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Abstract 
A city can be divided into areas that are served by transit and those that are not. In this study, the 
former is referred to as “transit-served areas (TSAs)”. To quantify, monitor and visualise the TSAs of 
Southeast Queensland (SEQ), this study analyses half-year smartcard data between 2012 and 2013 
from TransLink, the transit agency for SEQ For scenarios are prescribed and four corresponding 
metrics (the minimum, actual, random and maximum travels) are calculated, which reflect transit 
riders’ different levels of elasticity of distance travelled (EDT) relative to the cost of travel within or 
between TSAs and how transit riders could possibly travel as EDT varies. The total trips generated by 
or attracted to TSA and the temporal and spatial variations of these metrics across days are used to 
monitor TSAs, especially transit trips within or between them. The results indicate that transit trips 
attracted to, and generated by TSA and transit trips between TSAs vary significantly over time and 
across space. Across the scenarios, the temporal variance tends to be larger as EDT becomes more 
inelastic. The above results provide useful references for decision-makers to understand better the 
ranges of transit demand (by TSA) across the space and time when EDT is a variable.  
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1. Introduction 
A city can be divided into different subareas that are served by transit (used interchangeably with 
public transport hereafter) and those that are not. In this study, the former is referred to as “transit-
served areas (TSA)”. TSA is not a new term that we first coined. In existing studies such as Calthorpe 
(1993), Cervero et al. (2002) and TCRP (2004), similar terms have been mentioned or defined. 
Calthorpe (1993), for instance, conceptualizes transit-oriented development as a transit-served 
neotraditional community. Cervero et al. (2002, p.75) regard Calthorpe (1993) as something 
“provocative”. Both Cervero et al. (2002) and Calthorpe (1993) favour TODs that are co-dependent 
and that are linked to each other by high-capacity fixed-guideway transit services. TCRP (2004, 
p.S10, S13, 139, 177, 322, 349) frequently uses terms such as “transit-served neighborhoods”, 
“transit-served subcity nodes” and “transit-served nodes and corridors”.  

Traditional data sources such as maps, satellite images, censuses, household surveys and phone 
interviews have previously dominated decision-making processes related to TSAs. But collecting 
traditional data are costly and those data are generally updated infrequently. Most census bureaus, for 
instance, update their household survey data every five or ten years -- a relatively long period of time 
when many short-term decisions or policies have to be made. Smartcard data collected by transit 
agencies can generate timely information about transit riders over most time horizons. Much of this 
information is directly related to public transport planning, operation and modelling, for instance, 
where transit riders go, when and how often.  

In theory, we can “paint” more dynamic and continuous pictures of TSA with smartcard data. We can 
visualise the distribution of transit riders by: corridor, minute, hour, day, month or season of a year. 
And with extra data, we can produce more than just those pictures. We can, for instance, interrogate 
various land-use and public transport plans and cross-reference it with smartcard data and other big 
data (e.g. cellular network data), to be able to identify where people reside, socialize, entertain and 
work. With the multimodal transport network files, we can map out the probable redistribution of 
transit riders when major bus stations undergo repairs. All of this information could help us make 
more informed short-term decisions about transit and urban systems, particularly on the extent to 
which we can be more proactive in terms of responding to disruptions such as extreme weather, 
natural disasters, unforeseen hazards or even terrorist threats, and on the extent to which we can better 
allocate resources or manage passenger traffic. This represents a significant paradigm shift of public 
transport planning and operations (c.f., Batty, 2013).  

This research uses six months of anonymous smartcard data in one of the Australia’s capital cities 
collected between 2012 and 2013. The data are from TransLink, a division in Queensland’s 
Department of Transport and Main Roads, an entity tasked to deliver high-quality public 
transportation to quantify, monitor and visualise the TSAs of South East Queensland (SEQ). Four 
scenarios are designed and corresponding metrics for those scenarios across 172 days are prescribed 
and calculated: the actual, minimum, maximum and random travels. The temporal variations of these 
metrics across days are used to monitor different TSAs, especially the extent to which they are 
connected to one another, where the connections are considered as passenger flows between or within 
TSAs. The visual representations of these flows are also used to monitor and gain extra insights into 
TSAs, especially how trips attracted to or generated by TSA vary across the space, days and scenarios 
where transit riders’ elasticity of distance travelled (EDT) relative to the cost of travel are no longer a 
constant and varies across time and space.  

 

2. Review of relevant literature 
Traditionally, most existing studies have drawn data from traditional methods such as censuses and 
travel surveys to investigate travel behaviour and related phenomena such as suburbanization, 
jobs/housing separation and social exclusion (e.g., Zhou, 2014; Zhou et al., 2012; Li et al., 2012; 
Salas-Olmedo and Nogues, 2012; Engels and Liu, 2011; Healy and O’Connor, 2001). An emerging 
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number of scholarly work, however, illustrates the potential of smartcard data as an alternative source 
of travel behaviour information (e.g., Tao et al., 2014a, b; Zhou, et al., 2014a, b; Zhou and Long, 
2016). Smartcard data can be used to derive the origin-destination matrix, which is a vital input to 
public transport planning and modelling (Alsger et al., 2015). They can be used to identify activity 
purpose, duration, route choice, segmentation, volume and location of transit riders (Tao et al., 2014b; 
Ma et al., 2012; Janosikova el al., 2014; Kim et al., 2014; He and Trepanier, 2015; Kieu et al., 2015;  
van der Hurk et al., 2015; van Oort et al., 2015; Tamblay et al., 2016).  They can also be employed to 
evaluate the performance of metropolitan passenger railways with respect to on-schedule rates, 
occupancy and operational speeds (Eom at al., 2015).   

