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Abstract 

This paper proposes a two-level continuum transportation system approach to modeling a dynamic taxi 

traffic assignment (DTTA) problem in a dense network with real-time traffic information provision and three 

types of vehicles, including private cars, occupied taxis, and vacant taxis. The proposed approach treats the 

dense network as a continuum in the first level, in which private car and occupied taxi drivers are free to 

choose their paths in a two-dimensional continuous space. The proposed approach also divides the modeling 

region into many identical squares to form a cell-based network in the second level, in which the cells are 

classified into two categories: target cell with an acceptable expected rate of return (EROR) to vacant taxi 

drivers and non-target cell with an unacceptable EROR. The EROR associated with a cell is the ratio of the 

cumulative expected profit of a taxi driver who successfully picks up a customer during the customer search 

that starts from that cell to the sum of expected search time for this customer and expected occupied travel 

time to serve this customer. Based on the cell-based network, we develop a cell-based intervening opportunity 

model to capture that fact that vacant taxi drivers can meet a customer on the way to their destination zones 

and to estimate the EROR. Each vacant taxi driver has a mixed strategy to determine his/her customer-search 

direction according to the EROR: Each vacant taxi driver in a target cell selects its neighbor cells with 

maximum EROR, and each vacant taxi driver in a non-target cell selects the travel time-based shortest path to 

his/her target cell. Meanwhile, each private car driver chooses the path that minimizes his/her own generalized 

travel cost, and each occupied taxi driver chooses the path that minimizes his/her customer’s generalized 

in-vehicle travel cost. In our model, traffic density in the system is governed by the conservation law (CL), 

and the flow directions of different vehicles are determined by the path-choice strategies of their drivers, 

which are captured by Hamilton-Jacobi (HJ) equations. Both the proposed CL and HJ equations can be solved 

by the Lax-Friedrichs scheme, which forms the backbone of the developed solution algorithm. Finally, 

numerical examples and a case study are used to demonstrate the properties of the model, the performance of 

the solution algorithm, and the value of using our methodology for estimating network performance. 

Keywords: Continuum model, taxi customer-search, intervening opportunity model, conservation law, 

Hamilton-Jacobi equation, reactive dynamic user optimal. 
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1. Introduction 

As an important transportation mode, taxis offer speedy, comfortable, and direct transportation services. 

However, they tend to circulate around a city to search for customers and can consequently use up significant 

amount of road capacity and worsen traffic congestion and roadside air quality. To tackle these problems, 

advanced technologies (e.g., Horn, 2002; Lee and Cheng, 2008; Conway et al., 2012; da Costa and de 

Neufville, 2012; Miwa et al., 2013; Jung et al., 2014) are often used, and taxi regulation policies (e.g., De 

Vany, 1975; Schroeter, 1983; Arnott, 1996; Cairns and Liston-Heyes, 1996; Yang et al., 2000, 2002, 2005, 

2010; Fernández et al., 2006; Moore and Balaker, 2006; Wong et al., 2014b) are established. The effectiveness 

of these methods can be evaluated by a taxi traffic assignment model. 

Taxi traffic assignment aims to predict taxi traffic flow on each link or in each region, and can be used for 

both offline taxi regulation policy evaluation and real-time taxi operation and management. Taxi traffic 

assignment is an extension of traditional traffic assignment problems (TAPs), which have been widely studied 

for a long time and can be classified into two categories: static TAPs (e.g., Beckmann et al., 1956; Daganzo 

and Sheffi, 1977; Bar-Gera, 2002; Nie, 2010) and dynamic traffic assignment (DTA) problems (e.g., Yagar, 

1971; Merchant and Nemhauser, 1978a,b; Friesz et al., 1989; Ran et al., 1993; Huang and Lam, 2002; Lo and 

Szeto, 2002; Ban et al., 2008; Long et al., 2013, 2015, 2016; Han et al., 2015). As the temporal variation of 

flow and cost are not considered in the static models, they cannot be used to model travelers’ departure/arrival 

time choices or dynamic traffic management and control. DTA can address these problems and has received 

much attention in recent decades (e.g., Merchant and Nemhauser, 1978a,b; Friesz et al., 1989; Ran et al., 1993; 

