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Abstract—This paper proposes a new electronic-geared (EG) magnetless machine for 

electric vehicles. The proposed EG machine can offer the multi-tooth bipolar-flux (MTBF) 

operation for the low-gear (high-torque low-speed) situation, and the single-tooth unipolar-

flux (STUF) operation for the high-gear (low-torque high-speed) situation. In particular, the 

balance-position winding arrangement is proposed to enable the machine having balanced 

flux-linkages. Consequently, the proposed machine operates as the brushless AC machine 

for MTBF operation, leading to offer smoother torque at the low-gear situation. Meanwhile, 

it operates as the brushless DC machine for STUF operation, leading to produce better 

torque density at the high-gear situation. Various performances of the proposed EG 

machine are analyzed, with emphasis on the validity of electronic gearing. The experimental 

prototype is also built for verification. 

 

Index Terms—Electronic-geared, magnetless machine, brushless machine, electric 

vehicle. 
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I. INTRODUCTION 

NERGY utilization and environmental protection have become hot research topics in recent years. As one 

of the most promising solution for improving energy utilization and environmental protection, the 

development of electric vehicles (EVs) is speeding up [1]–[4]. As the key component of EV technologies, 

electric machines have to offer high efficiency, high power density, high controllability, wide-speed range, 

maintenance-free operation, and fault-tolerant capability [5]–[8]. The doubly salient permanent-magnet 

(DSPM) machine that incorporates the merits of permanent-magnet (PM) machine and switched-reluctance 

machine has drawn many attentions in the past few decades [8]–[12]. Meanwhile, inheriting the bipolar-flux 

characteristic and thus resulting in higher power density, the flux-switching PM (FSPM) machine is 

becoming popular [13]–[16]. On the other hand, to extend the operating range of PM machines, the memory 

PM machine has been actively developed, which can allow for online pole-changing of PM poles [17], [18]. 

Although the PM machines have been widely used for EV propulsion, they inevitably suffer from the 

problems of high PM material cost and difficult PM flux control [19]–[21]. To overcome the shortcomings 

of PM machines, the advanced magnetless machines, which utilize cost-effective and flux-controllable DC-

field windings to replace the PM materials, have become popular recently [22], [23]. In the meantime, in 

order to cater for different extreme operating situations, the concept of dual-mode operations, which allow 

the magnetless machines to operate at the low-speed and high-speed conditions, has been proposed [24]. 

However, the corresponding machines exhibit unbalanced flux-linkages, resulting in high torque ripple, 

which is intolerable for EV propulsion. 

This paper proposes a new magnetless machine for EV propulsion, which is dubbed the electronic-geared 

(EG) machine. Unlike the pole-changing techniques that solely involve the change of flux polarities but not 

the machine nature, the proposed electronic gearing concept instead incorporates the design philosophies 

from two types of machines. Hence, the proposed EG machine can behave similarly as the two predecessors, 

namely the multi-tooth bipolar-flux (MTBF) operation and the single-tooth unipolar-flux (STUF) operation. 

To be specific, the former operation mode can be employed for the high-torque low-speed situation, while 

E 
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the latter one for the low-torque high-speed situation. In addition, the balance-position winding arrangement, 

which can achieve balanced flux-linkages, will be newly implemented in the proposed machine so that the 

desired torque performance can be achieved. Moreover, the machine will be designed in such a way that the 

back electromotive force (EMF) waveforms can facilitate both the MTBF and STUF operations. The machine 

performances will be analyzed thoroughly by using the finite element method (FEM), with emphasis on the 

validation of the proposed electronic gearing concept. In addition, the experimental setup will be developed 

for verification. 

It should be noted that the proposed machine is not simply shifting the problem from machine itself to 

power electronics. Actually, the machine has a new structure, which incorporates both the armature winding 

and DC-field winding in the stator while the rotor just has salient iron poles. With this new machine structure, 

the armature winding is fed by sinusoidal currents to provide MTBF operation, which is particularly attractive 

for the high-torque low-speed situation, while the armature winding is fed, by rectangular currents to provide 

STUF operation, which is particularly attractive for the low-torque high-speed situation. Therefore, the 

proposed machine can offer the unique feature like a two-stage mechanical gearbox (low-gear and high-gear) 

using an electronic way which can eliminate the bulky size and transmission loss of physical gears. This 

electronic gearing concept is absent in literature. 