 

Of those existing studies that are based on smartcard data, an increased number have begun to take 
advantage of the characteristics of smartcards such as a bigger sampling population, finer temporal 
and spatial granularity and continuous and longer duration of observations as compared to traditional 
data. This has enabled a more accurate data representation and interpretations to inform planning and 
policy making, for instance: 

• Reconstructing and visualising a larger sample of transit riders’ trajectories and associated 
corridors on a day (Tao et al., 2014b); 

• Reproducing passenger flows along transit routes and developing models that can quantify the 
passenger volumes under different what-if scenarios (e.g., fare increases) (van Oort et al., 
2015); 

• Examining regularities and variations in trip generation by station by different periods of time 
across cities (Zhong et al., 2016); 

• Quantifying the number of trips and their spatial distribution by day and comparing related 
patterns (Zhong et al., 2015); 

• Deriving workplaces and residences of a large sample of transit riders and comparing their 
actual commute with some baselines (Zhou et al., 2014a, b; Zhou and Long, 2014). 

 
Of these studies, however, few have looked at the dynamics of passenger trip generation, attraction 
and distribution by day and over months so as to examine the impacts of seasonality, to visualise what 
the extremes look like (e.g., when and how many maximum trips there are in a year and where these 
trips are within or across TSAs and how extensive they are and where they are) and how the extreme 
relates to the average or some comparable baseline. One exception is Morency et al. (2007). But 
unlike our SEQ data which capture both origin and destination information, their data only contain 
trip origin information and trip destination information had to be derived. Given the extra 
characteristics of smartcard data mentioned above, the studies of the longer-term dynamics of trip 
generation, attraction and distribution have now become feasible with the SEQ data. This study is an 
attempt to show how to translate feasibility into reality. It also shows that such dynamics can be 
quantified and visualized based on some simple metrics, which can be linked to different scenarios, 
for instance, transit riders’ EDT relative to the cost of travel are no longer a constant and varies across 
time and space.  

 

  

3. Methodologies  
In this study, we stipulate four scenarios and use four metrics to study TSAs. Our scenarios and 
metrics got inspirations from several seminal/existing excess-commuting studies, in particular, White 
(1988), Horner (2002), Charron (2007) and Murphy and Killen (2011). Specifically, our four 
scenarios designed to examine transit riders’ EDT relative to the cost of travel within or between 
TSAs over time are: 
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# 1: base, which is the status quo; 
# 2: transit riders are extremely elastic to the cost of travel; 
# 3: transit riders’ EDT is randomly distributed; 
# 4: transit riders are extremely inelastic to the cost of travel.  
 
We feel that those four scenarios are of interest to both scholars and decision-makers, as the scenarios 
show how transit riders could possibly travel as their EDT changes. Like other scholars using the 
excess-commuting framework before, we assume that the total number of transit trips for each day is 
fixed despite that EDT has changed across the scenarios. Unlike other scholars using the framework 
before who often quantify one or several days’ metrics, we quantify four metrics: the minimum (Tmin), 
actual (Tact), random (Trand) and maximum (Tmax) travels across 172 consecutive days and examine 
both temporal variations of these four metrics and spatial variations of the corresponding trip patterns. 
Given our much large numbers of observations or metrics, we believe that we should be able to see 
much salient variations in transit behaviours. Understanding these variations informs us about how to 
plan and operate our transit services in some extreme conditions, for instance, how transit riders 
would travel when the weather is extremely hot and few would like to travel by transit, that is, transit 
riders’ EDT is extremely elastic.    

 

On each of the 172 days, we calculate four metrics to facilitate our studies/comparisons of the 
scenarios. Each of the four metrics reflects how transit riders respond to the cost of travel within or 
between TSAs. Tmin, for instance, shows that if transit riders are extremely elastic to the cost (Scenario 
#2) and how small the total distance travelled for all transit riders can be. In this study, the temporal 
variations of these metrics across days are also used to monitor trips within and between TSAs, that is, 
connections between TSAs.  We want to find the extreme of Tmin over time, for instance, what would 
be the smallest/largest total distance travel for Scenarios #2 of all the 172 days. 