Lo and Szeto, 2002; Long et al., 2013; Du et al., 2013, 2015; Jiang et al, 2017). Different from the fast 

development of TAP models, the development of taxi traffic assignment models is still in its early stage. Most 

existing taxi traffic assignment models are static (e.g., Yang and Wong, 1998; Wong et al., 2008; Yang et al., 

2010). Therefore, they cannot capture the time-varying customer demand and the situation that taxi drivers 

change their customer search choices en-route when they receive real-time traffic and customer demand 

information regularly. Consequently, the taxi customer-search efficiency and the congestion impacts caused by 

taxi cruising and circulation during the studied horizon cannot be accurately evaluated by these models. 

In the literature, there are two approaches to modeling TAPs: discrete (e.g., Friesz et al., 1993; Huang and 

Lam, 2002; Lo and Szeto, 2002; Lim and Heydecker, 2005; Long et al., 2013, 2015, 2016; Jiang et al., 2016) 

and continuum (e.g., Hoogendoorn and Bovy, 2004; Jiang et al., 2011, 2017; Du et al., 2013, 2015). The 

discrete modeling approach assumes that road links are separated but connected by nodes, and traffic demands 

are concentrated at hypothetical zone centroids. Discrete traffic equilibrium assignment problems are usually 

formulated as certain well-known mathematical problems, such as mathematical programming problems (e.g., 

Merchant and Nemhauser, 1978a,b; Carey, 1987; Carey and Subrahmanian, 2000; Ziliaskopoulos, 2000; Nie, 
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2011; Waller et al., 2013), optimal control problems (e.g., Friesz et al., 1989; Ran et al., 1993; Ma et al., 2014), 

variational inequality (VI) problems (e.g., Friesz et al., 1993; Ran and Boyce, 1996; Huang and Lam, 2002; 

Han, 2003; Long et al., 2013), nonlinear complementarity problems (NCP) (e.g., Wie et al., 2002; Ban et al., 

2008), fixed-point problems (e.g., Smith, 1993; Lim and Heydecker, 2005; Szeto et al., 2011; Long et al., 

2015), etc. The solution properties such as the existence and uniqueness of solution to the analytical DTA 

models can be determined beforehand and the existing solution algorithms can be used to solve them. 

However, it is challenging to model a large-scale congested urban traffic network with a large number of 

highways, intersections, interchanges, and severe congestion with queues and their spillbacks.  

The continuum approach approximates a dense network as a continuum in which travelers are free to 

choose their paths in a two-dimensional continuous space. This allows that the characteristics of a network, 

such as its flow intensity, demand, and travel cost, can be represented by smooth mathematical functions 

(Vaughan, 1987). Hence, fewer data are required for the model setup process, and the problem size can be 

reduced for large dense transportation networks. This can potentially save computational time and memory. 

This approach also includes a special case where a single corridor is modelled as a continuum (e.g., Wang and 

Du, 2013; Du and Wang, 2014). The continuum modeling approach has been widely applied to model various 

highly dense transportation systems (e.g., Wong et al., 1998; Yang and Wong, 2000; Ho et al., 2006, 2013; 

Hoogendoorn and Bovy, 2004; Jiang et al., 2011; Du et al., 2013, 2015). Early studies use static continuum 

equilibrium models to determine facility locations and perform policy (e.g., Yang and Wong, 2000; Ho et al., 

2006), environmental (e.g., Yin et al., 2013) and socio-economic analyses (e.g., Ho et al., 2013). These static 

models can predict a long-term traffic state for transportation planning and network design, but should only be 

used when traffic flow variation is small. To overcome this shortcoming, continuum static equilibrium models 

have been extended to continuum DTA models for pedestrian flow (e.g., Xia et al., 2008; Huang et al., 2009; 

Jiang et al., 2012) and urban road traffic flow (e.g., Hoogendoorn and Bovy, 2004; Jiang et al., 2011; Du et al., 

2013, 2015; Wang and Du, 2016). However, to the best of our knowledge, continuum DTA models for taxi 

traffic flow has not been proposed in the literature. 