 

Fig. 1. Electronic-geared magnetless machine structure. 
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II. ELECTRONIC-GEARED MAGNETLESS MACHINE 

A. Machine structure: 

Fig. 1 shows the machine structure of the proposed EG magnetless machine for EV propulsion. It artfully 

combines the design criteria of the MTBF machine [13] and the STUF machine [10]. Hence, it can inherit 

the corresponding machine characteristics and possess two different operations, namely the MTBF and STUF 

operations. The design criteria of the MTBF and STUF machines are both governed by the following general 

equations: 
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where Nsp is the number of stator poles, Nst the number of stator teeth per pole, Nse the number of equivalent 

stator poles, Nr the number of rotor poles, m the number of armature phases and k any integer.  

Even though the MTBF and STUF machines share the same design criteria in (1), they can be distinguished 

by the number of armature phases and the number of stator teeth. In particular, with the same numbers of 

equivalent stator poles and rotor poles, the bipolar-flux and the unipolar-flux machines can be actualized by 

the multi-tooth and the single-tooth arrangements, respectively. Namely, the multi-tooth least-phase machine 

is suitable for low-speed operation, while the single-tooth multiphase machine is instead favorable for high-

speed operation.  

To realize the design criteria of two types of machines simultaneously, the number of equivalent stator 

poles and the number of rotor poles, i.e. Nse and Nr, of the two machines should be equalized. However, the 

derived relationship ends up with an infinite number of solutions because there exist three valuables, namely 

m, Nst and k. Hence, to reduce the degree of freedom and to produce a unique solution, the value of k between 

the two machines is purposely equalized. Consequently, the relationship can be further derived as: 
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where m’ and N’st are the numbers of armature phases and stator teeth per pole for the MTBF, respectively, 

while m’’ and N’’st are the numbers of armature phases and stator teeth per pole for the STUF, respectively. 

Based on (1) and (2), the fundamental design combinations of the proposed EG machine are obtained as 

listed in Table I. 

 

TABLE I 

FUNDAMENTAL DESIGN COMBINATIONS 

k m’ N’st m’’ N’’st Nse Nr Nr 

1 3 2 6 1 12 14 10 

1 3 4 6 2 24 26 22 

1 4 2 8 1 16 18 14 

2 3 2 6 1 24 28 20 

 

To ease the control complexity and to minimize the cost of power devices, the least numbers of armature 

phases are purposely chosen, i.e., three-phase for MTBF operation and six-phase for STUF operation. 

Moreover, to simplify the manufacturing process, the least numbers of stator and rotor poles are preferred. 

By taking these criteria into account, the combination of k = 1, m’ = 3, N’st = 2, m’’ = 6, N’’st = 1, Nse = 12 

and Nr = 10 is selected as the proposed structure. Based on this combination, the proposed EG machine is 

anticipated to offer high torque at the MTBF operation, and wide speed range at the STUF operation. 

B. Winding arrangement: 

In the previous study [24], the multi-tooth operation was achieved by connecting its multiple phases among 

adjacent positions. With this adjacent-position winding arrangement, the flux-linkages among the armature 

phases are unbalanced. Hence, the back EMF waveforms end up with asymmetry patterns, which are 
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unfavorable for the torque production. In particular, the resulting asymmetric back EMF waveforms will 

produce large torque ripple, which associates with undesirable acoustic noise and vibration. 

To improve the situation, the proposed EG machine at the MTBF operation is purposely connected with 

the so-called balance-position winding arrangement, i.e., A1, A2, D1 and D2 are connected in series; B1, B2, 

E1 and E2 in series; and C1, C2, F1 and F2 in series. Based on the proposed winding arrangement, the flux-

linkages among the armature phases are essentially balanced so that the back EMF waveforms can become 

more symmetric than its counterpart does. 

To achieve the desired mode-switching function, the proposed machine purposely adopts the concentrated 

winding arrangement so that each of its armature coil can be individually connected. Hence, the proposed 

connection arrangement can be easily realized by using power electronic switches. 

 

 

(a) 

 

(b) 

Fig. 2. Theoretical operating principles: (a) BLAC conduction scheme. (b) BLDC conduction 

scheme. 
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C. Back EMF waveforms: 

For EV propulsion, some important issues should be considered. Namely, the torque ripple should be 

minimized at the low-speed high-torque operation, while the torque density should be maximized at the high-

speed low-torque operation. To take these criteria into account, the back EMF waveforms should be carefully 

designed. 

