Walking speed (m/s) 0.221* 2.654* 0.349* 
No. of pedestrians in the cycle 0.003* 0.005* 0.001* 
Percentage of jaywalking 0.839* 4.580* 0.567* 
Average vehicle flow (veh/min) − 0.016* − 0.029* − 0.003* 
Crossing time (s) 0.008* 0.110* 0.021* 
Number of stage 0.073* 0.954* 0.186* 
Note: * = Significance at the 5% level 
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