The taxi route choice principle is a fundamental component of taxi traffic assignment models. It depicts 

how taxi drivers select their routes. The routing strategy of a taxi driver depends on taxi occupation status. If a 

taxi is occupied by customers, then the minimum cost path is usually assumed to be used (e.g., Yang and 

Wong, 1998; Yang et al., 2002; Wong et al., 2001, 2008). If not, the main principle used to depict the route 

choice of a vacant taxi driver varies from study to study, and includes minimizing the expected search time for 

customers (Hu et al., 2012), maximizing weighted expected profit minus search cost (Wong et al., 2003), 

maximizing profit per unit time (Yang et al., 2010), etc. However, all of these route choice principles ignore 

the fact that vacant taxi drivers can meet a customer on the way to their destination zones. To capture this 

intervening opportunity feature, Wong et al. (2015b) considered the sequential customer-search decisions of 
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vacant taxi drivers on finding customers at intermediate zones while heading to their designated zones. 

However, the behavior model of Wong et al. (2015b) ignores the fact that as vacant taxi drivers search for 

customers, the probability of successfully meeting a taxi customer along the way increases. Wong et al. 

(2014b) proposed the concept of the cumulative probability of success of being hired, and developed a 

logit-opportunity modeling approach to modeling the taxi customer-search behavior in a cell-based network. 

However, the route choice principle of vacant taxi drivers used by Wong et al. (2014b) is maximizing the 

cumulative probability of success, and ignores the expected profit of taxi drivers, which is always their 

concern. Both profitability and the cumulative probability of success of being hired should be considered in 

the search choice principle. Moreover, as vacant taxi drivers do not always have complete and very accurate 

knowledge on their profitability of their following occupied trips, they may not be rational but instead 

boundedly rational, which is consistent with our frequent observations that vacant taxis are normally not too 

concentrating on very few expected profitable locations or narrow regions to search for their next customer. 

The boundedly rational consideration should also be captured in the search choice principle of vacant taxi 

drivers. 

In a city, the common major source of road congestion is private cars, and traffic congestion significantly 

influences the route choice of taxi drivers. Meanwhile, taxis can use up significant amount of road capacity 

(for example in Hong Kong) and can worsen traffic congestion due to their cruising to search for customers, 

and hence taxis influence also the route choice of car drivers. Therefore, private cars and taxis have 

interactions on each other, and should be simultaneously considered in a taxi traffic assignment model.  

In this paper, we propose a two-level continuum transportation system approach to modeling a dynamic 

taxi traffic assignment (DTTA) problem in a dense network with real-time traffic information. This approach 

treats the dense network as a continuum in the first level, in which private car and occupied taxi drivers are 

free to choose their paths in a two-dimensional continuous space. This approach also divides the modeling 

region into many identical squares to form a cell-based network for vacant taxi drivers to search for customers 

in the second level, in which the cells are classified into two categories: target cell with an acceptable 

expected rate of return (EROR) to vacant taxi drivers and non-target cell with an unacceptable EROR. The 

EROR associated with a cell is the ratio of the cumulative expected profit of a taxi driver who successfully 

picks up a customer during the customer search that starts from that cell to the sum of expected search time 

for this customer and expected occupied travel time to serve this customer. In the modeling region, there are 

three types of vehicles: private cars, vacant taxis, and occupied taxis. Different types of drivers are assumed to 

have their own path choice strategy—Each private car driver chooses the path that minimizes his/her own 

generalized travel cost; each occupied taxi driver chooses the path that minimizes his/her customer’s 

generalized in-vehicle travel cost, and each vacant taxi driver has a mixed strategy to determine his/her 

customer-search direction according to the EROR: Each vacant taxi driver in a target cell selects its neighbor 
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cells with the maximum EROR, and each vacant taxi driver in a non-target cell selects travel time-based 

shortest path to the target cell. Hamilton Jacobi (HJ) equations are proposed to compute the minimum 

generalized travel costs of private car drivers and customers’ generalized in-vehicle travel cost. Based on the 

cell-based network, an intervening opportunity sub-model is developed to capture the cumulative probability 

of successfully meeting a customer in each direction of customer-search and the profitability concern of 

vacant taxi drivers, and to estimate the EROR of vacant taxi drivers. In our proposed model, the traffic density 

of each vehicle type is governed by the conservation law (CL), in which the flow direction is determined by 

the proposed path-choice strategies and HJ equations for all types of vehicles. This implies that our proposed 

model captures the interaction between private cars and taxis and their contributions to traffic congestion. 