Ideally, we should define TSAs considering spatial variations and transit riders’ preference. But to 
define TSAs that accurately would require an excessive amount of input data, for instance, local street 
network, safety, lighting, and transit riders’ acceptable distance to a transit stop. In this study, we 
simply use Statistical Area Level 2 area (SA2) as a convenient proxy of TSA. We define TSA as a 
SA2 that has at least one transit stop within its boundaries. SA2 are a general-purpose medium-size 
area designated by Australian Bureau of Statistics (ABS). The top three criteria that ABS considers 
when delineating the SA2’s boundaries are: population, functional and growth. A SA2 generally has a 
population of 3,000 to 25,000. Within the central urbanized area, a SA2 is usually 1-2 square 
kilometres in size and thus a resident therein can easily walk to a transit stop, if any. In terms of 
functionality, each SA2 usually has a centre that provides most services that residents need daily. 
Thus, in theory, most transit riders do not have to travel outside an SA2 to have their basic needs met. 
Regarding growth, SA2s contains regional towns or fringe areas around large cities that governments 
want to contain: the urban area, any immediately associated semi urban development and likely 
growth in the next 10 to 20 years so that the boundaries of SA2 remain relatively stable in 10 to 20 
years (ABS, 2016)1. In light of the above, we shall see that SA2 has some features of TSA but it does 
not consider residents’ transit usage characteristics and the typical service scope of transit stops 
therein. It is likely that in the urbanized core, as SA2s are so small that transit stops in one SA2 can 
serve residents therein as well as residents from neighbouring SA2s. If this the case, our estimated 
distinct transit riders by SA2 may not be as accurate as we expect. Outside Australia, counterparts of 
SA2 exist as well. Different transport planning agencies across countries, for instance, usually define 
and use Traffic analysis zone (TAZ). Therefore, our studies can be replicated outside Australia rather 
easily so long as TAZ boundaries, smartcard data and TSA data are available.  Of course, regardless 
of the unit of analysis, spatial analysis, including analysis based on the excess-commuting framework, 
is often prone to the modifiable areal unit problem (MAUP) (for more information, please see Horner 
and Murray, 2002).  
                                                
1 For more info, please see: http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/88F6A0EDEB8879C0CA257801000C64D9, accessed 
24 July, 2016. 

http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/88F6A0EDEB8879C0CA257801000C64D9
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When quantifying and visualising TSA, this study focuses on descriptive analyses of the 172 days’ 
metrics, trip distribution between TSAs and trip generation/attraction by TSA.  Regardless of whether 
it is Tact, Tmin, Tmax and Trand, for a given day, the trip generation/attraction by TSA are fixed per the 
excess-commuting framework. In this study, this framework is slightly adapted and we assume the 
following: 

• A city and region can be divided into different TSAs (in this study, SA2 is used as a proxy of 
TSA); 

• Trips can occur within and between SA2s; 
• All trip makers are homogeneous in terms of their locational preference and can be enticed to 

any SA2, that is, their trip destinations and origins are tradeable;  
• The actual trip distribution within or between SA2s is only one of the many possible 

distributions between SA2s;  
• Travel cost within an SA2 or between any two SA2s remain the same for each of the above 

four scenarios, e.g., the cost is always the linear distance between centroids of the two SA2, 
regardless of how many trips there are; 

• Across the scenarios, even the cost of travel remains the same, transit riders’ EDT can still 
vary because of reasons such as extreme weather and personal preferences; 

• For trips occurring within an SA2, the travel distance is the radius of the SA2, which is 
assumed to be a circle with the same area as the SA2.   

 
When transit riders’ EDT is extremely elastic or inelastic, the minimum and maximum travels occur 
(Scenarios #2 and 4). When transit riders’ EDT follows a random distribution, the random travel 
arises (Scenario #3, c.f., Charron, 2007 and Murphy and Killen, 2011). We could use the 
transportation problem algorithm (see White, 1988) and the hit-and-run algorithm (see Murphy and 
Killen, 2011) to quantify the minimum, maximum and random travels. Zhou et al. (2014) and Zhou 
and Long (2016) have developed methods to visualise trip generation/production and distributions 
when the minimum and maximum travels occur. In this study, we borrow these methods when 
visualising trip generation/production and distributions when the minimum and maximum travels. 

Specifically, the minimum and maximum travels can be found by solving the following transportation 
problem: 

Min or Max: Z = ijij
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where,  

m = number of origins;  

n = number of destinations;  

Oi = trips beginning at zone i;  

Dj = trips destined for zone j;  
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cij = travel cost from zone i to zone j, in this study, we use the linear distance between i and j as the 
cost;  

Xij = number of trips from zone i to zone j; 

N = total number of trips.  

 

The objective function (2) minimises average transport costs. Constraint (3) ensures that trip demand 
at each destination zone is satisfied while constraint (4) limits the number of trips leaving each origin 
zone to the number of trips originating there. Constraint (5) restricts the decision variables, Xij, to 
non-negative values. It should be noted that travel costs, cij, may be expressed in terms of any measure 
of zonal separation, for example travel distance, travel time or indeed a generalised cost measure.  

The approach for calculating Trand is the Markov Chain Monte Carlo hit-and-run algorithm described 
in Murphy and Killen (2011, p.1261-62). It is given by the following: 
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where NT is the number of possible trip configurations in a study area; N! is the factorial of the total 
number of trips in the study area. Constraints (6-8) are identical to those of the transportation problem 
and they limit trip distribution possibilities to those supported by the fixed distribution of origins and 
destinations by SA2. Finally, Tact was calculated from observed trip data and associated travel costs 
(In this case, it is the linear distance between centroids of SA2s or the “radius” of a SA2). 