In general, the back EMF waveform of electric machines can be classified into two main types, namely the 

sinusoidal-like waveform and the trapezoidal-like waveform. To effectively operate these machines, there 

are two conduction schemes available, namely the brushless AC (BLAC) scheme for the sinusoidal-wave 

machine and the brushless DC (BLDC) scheme for the trapezoidal-wave machine, respectively.  

For the sinusoidal-wave machine, in order to produce the positive electromagnetic torque TBLAC, the 

sinusoidal armature current IBLAC is applied according to the status of the flux-linkage ΨBLAC that is generated 

by the DC-field excitation. This BLAC conduction scheme is depicted in Fig. 2(a). By using this scheme, the 

sinusoidal-wave machine can match the injected armature current with its back EMF waveform, hence 

achieving the minimized torque ripple performance. 

For the trapezoidal-wave machine, a positive rectangular current IBLDC is applied to the armature winding 

when the flux-linkage ΨBLDC is increasing so as to produce the positive torque TBLDC. Meanwhile, a negative 

current is instead applied to the armature winding when the flux-linkage is decreasing so as to produce also 

the positive torque. This BLDC conduction scheme is depicted in Fig. 2(b). According to the interaction 

between back EMF and current waveforms, the trapezoidal-wave machine with IBLDC can generate higher 

output power than the sinusoidal-wave machine with IBLAC [4]. Hence, the BLDC conduction scheme can 

offer higher torque density than its BLAC counterpart does.  

D. Operating principles: 

According to the aforementioned discussion, the proposed EG machine should be designed in such a way 

that the back EMF waveform is in between sinusoidal-like and trapezoidal-like patterns. Based on this design 
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criterion, the proposed machine at the MTBF operation can operate similarly as the sinusoidal-wave machine 

does so that the torque with minimized ripple can be achieved at the low-speed situation. Meanwhile, the 

proposed machine at the STUF operation can instead operate similarly as the trapezoidal-wave machine does 

so that the improved torque density can be provided at the high-speed situation. 

At the MTBF operation, the proposed machine behaves similarly as the three-phase synchronous machine 

does. Thus, it adopts the BLAC scheme with the three-phase armature currents as given by: 
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where ia,b,c and IMTBF are the instantaneous and maximum values of the phase currents, respectively, at the 

MTBF operation. 

At the STUF operation, the proposed machine behaves similarly as the six-phase DSPM machine does. 

This, it adopts the BLDC scheme. To maintain the same input power level as that employed in the MTBF 

operation, the magnitude of phase currents at the STUF operation should be reduced accordingly as given 

by: 
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where ik and ISTUF are the instantaneous and maximum values of the phase currents, respectively, at the STUF 

operation. The intervals of (θ1, θ2) and (θ3, θ4) refer to the rising and falling periods of flux-linkages, 

respectively, which are governed by the relationships between the rotor pole-arc length and the stator pole-

arc length. According to the proposed operating principles, the EG machine can offer smoother torque at the 

MTBF operation, while higher torque density at the STUF operation. 

E. Analysis of the operating range extension: 

Unlike the PM machines, the magnetless machines can utilize its controllable DC-field excitation for flux 

regulation, hence offering the flux-weakening capability to extend the operating range. However, this flux-
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weakening capability has some constraints, which cannot enable the magnetless machines satisfying the 

desired operating range for EV application. 

The flux-linkage varies with the flux regulation, i.e., when the DC-field excitation is weakened, the flux-

linkage decreases accordingly. Meanwhile, the self-inductance instead gradually increases. It should be noted 

the generated electromagnetic torque is contributed by two torque components, namely the DC-field torque 

and the reluctance torque. The former is governed by the flux-linkage, while the latter by the self-inductance 

[4]. Hence, at a particular point along the flux-weakening process, the DC-field torque no longer serves as 

the major component, while the reluctance torque will replace its dominating position. In other words, the 

machine should start to operate with the reluctance principle at this flux-weakening point, where only half of 

the torque-production zone is utilized. Upon this scenario, a larger torque ripple is resulted and a larger 

armature current is needed to maintain the same torque level, which are both unfavorable for EV application. 