 To solve our model numerically, we develop an algorithm that uses the Lax-Friedrichs scheme to solve 

the proposed HJ equations and CLs. The Lax-Friedrichs scheme is a conservative monotone scheme with 

desirable properties such as the maximum principle and total variation diminishing (TVD). Finally, numerical 

examples and a case study are used to demonstrate the properties of the model, the performance of the 

solution algorithm, and the importance of using our methodology for estimating network performance more 

accurately. 

In terms of methodology, our proposed model has four main differences compared with the existing taxi 

traffic assignment models or existing continuum models. 

First, we propose a different search choice principle to describe the path choice strategy of vacant taxi 

drivers compared with those in the taxi assignment literature. In our paper, we consider both the concept of the 

cumulative probability of success of being hired and the expected profit in the path choice strategy of vacant 

taxi drivers. Moreover, compared with the literature, we further introduce the concept of tolerance in the 

search choice principle to take into an account that vacant taxi drivers are boundedly rational. 

Second, the analytical taxi assignment models in the literature are static, but we develop a DTTA model. 

Our model can capture time-varying customer demand and allow examining the impacts of regular real-time 

traffic and customer demand information update and traffic congestion on the path search strategy of vacant 

taxi drivers more accurately. This modeling approach can lead to the estimation of network performance more 

accurately. This is particularly important in many urban cities including Hong Kong where taxi cruising 

significantly contributes to road congestion.    

Third, the taxi traffic assignment models in the literature are developed based on graph theory with a 

network formed by links and nodes. Our model is developed based on a two-level continuum approach and is 

more computationally efficient than the models developed by the traditional graph theory approach. This 

efficiency is very important for online traffic management and control applications, because new results have 

to be computed quickly to allow making effective management and control decisions after traffic information 

is updated each time.  
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Fourth, our continuum model has two levels, and is different from the single level continuum models only 

for private cars. 

The main contributions made in our research are as follows.  

First, we propose a dynamic taxi assignment model for continuum transportation systems for online 

applications. It takes both congestion and traffic information update into account. To the best of our 

knowledge, it is the first analytical DTTA model that incorporates both the intervening opportunity concept 

and profitability consideration to model local customer search and considers a dense taxi traffic network as a 

two-level continuum system.  

Second, we introduce a new concept—EROR, develop a novel intervening opportunity model to depict the 

local customer-search of vacant taxi drivers, and propose a new tolerance-based path choice strategy of vacant 

taxi drivers. 

Third, this paper illustrates the properties of the model. In particular, this paper shows the effects of 

congestion and the duration between each traffic information update on the taxi customer-search efficiency as 

measured by customer waiting time. We also show that taxi and private cars interact with each other. 

The remainder of this paper is organized as follows. The description of the dynamic taxi assignment 

problem in a continuum polycentric city is given in the next section. In Section 3, the dynamic taxi assignment 

problem is formulated. The solution algorithm for the proposed dynamic taxi assignment model is presented 

in Section 4. In Section 5, numerical examples and a case study are provided. Finally, our conclusions are 

drawn in Section 6. 

2. Problem description 

As shown in Fig. 1, we consider a polycentric urban region with M  compact CBDs (or destinations in 

general). Let {1, 2, , }M M   be the set of CBDs. In this region, the road network is very dense and can be 

viewed as a two-dimension continuum. Let   (in km2) and Γ (in km), respectively, be the modeled urban 

region (i.e., the modeling domain, which excludes the CBDs and obstructions) and the boundary of the 

modeling domain. Let 
0  (in km) be the outer boundary of  , m

c  (in km) be the boundary of the m-th 

compact CBD, and n
o  (in km) be the boundary of the n-th (n = 1, 2, ..., N) obstruction, such as a lake, a 

park, or an undeveloped area where traffic is not allowed to enter or leave. Hence, the boundary of   is 
0 m n

c o      . It is assumed that travelers’ homes are continuously located over ( , )x y  .  