Tact, Tmin, Tmax and Trand show how different TSAs (SA2s) interact with one another and the 
interactions are characterized by the trip distributions when Tact, Tmin, Tmax and Trand are achieved. 
Graphically, Figure 1 shows simple examples of Tact, Tmin, Tmax and Trand where there are only four 
TSAs and four riders.  In the figure, Circles A, B, C and D represent four TSAs that are not adjacent 
to one another. Each line with an arrow represent a trip unless otherwise stated. The arrow shows the 
direction of the trip. For those trips within a TSA, we assume that they all go from the border to the 
centroid of a TSA. 
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Figure 1: Examples of Tmin, Tmax, Tact and Trand 

Tact is how trip makers actually travel within or between different TSAs (Scenario #1, the upper 
portion in Panel (a) of Figure 1). It is also thus the actual trip distribution within or between TSAs. In 
most cases, it should not be identical to the Tmin, Trand or Tmax trip distributions, which never or rarely 
happen in reality.  

Tmin is achieved as all the four trip makers’ EDT is so elastic and they collectively minimize their 
overall trip costs (Scenario #2, the lower portion in Panel (a) of Figure 1). This can also occur in 
reality to some degree, for instance, when distance-based transit fare is so expensive or traffic 
congestion is so severe that all trip makers shorten their travel distance as much they could. It can also 
happen when land use mixture is so good that trip makers on average only need to travel within or to 
the closest TSA and have their respective needs met. In Figure 1, Tmin emerges when all the four trip 
makers make internal trips, that is, they only travel within a TSA.  

Trand is not about a single trip distribution and can be any trip distributions, including those for Tact, 
Tmin and Tmax (Scenario #3, Panel (b) of Figure 1).  Trand thus in general means that trip makers’ EDT 
follows some random distribution and they randomly decide whether/where they need to travel inside 
or outside a TSA. This could happen, for instance, when trip makers treasure amenities such as certain 
neighbourhoods and good schools so much that they always maximize access to those amenities first 
before considering the cost of travel. As a result, their trips, especially commuting trips, can be longer 
or more expensive than what Tmin can offer. In other words, trip makers make trade-off between travel 
costs and other benefits (or costs) and their route choice is not necessarily the one that minimizes the 
overall travel cost.  
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Tmax is achieved when trip makers are extremely inelastic to the cost of travel (Scenario #4, the central 
portion in Panel (a) of Figure 1). This can occur, for instance, when transit fare is free or heavily 
subsidized and all trip makers thus indulge themselves in traveling to faraway and even the furthest 
destination so as to save other costs such as entertainment, food, mortgage and rent. It can also happen 
in reality more or less when different land uses or crucial facilities are so separated that trip makers 
must travel a long distance to satisfy their respective needs.  

 

In light of the above, the four scenarios and metrics Tmin, Tmax, Tact and Trand can inform transit 
planners and operators about how people’s demand for transit (EDT in this study) is related to transit 
cost (in this study, the distance of travel), land use and amenities. They reflect how the transit 
demand/trips would be allocated to different transit routes or even be translated into bicycle or walk 
trips (e.g., when trips occur within a TSA and they can be bicycle or walk trips). Of course, the four 
scenarios also show how different TSAs can be connected (via passenger flows) when EDT changes 
(See Figure 1 for examples).  When looking across days, the temporal variations of the four metrics 
for each policy scenario can show us how parsimonious, random, or indulgent transit riders can be in 
terms of their demand (measured by Tmin, Tmax, Tact and Trand values and the total number of transit 
riders across days) and related route choice.  

In SEQ, local smartcard data record nearly 90 percent of all transit trips (TransLink, 2016). Therefore, 
this study captures most of the population that used ferries, buses and rail in SEQ over a six-month 
period. This is an important difference from previous studies (since 1998), which are mostly based on 
extrapolated and sampled data (see Table 2 for a list of representative existing studies we identified) 
and typically only cover a few days of the year (except LEHD, which are based on continuous 
administrative data from multiple sources). Of course, unlike previous studies, this study looks at 
transit trips of all purposes and thus the interpretations of related metrics and related results are 
different too, which have been described above.  

Table 2: Selected Previous Studies  

Source Data Sample size(s) Metrics 
Frost et al, 
1998 Worktravel data of UK Census Unreported Tact; Tmin  

Ma and 
Banister, 
2006 Census of Population and Housing 2% of the population Tmin; Tact; Tmax 
Horner, 
2007 

Census Transportation Planning 
Package (CTPP) Unreported Tmin; Tact; Tmax 

Yang and 
Ferreira, 
2008  CTPP Unreported Tmin; Tact 

Murphy, 
2009  Traffic simulation model Unreported Tmin; Tact; Tmax 

Horner and 
Schleith, 
2012 

Longitudinal Employer Household 
Dynamics (LEHD), US Census Unreported Tmin; Tact; Tmax 

Loo and 
Chow, 
2011 

Census and Statistics, Information 
Services, and Transport Departments' 
data Unreported Tmin; Tact; Tmax 



10 

Zhou and 
Long, 2014 Smartcard data 216,844 Tmin; Tact; Tmax 

Schleith 
and Horner, 
2014 LEHD Unreported Tmin; Tact; Tmax 

 