To avoid the magnetless machines switching to the reluctance operation, the DC-field excitation should be 

kept at certain high levels. As expected, it will limit its flux-weakening capability and hence the operating 

range. Therefore the proposed EG machine can fundamentally solve this dilemma, namely providing high 

torque and wide speed range. In addition, the proposed machine can incorporate flux-weakening operation 

to further extend the operating range at both the MTBF and STUP operations.  

F. Proposed control scheme: 

The control scheme for the proposed EG machine is shown in Fig. 3. It can be divided into five parts, 

namely (i) the armature controller, (ii) the armature inverters, (iii) the DC-field controller, (iv) the H-bridge 

converter, and (v) the EG machine. To facilitate the functionality of mode-switching, a full-bridge inverter 

is used on each phase. Nevertheless, with the advancement of power device technology, the cost of 

multiphase inverters has become economically acceptable [25]. Actually, multiphase machines with 

multiphase inverters are becoming attractive. They not only offer better performance but also provide fault-

tolerant capability to improve the reliability, which are highly desirable for EVs [4]. 
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Fig. 3. Control scheme for EG operation. 

 

The armature controller adopts the dual-closed-loop control scheme, i.e., the outer speed loop employs a 

PID regulator for speed control and the inner current loop adopts a hysteresis regulator for current chopping 

control. Based on the comparison between the speed command n* and the actual speed n, the armature current 

command i* is generated. Meanwhile, based on the comparison between i* and the actual current i, the 

hysteresis regulator generates the control signal. Consequently, the firing signal of each power switch in the 

armature inverters can be developed. In addition to the conventional dual-closed-loop control, the armature 

controller requires multiphase inverters to properly feed the armature windings. Namely, the armature 

inverters can provide the desired BLAC currents for the MTBF operation, and the desired BLDC currents for 

the STUF operation. 

On the other hand, the DC-field excitation module consists of two major components, namely the DC/DC 

converter and the H-bridge converter. The DC/DC converter is used to regulate the excitation level while the 

H-bridge converter serves to control the direction of excitation, hence offering the desired flux regulation. 
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III. MACHINE PERFORMANCE ANALYSIS 

A. Electromagnetic field analysis: 

To study the performance of electric machines, the FEM-based electromagnetic field analysis has been 

recognized as one of the most accurate and convenient tools for many years [26]. In this paper, a 

commercially available FEM software package, the JMAG-Designer, is adopted to perform the analysis. 

Hence, the corresponding machine dimensions and parameters can be optimized iteratively. 

The magnetic field distribution of the proposed machine at no-load condition is shown in Fig. 4. The result 

shows that the flux distributions are well balanced and align with the theoretical results. Upon the DC-field 

excitation, the flux-linkage waveforms are shown in Fig. 5. These waveforms show that the EG machine can 

offer the bipolar flux-linkage at MTBF operation, and the unipolar flux-linkage at STUF operation. It is due 

to the fact that each armature phase produces a unipolar flux-linkage, and the series connection of two 

armature phases will superimpose two unipolar flux-linkages to form a bipolar pattern. 

 

Fig. 4. Magnetic field distribution. 

 

 

Fig. 5. Flux-linkage waveforms at two operations. 
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B. Pole-arc ratio analysis: 

The characteristics of the back EMF waveforms can be modified by the so-called pole-arc ratio p, which 

is defined as the ratio of the rotor pole-arc βr to the stator pole-arc βs, i.e., p = βr / βs. In order to minimize the 

magnetic saturation and to maximize the armature slot area, βs is first set as a particular value. At the 

beginning, βr is selected to be equal to βs, i.e., p = 1, as shown in Fig. 6(a). Then, p is modified by tuning βr 

in such a way that the optimal pole-arc ratio p_opt = βr_opt / βs can be obtained as shown in Fig. 6(b). 

  

 (a) (b)  

Fig. 6. Pole-arc ratio variations: (a) Primitive case. (b) Optimal case. 

 

The variations of the back EMF waveforms according to different values of p are shown in Fig. 7. As 

discussed, the proposed machine should be designed to offer the back EMF waveform in between the 

sinusoidal-like and trapezoidal-like patterns. Hence, the pole-arc ratio should be selected between p = 1.2 

and 1.3.  