Travelers go from their homes to their designated CBDs to work by either driving or taxi. Hence, there are 

three types of vehicles in the modeling region during the studied morning period: (1) private cars, (2) 

occupied taxis, and (3) vacant taxis. Based on vehicles’ destination, there are M  types of private cars, and 

M  types of occupied taxis, and one type of vacant taxi. Let {0,1,2, ,2 }K M   represent the set of types 

of vehicles in the region. Let 0 {0}K  , 1 {1,2, , }K M  , and 2 { 1, 2, , 2 }K M M M    , 
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respectively, represent the set of types of vacant taxis, the set of types of occupied taxis, and the set of types of 

private cars. 

We assume that the travel demand of both cars and taxi customers of the morning commute is 

time-dependent, fixed, and given, and hence our model described later does not include a choice between car 

and taxi from an origin to a destination. We also assume that all vehicles have real-time traffic information 

from a radio broadcasting service or a route guidance system. The traffic information is updated regularly, and 

let   be the length of an information update interval. Based on the information update interval, the time 

period T can be discretized into a finite set of time intervals { 1,2, , }    , and we have T T
 , 

where T  is the time period of interval  . Let T  and T  be the end time of studied period and the end 

time of interval  , respectively. By definition, we have 1( , ] (( 1) , ]T T T        . The traffic 

information for vehicles’ route choice during interval   is based on the average traffic flow performance 

during interval 1  . 

To formulate the customer-search behavior of vacant taxi drivers, we also divide the modeling region into 

many identical squares to form a cell-based network. Let Z  be the set of cells. Let z  be the region of cell 

z Z  and z  be the boundary of region z . The size of each cell can be adjusted subject to the required 

level of modeling accuracy.  

The following notations are used throughout this paper: 

( , , )x y t  density of vehicles at location (x, y) at time t 

( , , )k x y t density of the k-th type of vehicle at location (x, y) at time t 

( , )x y  average vehicle density at location (x, y) during time interval   

( , , )m x y t  density of customers to the m-th CBD at location (x, y) at time t 

( , , )x y tv  velocity vector at location (x, y) at time t, and 1 2( , , ) ( ( , , ), ( , , ))x y t v x y t v x y tv

where 1( , , )v x y t  and 2 ( , , )v x y t  are velocities in the positive x- and y-directions at 

time t, respectively 

( , , )V x y t  vehicle speed at location (x, y) at time t, which is the norm of the velocity vector, i.e., 

( , , ) | ( , , ) |V x y t x y t v  

( , )V x y  average vehicle speed at location (x, y) during time interval   

 ,x yV   speed-density function of vehicles at location (x, y) 

( , , )k x y tf  flow vector of the k-th type of vehicle at location (x, y) at time t, and 

( , , ) ( ( , , ), ( , , ))k k kx y t f x y t g x y tf , where ( , , )kf x y t  and ( , , )kg x y t  are the 

flow in the positive x- and y-directions at time t, respectively 
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( , , )kq x y t  demand of the k-th type of vehicle at location (x, y) at time t 

( , , )mq x y t  demand of private cars to the m-th CBD at location (x, y) at time t 

( , , )mq x y t  demand of customers to the m-th CBD at location (x, y) at time t 

( , )c x y  local travel cost per unit distance for private cars traveling at location (x, y) during 

time interval   

( , )t x y  local travel time per unit distance of travel incurred by all vehicles at location (x, y) 

during time interval   

( , )x y  local fare of a taxi ride per unit distance for occupied taxis traveling at location (x, y) 

during time interval   

( , )x y  local generalized in-vehicle travel cost per unit distance of travel incurred by 

customers at location (x, y) during time interval   

( , )k x y  total travel cost (disutility) incurred by the k-th ( 1 2k K K  ) type of vehicle that 

departs from location (x, y) during time interval   to its destination using the 

constructed path-choice strategy 

( , )k x yn  flow direction of the k-th type of vehicle traveling at location (x, y) during time 

interval   

( , )m x y  travel time for a vacant taxi driver who picks up a customer to the m-th CBD at 

location (x, y) during time interval    

( , )mP x y  profit for a taxi driver after picking up a customer to the m-th CBD at location (x, y) 

during time interval    

zP  average profit of a taxi driver after successfully picking up a customer in cell z 

during interval   

zT  average occupied travel time of a taxi driver after successfully picking up a customer 

in cell z during interval   

 