 

4. Site and Data 
SEQ, Australia is the site for this research. SEQ occupies an area of about 22, 240 square kilometres 
in the eastern portion of Australia. Within SEQ, there are 11 local government areas with an estimated 
population of 3.27 million, 70.2% of the total Queensland population (Queensland Treasury, 2015). 
Since August 2012, TransLink, a division of the Queensland Department of Transport and Main 
Roads, has been responsible for the delivery of passenger transport services across Queensland, 
including SEQ. Public transport remains a popular way to get around in SEQ, with over four million 
transit trips each week (TransLink, 2016). Nearly all local passengers and most visitors to SEQ use a 
smartcard, the “Go card”, to pay their fare when using the system, comprised of buses, ferries and 
trains. The Go card is a more popular option amongst local and foreign passengers because TransLink 
charges up to 63% extra for those using a paper ticket. To accurately charge their fares, TransLink 
requires that Go-card users tap their card for both boarding and alighting, which is the same as 
Transport for London.  Few other transit agencies, however, ask transit riders to tap in and out. Thus, 
the Go card data are somewhat special. These Go card taps automatically generate the following 
information: 

• Trip ID (a unique “leg” of a journey) and journey ID (stop of origin-stop of destination, based 
solely on fare rules), 

• The stop information for trip origin and destination, 

• Boarding and alighting time, and 

• Unique card number and card type (concession card or regular card). 

The information is instantly sent to and stored on a central server. For this study, six months of data 
were requested from TransLink. TransLink defines a journey as the set of trips taken under one fare 
basis. TransLink considers two consecutive transactions linked into a single journey if the time gap 
between them (alighting to subsequent boarding) is less than 60 minutes. The fare is discounted for 
transfers, and a maximum of three transfers are allowed for a journey. 

 

The data used in this study covers a six-month period from 1 November 2012 to 30 April 2013 across 
SEQ. The total number of raw trip transaction records was 69,194,428 with 49,159,474 journey 
transaction records identified after data processing. One thing should be noted is that the journeys 
identified are all kinds of trips, not just work trips, many of which we must assume are discretionary. 
To complement the dataset derived from smartcard taps, data from other sources were used as well, 
including Google Transit Feed Specification (GTFS) data and ABS’ SA2 zonal data.  

 

The framework for our Go card data processing approach is shown in Figure 2. It is composed of 
three parts: data preparation, demand calculation and distance calculation. The database provides 
information on passenger trips and geometry information.  

https://en.wikipedia.org/wiki/Local_government_in_Australia
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Figure 2: Framework for data processing 

Data Preparation: this step matches stops among Go card, GTFS and SA2 zonal databases, and 
derives zonal information (centroid and area radius). The outputs are Go-card stop ID, GTFS stop ID, 
stop coordinate (Latitude and longitude), zone (SA2) ID, zonal centroid coordinate, and zonal area 
radius. 

In practice, the stop IDs are not necessarily consistent across different operators. The Go Card dataset 
does not include the latitude and longitude of the stops, nor do they always match the stop names that 
TransLink specified in the local transit schedules. A “off-optimality” heuristic was first developed to 
distinguish the transfer interchanges from the activity locations and to single out different journeys 
(Nassir et al., 2015). To calculate fare, Translink defines journey as a set of related trips. Each trip 
produces one “tap on” and “tap off”, which together are recorded as a transaction in the smartcard 
data. If a journey contains more than one trip, TransLink has its own fare rule. It only charges one fare 
if two or more consecutive transactions occur less than 60 minutes and consider those trips as a single 
journey. When processing smartcard data, we adopted a slightly different definition of “journey” so as 
to more accurately distinguish the transfer interchanges from the activity locations. Based on local 
household travel data, we established the following rules to single out the journeys that we define: if 
the successive transactions are on the same route, then there could be one or two journeys, depending 
on the boarding times of two trips or the distance between the two boarding stops: (a) if the temporal 
gap between two boarding times is larger than 40 min, then there are two journeys; (b) if the spatial 
gap between two boarding stops is larger than 400 meters, then there are two journeys (Alsger et al., 
2015).  

Once individual journeys are singled out, we use Application Programming Interface (API) to access 
the local GTFS data. The purpose of this is to match the journey’s origins and destinations recorded 
by the smartcard data with those of the local GTFS data, adding extra information such as transit 
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stops’ coordinate information to the former. API is a set of functions and procedures that allow the 
creation of applications which to access the features or data of an operating system, existing 
application, or other services. TransLink authorized us to access its GTFS data via API. Our API uses 
journey ID, trip origin and destination stop names, boarding and alight time as input, which the 
smartcard data record. After “communicating” with TransLink’s GTFS data, our API returns a series 
of text files, which contains extra information such as coordinates of stops, fares, routes, stops, 
transfers and trips. Given that the transits stops in SEQ are rather stable, the text files enable us to 
retrieve 90% of the journey’s origins and destinations recorded by smartcard with that of the local 
GTFS data.  The text files can be fed into ArcGIS 10.2 to create .shp files for mapping origin and 
destination of each journey and to calculate the linear distances between TSAs. The .shp files of the 
origin and destination (points) and of the SA2 boundaries (polygons) are used together to assign each 
origin and destination the unique ID of SA2, again in ArcGIS 10.2. In ArcGIS 10.2, a spatial join can 
assign the attributes such as unique ID of the polygon directly to the attribute table of the output point 
file.  