Borrowing from the concept of cogging torque in PM machines, the cogging torque of this machine is 

defined as the detent torque generated by the interaction between the stator and rotor poles upon the existence 

of DC-field excitation. To confirm the pole-arc ratio with the optimal performance, the cogging torque is 

analyzed and its waveforms under different values of p are shown in Fig. 8. When p = 1.2 and 1.3, the peak 

values of the cogging torque are approximately 0.23 Nm and 0.20 Nm, respectively. Therefore, in order to 

achieve the desired back EMF waveform and the lower cogging torque, the optimal pole-arc ratio is selected 

as p_opt = 1.3. 

 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 

(a) 

 

(b) 

Fig. 7. Back EMF waveforms under different pole-arc ratios: (a) MTBF operation. (b) STUF 

operation. 

 

 

Fig. 8. Cogging torques under different pole-arc ratios. 

 

C. No-load EMF performances: 

By using the JMAG-Designer, the no-load EMF waveforms of the proposed EG machine under the MTBF 

operation at 300 rpm and under the STUF operation at 600 rpm are simulated as shown in Fig. 9 and Fig. 10, 

respectively. It can be found that the no-load EMF waveforms at the MTBF operation are of well-balanced 

three-phase symmetrical patterns, which confirms the effectiveness of the proposed balance-position winding 

arrangement. Meanwhile, the no-load EMF waveforms at the STUF operation are also well balanced with 
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six-phase symmetrical patterns. The no-load EMF waveforms at both operations exhibit the patterns in 

between the sinusoidal-like and trapezoidal-like characteristics. Hence, both of them are suitable for both 

BLAC and BLDC conduction schemes. 

Even though the operating speeds of the MTBF and STUF operations are different, their magnitudes of the 

no-load EMF waveforms are approximately the same. Hence, the results verify that the MTBF operation 

should be adopted at the low-speed environment, whereas the STUF operation instead at the high-speed 

environment. 

 

Fig. 9. Back EMF waveforms under MTBF operation at 300 rpm. 

 

 

Fig. 10. Back EMF waveforms under STUF operation at 600 rpm. 

D. Torque performances: 

The torque performances of the proposed machine at the MTBF and STUF operations are computed by 

attaching the ideal current sources to the windings. As discussed, the BLAC and BLDC conduction schemes, 

i.e., the three-phase sinusoidal-like and six-phase trapezoidal-like currents, should be employed for the 

MTBF and the STUF operations, respectively. This case is so-called the Type I, and the corresponding torque 

performances are shown in Fig. 11. In order to provide a comparative analysis, another case, so-called the 

Type II, is realized where the MTBF operation employs the three-phase BLDC scheme while the STUF the 
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six-phase BLAC scheme. The corresponding torque performances are shown in Fig. 12. 

It can be observed that the average steady torques at the MTBF and STUF operations in Type I are 9.9 Nm 

and 5.6 Nm, respectively; while in Type II are 10.8 Nm and 5.0 Nm, respectively. The results confirm that 

the MTBF operation can achieve higher steady torques than that produced by the STUF operation. 

Meanwhile, the results also confirm that the STUF operation using the BLDC scheme can produce higher 

steady torque than that using the BLAC scheme.  

In addition, the cogging torque can be computed under the no-load situation. In Type I, the cogging torques 

are found to be 0.2 Nm, which are only 2.1% and 3.8% of their average torques at the MTBF and STUF 

operations, respectively. Meanwhile, in Type II, the cogging torques are 1.9% and 4.2% of their average 

torques instead. All these cogging torque values are very acceptable, as compared with the PM counterparts 

[7]. 

To provide a comprehensive analysis of the torque performances, the torque ripples at the MTBF and STUF 

operations in Type I are found to be 9.1% and 25.9%, respectively; while in Type II are 28.6% and 12.2%, 

respectively. The results confirm that the torque ripple at the MTBF operation using the BLAC scheme is 

smaller than that using the BLDC scheme. 

It should be noted that although the machine performance under transient conditions is essential, the scope 

of this paper is focused on the design and analysis of the proposed machine with the electronic gearing 

concept. Thus, the transient performance of the machine including closed-loop control will be the direction 

of our future work. 
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(a) 

 

(b) 

Fig. 11. Torque waveforms in Type I: (a) MTBF. (b) STUF. 

 

 

(a) 
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(b) 

Fig. 12. Torque waveforms in Type II: (a) MTBF. (b) STUF. 