3. The dynamic taxi traffic assignment model 

3.1. The path choice strategy of both occupied taxi and private car drivers 

3.1.1. The formulations of the local generalized travel costs of private cars and occupied taxis 

The widely used Lighthill-Whitham-Richard (LWR) macroscopic modeling approach is adopted to 

formulate road traffic flow in the polycentric city (Huang et al., 2009 and Du et al., 2013). We assume the 

traffic flow follows a macroscopic fundamental diagram (MFD) (Daganzo and Geroliminis, 2008; Geroliminis 

and Daganzo, 2008; Geroliminis and Sun, 2011): 

 ,( , , ) ( , , ) , ( , ) ,x yV x y t V x y t x y t T    , (1) 
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The vehicle density at location (x, y) at time t can be expressed as follows: 

( , , ) ( , , ), ( , ) ,k

k K

x y t x y t x y t T 


    . (2) 

The average vehicle density at location (x, y) during time interval   can be formulated as follows: 

1

1

( , , )
( , ) , ( , ) , .

T

T
x y t dt

x y x y
T T






 


 



   



 (3) 

Using the flow-density relationship (1), the average vehicle speed at location (x, y) during time interval   

can be estimated by the corresponding average vehicle density, given as follows: 

 ,( , ) ( , ) , ( , ) ,x yV x y V x y x y      . (4) 

The local travel time per unit distance of travel incurred by all vehicles at location (x, y) during time 

interval   can be estimated as follows: 

1
( , ) , ( , ) , .

( , )
t x y x y

V x y


     (5) 

Following Wong et al. (2008), we define the fare of a taxi ride to be the monetary cost that is charged to a 

customer. The taxi fare consists of a mileage charge and a delay-based charge, and can be formulated as 

follows: 

1

2
1

,                   if ( , ) ,

( , ) ( , ) , ,
,  otherwise,

( , )

V x y V

x y x y

V x y








 


    

 (6) 

where 1  and 2  are the charge per unit distance and the charge per unit time of waiting to a taxi customer, 

respectively. V  is the critical speed below which a delay-based charge is applied to a taxi customer. 

Each customer’s generalized in-vehicle travel cost consists of two components: (1) the cost of in-vehicle 

travel time, and (2) the fare of the taxi ride. The local generalized in-vehicle travel cost per unit distance of 

travel incurred by customers at location (x, y) during time interval   can be formulated as the following 

general form: 

( , ) ( , ), ( , ) , ,
( , )

x y x y x y
V x y 


        (7) 

where   (in $) denotes travelers’ value of time. The first term on the right hand side of Eq. (7) represents the 

customers’ travel cost associated with travel time whereas the second term on the right hand side of Eq. (7) 

represents the fare of a taxi ride. 

Following Du et al. (2013) and Jiang et al. (2017), we formulate the local generalized travel cost per unit 

distance of travel incurred by the private car drivers at location (x, y) during time interval   as the following 

general form: 
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( , ) ( ( , )), ( , ) , ,
( , )

c x y x y x y
V x y 


         (8) 

where ( ( , ))x y   is a given function associated with the average density at location (x, y) during time 

interval  . The two terms on the right hand side of Eq. (8), respectively, represent the cost associated with 

travel time and other costs that are dependent of the density, such as a preference for avoiding high-density 

regions or reducing the chance of having an accident due to congestion. The former term captures the major 

factor and the latter term captures the minor factor. 