Zonal Information Derivation: The zonal (SA2) centroid and zonal area radius was derived using the 
ArcGIS 10.2’s Production Editing function and the built-in mathematical function of attribute tables. 
The input data are SA2 .shp files. Much of the above work is not difficult but tedious. However, given 
that many can reuse the heuristic/procedures to complete the work, it is recommended that TransLink 
in the future offers some standard add-ins about those heuristic/procedures when it release Go Card 
data. It is even better that TransLink offers identifiers for different transit stops by spatial units that 
are commonly used by local transport planners and modellers such as SA2 and TAZ.   

Demand Calculation: this step aims to further clean Go-card transactions, perform transfer detection 
and calculate zonal (SA2) origin-destination demand matrix. The outputs are zonal based internal and 
external transit travel demand, that is, transit journeys within or between SA2s in our case study. 

Cleaning and refining the data are important steps in data processing. Raw data usually contain 
erroneous records caused by system failure or human error. The archived Go card data were screened 
to minimize the possibility of erroneous data by setting different rules and using schedule information 
from GTFS system. The results of the cleaned data indicated that 17 percent of trip records 
(n=11,763,053) were excluded from all the raw trip records (n=69,194,428) due to checking and 
fixing of erroneous data with different types of errors. These errors are summarized in Table 1. 

Table 1: Description of Go-card Transaction Errors 
Error types (%) Description (Causes) 

System failure     
(1%) 

No boarding information, and no alighting information (unknown) 

Go card reload 
(3.4%) 

An additional transaction record for the same passenger trip (top up Go card in a 
vehicle)  

Extremely large 
interval transaction 
(3.5%) 

The difference between the alighting time and boarding time for a transaction is 
larger than 2 hours or across several days (forget to touch off from the last trip)  

Ticket evasion     
(2%) 

Boarding stop equals to alighting stop (tap in front door and tap again in the back 
door) 

Driver faulty 
operation             
(7%) 

The service direction in the transaction is wrong, e.g. the sequence of the inbound 
stops are actually the outbound stops (driver forget to change the route display 
information)  

Abnormal stop The boarding or alighting stops are not in the stop list of the recorded service route 
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(0.1%) (the vehicle does not stop at the designated stop due to bus bunching) 

Total=17% 
(n=11,763,053) 

All errors 

 

The zonal based internal and external demand was calculated by assigning each journey transaction 
record to the origination and destination zone matrix based on boarding and alighting stop 
coordinates. 

Distance Calculation: this step aims to calculate the zonal OD distance (that is, distance between 
SA2s) matrix. Internal distance (that is, the distance within TSAs/SA2s) is the radius of the zone 
(SA2, calculated assuming a circle area) and external distance is the Euclidean distance between the 
corresponding centroids of two SA2s. In our studies, we do not use fare to represent travel cost (cij) 
due to data unavailability, as we were not given the fare information for the base scenario and we are 
not sure how much fare a transit rider would pay in Scenarios 2 to 4. In Scenarios 2 and 4, transit 
riders would take some routes or route segments that they did not travel in the base scenario. Thus, 
even we know the fare of the base scenario, we still have to figure out the fare of the former in order 
to estimate the fare of Scenarios 2 to 4. 

5. Empirical Results 
5.1 Descriptive analysis results 
Table 3 presents the means and standard deviations (SD) for the four metrics of interest. The means 
and SD were based on 50 weekends and 50 randomly drawn weekdays from 1 November, 2012 to 30 
April, 2013. The four metrics listed in Table 3 can represent how different SA2 (TSAs) could interact 
with each other when transit riders’ EDT vary.  

 

Values in Table 3 indicate that a different number of  riders patronize TSAs across days and the 
numbers vary quite notably (also see Figures 5 and 6 for visuals of the changing shapes and sizes).  

Table 3: Four Metrics of Interest for 172 Days 

 Tmin Tact Trand Tmax 

EDT Extreme 
elastic Status quo Randomly 

distributed 
Extreme 
inelastic 

Mean 
(km) 

All days 1.47 10.90 26.20 31.60 
Weekdays (n=50) 1.43 11.08 24.40 29.23 
Weekends (n=50) 1.55 10.24 31.14 38.19 

SD (km) 0.14 0.67 3.8 5.00 
SD/Mean 9% 6% 15% 16% 

 

Figure 3 shows how the four metrics vary across days over the 172 days. Paired sample student-t tests 
indicate that all the four metrics’ weekend mean and weekday mean are significantly different. The 
Tact, for instance, has a weekend mean of 10.24 (Saturday and Sunday, n=50) and a weekday mean of 
11.08 (n=50, randomly drawn from 122 weekdays, excluding Australian public holidays). The two 
samples are significantly different, t(49)=-4.560, p=0.000 (2-tailed).  
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Figure 3: Four Metrics Variations over 172 Days 

Figure 4 shows how the number of transit riders (that is, demand for transit) vary by day. More or 
less, who are these riders and where they are travelling to and from by day contribute to the variations 
of the four metrics. The number of transit riders can be as small as 20,000ish and as big as 250,000ish. 
This partly shows why it is challenge for a transit system to offer a right suite of transit services to 
meet the demand of such a great variation across days.  
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Figure 4: The Number of Transit Riders over 172 Days 

Again, a paired sample student-t test indicates that the mean of riders traveling on weekends 
(Mean=87,483) and weekdays (Mean=185,308) are significantly different, t(49)=-8.864, p=0.000 (2-
tailed). This finding more or less justifies why many transit agencies have different schedules for their 
services on weekdays and weekends.  