 

Similarly, two other combinations between the two machine operations and the two conduction schemes 

can be performed, while they are less important. Hence, only the results in Type I and Type II are discussed 

and tabulated in Table II. Particularly, the proposed machine should employ the Type I operation, i.e., the 

MTBF operation should adopt the BLAC scheme to produce smoother torque for high-torque low-speed 

operation, while the STUF operation instead should adopt the BLDC scheme to achieve higher torque density 

for low-torque high-speed operation. 

E. Operating range extension performances: 

The torque-speed capability of the proposed machine is shown in Fig. 13. In order to maintain the high 

level of DC-field excitation, different operations are suggested for different operating ranges:  

1) Within 0–300 rpm, the MTBF operation should be adopted, which works at the rated DC-field 

excitation, i.e., 5 A/mm2. 

2) Within 300–600 rpm, the MTBF operation should be adopted, which employs the flux-weakening 

operation.  

3) At 600 rpm, the proposed machine should switch from the MTBF operation to the STUF operation, 

while the DC-field is regulated to its rated value, i.e., 5 A/mm2. 

4) Within 600–1200 rpm, the STUF operation should be adopted, which employs the flux-weakening 

operation. 
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By incorporating flux-weakening operation into electronic gearing, the proposed machine can offer the 

desired wide speed range while maintaining at the high level of DC-field excitation. This can prevent the 

machine from operating with the reluctance principle, hence eliminating the aforementioned unwanted 

consequences. Thus, the proposed machine can offer the desired performances covering the whole operating 

range from zero to 1200 rpm, which fulfills the requirement of direct-drive application for EVs [7]. 

 

TABLE II 

TORQUE PERFORMANCES OF PROPOSED MACHINE 

Item 

Type I Type II 

MTBF STUF MTBF STUF 

Conduction 

scheme 

BLAC BLDC BLDC BLAC 

No. of phases 3 6 3 6 

Average 

torque 

9.9 

Nm 

5.6 

Nm 

10.8 

Nm 

5.0 

Nm 

Cogging 

torque 

2.1 % 3.8 % 1.9 % 4.2 % 

Torque ripple 9.1 % 

25.9 

% 

28.6 

% 

12.2 

% 
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Fig. 13. Torque-speed capability. 

IV. EXPERIMENTAL VERIFICATIONS 

To experimentally verify the proposed electronic gearing concept, the prototype of the proposed machine 

is designed and built as shown in Fig. 14. The experimental setup mainly includes the EG machine prototype, 

dynamometer, driver, digital oscilloscope, torque sensor, rectifier, and DC power supply. Although the 

machine designed for a typical passenger EV is generally over 40 kW [14], the power and torque levels of 

the proposed machine prototype are purposely scaled down so as to ease practical experimentation in the 

laboratory. The corresponding key design data is listed in Table III. 

 

   

 (a) (b) 

Fig. 14. Machine prototype: (a) Stator. (b) Rotor. 

 

TABLE III 

KEY DESIGN DATA OF PROPOSED MACHINE 

Item Value 

Stator outside 

diameter 

156.0 mm 
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Stator inside 

diameter 

96.0 mm 

Rotor outside 

diameter 

95.0 mm 

Rotor inside 

diameter 

22.0 mm 

No. of stator poles 12 

No. of rotor poles 10 

Stator pole arc 12.0° 

Rotor pole arc 15.6° 

Airgap length 0.5 mm 

Stack length 120 mm 

No. of turns per 

armature coil 

110 

 

The measured no-load EMF waveforms of the proposed machine under the MTBF operation at 300 rpm 

and under the STUF operation at 600 rpm are shown in Fig. 15 and Fig. 16, respectively. Since all the no-

load EMF waveforms of the 6-phase windings at the STUF operation are well balanced, only three phases 

(A-phase, C-phase and E-phase) are shown so as to achieve better presentation. As expected, the measured 

waveforms well agree with the simulated results as shown in Fig. 9 and Fig. 10, respectively. Those slight 

discrepancies are essentially due to the end-effect and manufacturing imperfection. Meanwhile, the measured 

magnitudes of the no-load EMF waveforms well comply with the theoretical ones so that the discrepancies 

are very acceptable. 