3.1.2. The reactive dynamic user-optimal strategy of both occupied taxi and private car drivers 

We assume that occupied taxi and private car drivers select their routes to their destinations according to 

the traffic information of the previous interval. Each occupied taxi driver always selects his/her route to 

minimize his/her customer’s generalized in-vehicle travel cost to the destination. Meanwhile, each private car 

driver always selects his/her route to minimize his/her generalized travel cost to his/her destination. The 

functional form of travel cost ( , )k x y  for the k-th type of vehicle can be written as follows: 

1 1 2( , ) min ( , ) , , ( , ) , ,k k k

pp
x y c x y ds k K K x y            (9) 

where p is any path from origin ( , )x y   to the destination of the k-th type of vehicle, k
  is the cost 

incurred by entering the destination of the k-th type of vehicle during time interval  , and 

1

2

( , ),  if ,
( , )

( , ),  if .
k x y k K

c x y
c x y k K





 
  

 (10) 

According to Huang et al. (2009), occupied taxi and private car drivers choose their paths to their 

individual designated CBD in a reactive dynamic user-optimal (DUO) manner if the following condition is 

satisfied: 

1 2( , )// ( , ), , ( , ) , ,k kx y x y k K K x y      n   (11) 

where // means that two vectors are parallel. 

The reactive DUO conditions for the equilibrium flow pattern in the polycentric network can be 

formulated as follows: 

1 1 2( , ) ( , ) ( , ) 0, , ( , ) , , .k k kc x y x y x y k K K x y t T            n   (12) 

By combining Eqs. (11) and (12), we have 

1 1 2| | ( , ), , ( , ) ,k kc x y k K K x y        . (13) 

The travel cost incurred by private car and occupied taxi drivers at the boundary of   are fixed and 

given, and hence we have the following boundary condition: 

1 2( , ) ( , ), , ( , ) ,k kx y x y k K K x y        , (14) 



10 
 

where ( , )k x y  represents the boundary value of ( , )k x y  on  . By definition, we have 

( , ) , , ( , ) ,m m m
cx y m M x y        , and  

( , ) , , ( , ) ,M m M m m
cx y m M x y         .  

In summary, the travel costs incurred by occupied taxi and private car drivers can be obtained by the 

following two dimensional HJ equation: 

1 1 2

1 2

| | ( , ), , ( , ) , ,

( , ) ( , ), , ( , ) , .

k k

k k

c x y k K K x y

x y x y k K K x y

 

 

 

  
      


    




 (15) 

3.2. The path choice strategy of vacant taxi drivers 

The opportunity customer-search models (e.g., Wong et al., 2014a, 2014b, 2015a, 2015b) can capture the 

fact that vacant taxi drivers can meet a customer on the way to their individual destination zone, and can be 

used to estimate the expected occupied travel time, the expected customer search time, cumulative profit, and 

the EROR of being hired. In this subsection, we develop an intervening opportunity modeling approach to 

modeling taxi customer-search behavior in a cell-based network. Unlike Wong et al. (2014a, 2014b, 2015a, 

2015b), we assume that each taxi driver travels towards an adjacent and connected cell to maximize his/her 

EROR of being hired. The proposed cell-based opportunity customer-search model can still capture the fact 

that vacant taxi drivers can meet a customer on the way to their own destination zone, and is used to estimate 

the EROR of vacant taxi drivers from local customer-search. According to the value and distribution of the 

EROR, we then propose a mixed strategy to determine the customer-search direction. 

3.2.1. The probability of success 

The probability of success is the probability of a vacant taxi driver in a cell who can successfully pick up a 

customer in that cell. It is defined as the passenger demand generated from a cell over the availability of 

vacant taxis in that cell, subject to the condition that the probability is between zero and one inclusively. This 

can be expressed mathematically as follows (Wong et al., 2014a): 

min ,1 , ,
z

z
z

O
s z Z

A






 

    
 

, (16) 

where zs  is the probability of a vacant taxi driver in cell z who can successfully pick up a customer during 

interval  , zO  denotes the number of recorded occupied trips starting in cell z during interval  , and zA  

denotes the number of recorded vacant taxis found in cell z during interval  . This probability can capture 

the variation of the probability of successfully meeting a customer in different cells (Wong et al., 2014a). By 

definition, we have 
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( 1)
( , , ( 1) ) ( , , ) , ,

z

z m m

m M

O x y q x y t dt dxdy z Z


  
   

 


            , and  (17) 

0 0

( 1)
( , , ( 1) ) ( )( , , ) , ,

z z

z
zA x y dxdy x y t dsdt z Z



  
   

  
         f n , (18) 

where zn  is the unit normal vector pointing towards cell z, and ds is used to acknowledge the fact that the 

line integral is performed along the boundary of cell z. 