 

Except the maximum of Tmin and Tmax, the minimum and maximum for Tact, Tmin and Tmax occur on 
different days. Table 4 presents these days and the corresponding values of Tact, Tmin and Tmax. Trand is 
not studied and discussed here as it would vary, depending on how many random EDT distributions 
one generates when calculating the mean of Trand on each day. Unlike the other three metrics, the Trand 
value for a given day is an estimated mean of many possible trip distributions rather than a fixed value 
for one trip distribution.  

 

Tact’s maximum value occurs on Christmas Day (25 December 2012) and Tmin and Tmax’s maximum 
values occur on Good Friday (29 March 2013) if we do not treat holidays separately during the study 
period. But if we take these holidays into account and separate them from other days, Tact, Tmin and 
Tmax reach their respective maximum values on three different days. But Tact’s maximum value still 
tends to occur on a special day, which is the last day of 2012.  Frequency of transit services tends not 
to influence the extreme values of Tact, Tmin and Tmax. Tact’s two extreme values, for instance, 
happened on two weekends, when the frequency of transit services was significantly lower than on 
weekdays. Thus, holidays tend to contribute to the minimum or maximum of Tact. In other words, we 
may need some adjustments for transit services on those days.  Our data currently do not allow us to 
deduce what causes the minimum and maximum. But it can be interesting to find extra data to study 
it.  

Table 4: Extreme Values for Tact, Tmin and Tmax 

Extreme and characteristics Tmin Tact Tmax 

Minimum 

Date 10 Apr 2013 09 Feb 2013 22 Jan 2013 

Day of Week Wed. Sat. Tue. 

Distance (km) 1.35 8.80 20.93 

 Riders* 220,372 86,017 170,102 

Maximum 

 Date 
29 Mar 2013** 

(31 Dec 2012***) 

25 Dec 2012** 

(31 Mar 2013***) 

29 Mar 2013** 

(18 Nov 2012***) 

Day of Week 
Friday 

(Mon.) 

Tuesday 

(Sun.) 

Friday 

(Sun.) 

Distance (km)  
2.27 

(2.23***) 

14.64 

(12.58***) 

42.62 

(42.60***) 

Riders* 
49,337 

(101,043) 

22,048 

(47,263) 

49,327 

(59,480) 
*This is the number of riders when Tmin, Tact and Tmax occur, not the minimum or maximum numbers of riders that 
TransLink served over the 172 days.  
**All days are treated the same. 
***Holidays such as Christmas Day, Good Friday and New Year’s Day are excluded. 
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5.1 Visuals  

Figures 5 and 6 show the trips attracted per resident by SA2 when Tact reaches its minimum and 
maximum during the 172 days and corresponding trip distributions. Actually, one can also make 
similar figures for Tmin, Tmax and Trand. These figures, of course, more or less resemble Figures 5 and 6 
as trip generation and attraction by TSA are assumed to be fixed for a given day across all the four 
scenarios. But they have quite different meanings, as described earlier. Figures of Tmin, for instance, 
show when trip makers are extremely elastic to cost of travel (See Figure 1’s panel (a)). In light of 
length constraints of a manuscript, we do not present all the figures here because there are as many as 
172*6=1,032 after we made one distinct figure for each metric (i.e., one trip-generation and one trip-
attraction figure for all the four metrics, one trip-distribution figure for each of the four metrics) per 
day. But they are available upon request. Our discussion and conclusions, nevertheless, are based on 
eyeballing of all the 1,032 figures about Tact, Tmin, Tmax and Trand. 

 

Figure 5: Trip Attractions per Resident When Tact Reaches the Maximum and Minimum 
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Figure 6: Trip Distributions When Tact Reaches the Minimum and Maximum 

 