Moreover, the measured no-load EMF waveforms under MTBF operation at 500 rpm and under STUF 

operation at 1000 rpm, without and with the DC-field flux regulation, are shown in Fig. 17, and Fig. 18, 
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respectively. With the use of flux-weakening capability, the magnitudes of the no-load EMF waveforms at 

higher speeds can be maintained at the same level as those at lower speeds. These waveforms confirm that 

the proposed machine possesses the capability of flux regulation under both the MTBF and STUF operations. 

Consequently, these results verify that the proposed machine can operate over a wide speed range. 

 

 

Fig. 15. Measured no-load EMF waveforms under MTBF operation at 300 rpm and 5 A excitation 

(50 V/div). 

 

 

Fig. 16. Measured no-load EMF waveforms under STUF operation at 600 rpm and 5 A excitation 

(50 V/div). 
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(a) 

 

(b) 

Fig. 17. Measured no-load EMF waveforms under MTBF operation at 500 rpm (50 V/div): (a) 

Without flux regulation. (b) With flux regulation. 

 

Upon the rectification under the open-circuit condition, the corresponding simulated and measured mean 

voltage characteristics with respect to different DC-field excitations under the MTBF operation at 300 rpm 

and under the STUF operation at 600 rpm are shown in Fig. 19. In particular, with the use of an external 

rectifier circuit, the simulated characteristics can be generated. The simulation results well agree with the 

measured results, where the rectified output voltage can be regulated linearly based on the controllable DC-

field excitation. The results verify that the proposed machine can utilize electronic gearing and flux regulation 

capabilities to maintain the voltage at the desired value, hence protecting the whole EV system. 
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(a) 

 

(b) 

Fig. 18. Measured no-load EMF waveforms under STUF operation at 1000 rpm (50 V/div): (a) 

Without flux regulation. (b) With flux regulation. 

 

 

 

 

(a) 
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(b) 

Fig. 19. Simulated and measured rectified voltage characteristics under different DC-field 

excitations: (a) MTBF operation at 300 rpm. (b) STUF operation at 600 rpm. 

 

Furthermore, the simulated and measured torque characteristics with respect to different armature currents 

under the two operations with the DC-field excitation of 2 A are shown in Fig. 20. To obtain the average 

torques at the MTBF operation, the armature windings are fed by the current sources with the relationship of 

ia = −2ib = −2ic. Also, the average torques at the STUF operation can be obtained based on the similar 

approach. It can be observed that the measured torques well agree with the simulated values. There is a minor 

discrepancy that the measured torques are slightly smaller than the simulated ones, which is actually due to 

the presence of end-effect. 

Based on the measured results regarding to the back EMF waveforms and torque performances, they 

illustrate that the MTBF and STUF operations can offer the desired high-torque low-speed and low-torque 

high-speed operations, respectively. Hence, the electronic gearing concept of the proposed machine is 

verified. 

Finally, as shown in Fig. 21, the efficiencies of the proposed EG machine under different load current at 

both the MTBF and STUF operations are measured. To be specific, the operating speeds of the MTBF and 

STUF operations are 500 rpm and 1000 rpm, respectively. It can be found that the efficiencies of the proposed 

machine can achieve 78% at the MTBF operation and 74% at the STUF operation. Accordingly, the proposed 

machine working at both the MTBF and STUF operations can offer satisfactory efficiencies as compared 

with the commonly employed machines do [11]. 
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(a) 

 

(b) 

Fig. 20. Simulated and measured torque characteristics under different armature currents: (a) 

MTBF operation at 300 rpm. (b) STUF operation at 600 rpm. 

 

 

Fig. 21. Measured efficiencies under different load currents. 

V. CONCLUSION 

This paper has proposed a new EG magnetless machine for EV application. The balance-position winding 

arrangement is also proposed and implemented to solve the problem of unbalanced flux-linkages and the 

associated high torque ripple. The design criteria of the proposed machine in terms of back EMF waveforms 

are discussed, leading to deduce the MTBF and STUF operations. Hence, it can perform the MTBF operation 
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to achieve smoother torque at the low-speed high-torque (so-called the low-gear) situation, and perform the 

STUF operation to achieve higher torque density at the high-speed low-torque (so-called the high-gear) 

situation. By employing this electronic gearing concept and the DC-field regulation, the proposed machine 

can effectively extend its operating range to fulfill the demanding requirement for EVs. 
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