6. Discussion and conclusions  
Overall, the quantitative results demonstrate that there are great variations in TSAs when we assume 
that transit riders’ EDT varies, which can result in four different metrics: Tact, Tmin, Tmax and Trand as 
well as different numbers of riders, trips generated/attracted and trip distributions over time and across 
space. Our results show that the extremes of Tact occur on special days such as Saturday or holidays 
such as Christmas Day. Interestingly, on Christmas day, transit riders (n=22,048, about one ninth of 
the 172 days’ average), on average, travel to the furthest destination than any other day. It is a 
Saturday (n=86,017) that, transit riders are most inactive by making on average the shortest trip over 
the 172 days. If we assume that transit riders’ EDT is extremely elastic, Tmin’s minimum (1.35 KM) 
can represent an extreme where transit riders make on average the shortest trip among across the four 
scenarios. In SEQ, Tmin’s minimum occurs on a Wednesday and there are as many as 220,372 transit 
riders, 20% more than the average number of riders that TransLink serves daily over the 172 days. 
This extreme and the corresponding number of transit riders together imply that SEQ could 
significantly reduce its average trip length for transit riders. Its current destination/origin distribution 
or land use can also in theory support this. On the other hand, Tmax’s maximum (42.62 KM) can 
represent another extreme where transit riders’ EDT is so inelastic and they must on average make the 
longest trip to maximize their utility. Luckily, there are not that many transit riders then (n=49,327, 
about half of the 172 days’ average ridership). However, this extreme reflects that in a worse scenario 
than the status quo when complementary origins and destinations are more spread out, transit riders in 
SEQ can expect on average a much longer trip than now. Thus, the four metrics: Tact, Tmin, Tmax and 
Trand and corresponding numbers of riders, trips generated/attracted and trip distributions over time 
and across space provide some new references for transit agencies to gauge and evaluate their efficacy 
in optimising service supply and examine how different factors such as seasonality, land use and fare 
change may influence such efficacy. This efficacy, for instance, can be measured by a ratio of 



18 

passenger*kilometers utilized by riders and the total passenger*kilometers offered by the transit 
system as a whole.  

 

The visual representations show that TransLink does have TSAs that vary greatly from day to 
day and across space, whether we visualise TSAs (SA2s) by transit trips generated/attracted by 
SA2 or transit trips within or between SA2s. The numbers of total trips generated/attracted by 
SA2 and riders served by TransLink also change notably across days. Weekends and holidays 
see much less trips and riders than weekdays. Given that some SA2s (e.g., some SA2s in the west 
of Downtown Brisbane) have on average 20 trips for the entire 172-day period and that each 
trip on average costs nearly $7 subsidy for TransLink (TransLink, 2016), it is worthwhile for 
TransLink to explore service provision options, e.g. whether a vanpool or paratransit program 
can be more cost effective for riders to and from these SA2 than fixed route bus services. In Los 
Angeles, for instance, an employer subsidized and ran a vanpool program and can make a 
vanpool trip for its commuting employee as cheap as US$3 (Zhou et al., 2012). What’s more, the 
vans in the program do not have a fixed route and thus avoid traffic congestion by choosing a 
less congested route where van drivers, who are also vanpooling employees, see fit. With the rise 
of shared-ride and car-sharing services such as Uber and Zipcar, transit agencies like 
TransLink should consider how to partner with them to create more win-win situations for 
transit riders and even travelers at large. Those who vanpool or carpool because of reduced or 
consolidated transit services, for instance, could use Uber or Zipcar for emergency rides, ad hoc 
needs or first/last mile trips. Uber can “rent” a spare driver and a bus from a local transit 
agency when there is a group of customers. With continuous provision of and the provision of a 
more comprehensive picture of TSAs, which is further enabled by smartcard data, transit 
agencies like TransLink should re-think their service operations and planning strategies. Based 
on a full-year’s trip distribution by day, for instance, they could optimise their resource 
allocation, taking into account factors such as seasonality, spatial regularity/variability of 
demand, land use changes and fare adjustments.  
 
The above metrics and visual representations have shown how smartcard data and novel 
analytics/visual representations can together improve and even revolutionalise transit system 
planning, monitoring and operation in the future. Pelletier et al. (2011) argue that smartcard 
data can help us accomplish transit-related tasks at three levels: (a) strategic (e.g. long-term 
planning); (b) tactical (e.g. services adjustments and network development); (c) operational (e.g. 
ridership statistics and performance indicators). But they do not provide many examples. This 
study has provided concrete examples and some transferrable metrics at all three levels: 
 
At the operational level, these metrics and visual representations of over 172 days can show 
where transit riders are most likely or unlikely to use transit services continuously, where we 
can intensify or consolidate transit services and where there could possibly be transit-service 
gaps or oversupply based on a long period of time (e.g., 1 year).  
 
At the tactical level, the mean of daily ridership for a long period of time (e.g., 1 year) and 
corresponding TSA maps based on smartcard data can serve as something similar to average 
annual daily traffic to transportation engineers (Caltrans, 2015), which can be used as 
guidelines for transit fleet planning, services adjustments and resource/service optimization.  
 
At the strategic level, the combined quantitative and visual representation results about TSAs, 
Tmin, Tact and Tmax can be used to integrate long-term transit and land use planning. Tmin and 
corresponding visual inform us about how short the trip length of transit riders could possibly 
be on average and where trip length can be shortened (relative to Tact). Tmax and corresponding 
visual show how much longer the trip length of transit riders could possibly be on average and 
where trip length may be lengthened (relative to Tact). Knowing the “where” for a long term can 
help us better plan our land use so as to shorten average travel distance of transit riders, 
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increase transit ridership or capacity along certain corridors and improve riders’ overall travel 
experience.   
 
Last but not least, transit supply in SEQ, in contrast with auto travel, places strong spatial 
constraints on people's travel. Network structure and service availability determine travel to a 
much higher degree for transit users than for the general population. Our studies of TSAs thus 
only disclose a small part of the complex picture of local travel in SEQ.  
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