3.2.2. The profit and occupied travel time of a taxi ride 

The profit and occupied travel time of a vacant taxi driver who successfully picks up a customer in cell z 

during interval  can be formulated as follows: 

( 1)

( 1)

( , , ( 1) ) ( , , ) ( , )

( , , ( 1) ) ( , , )

z

z

m m m

z m M

m m

m M

x y q x y t dt P x y dxdy
P

x y q x y t dt dxdy



 

 

 

  

  

 


 


    


    

  

  

 

 
, and (19) 

( 1)

( 1)

( , , ( 1) ) ( , , ) ( , )

( , , ( 1) ) ( , , )

z

z

m m m

z m M

m m

m M

x y q x y t dt x y dxdy
T

x y q x y t dt dxdy



 

 

 

   

  

 


 


    


    

  

  

 

 
, (20) 

where ( , )mP x y  and ( , )m x y  can be obtained by the following two dimensional HJ equation, 

respectively: 

( , ) ( , ) ( , ), , ( , ) , ,

( , ) ( , ), , ( , ) , ,

m m

m m

P x y x y x y m M x y

P x y P x y m M x y

  



 



     


    

n
 and (21) 

( , ) ( , ) ( , ), ,( , ) , ,

( , ) ( , ), ,( , ) , ,

m m

m m

x y x y t x y m M x y

x y x y m M x y

  



 

  

     


    

n
 (22) 

where ( , )mP x y  and ( , )m x y , respectively, represent the boundary values of ( , )mP x y  and ( , )m x y  

on  . 

3.2.3. The estimation of the EROR 

In the cell-based network, a vacant taxi driver can meet a customer on the way to his/her target cell, and 

he/she may travel several cells before picking up a customer. Following Wong et al. (2014a), we assume that 

each driver makes exactly one search decision in each cell and expects to travel to a number of cells before 

meeting a customer. Let this number of search decisions anticipated be L, which is equivalent to the average 

number of cells traveled before picking up a customer. The number L is interpreted as the long-term average 

for an individual driver in his/her mindset based on his/her past experience. If the number is small, then a 

vacant taxi driver expects to meet his/her next customer in a short distance (due to high passenger demand 
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during peak hours), and the expected search area covered by this driver is small. This means that the area is 

defined by L. The boundary of this area is called the customer-search boundary (Wong et al., 2014a). Fig. 2 

shows customer-search boundaries for different numbers of search decisions anticipated. When L = 3, a vacant 

taxi driver can search from cell z and travel through cells z  and z  to cell z . Different from the 

logit-based search decision used by Wong et al. (2014a), a user optimal search decision is adopted—an 

adjacent cell with the maximum EROR in all prepared search decisions is selected by a vacant taxi driver. 

The EROR used for formulating the route choice strategy of vacant taxi drivers is also defined on the basis 

of L, and relates to the ratio of two terms: (1) the cumulated expected profit of a vacant taxi driver who 

successfully picks up a customer during the customer search that starts from cell z during interval   and the 

driver prepares to make a local search decision l times in total before meeting a customer (1 l L  ), and (2) 

the sum of expected search time for a customer and expected occupied travel time after picking up that 

customer. The EROR is mathematically formulated as follows: 

,
,

, ,

z l
z l

z l z l

P
R

T T



 


 

, (23) 

where ,z lP , ,z lT , and ,z lT
 are defined in the following paragraph. 

The cumulative expected profit of a vacant taxi driver ( ,z lP ) represents the accumulated profit of that 

driver if the driver is initially located in cell z during interval   and prepares to make a local search decision 

l times in total before meeting a customer. The cumulative expected profit of a vacant taxi driver equals the 

sum of two terms: the expected profit of that taxi driver if the driver successfully picks up a customer in cell z, 

and the additional expected profit gained from the subsequent cells if the driver cannot successfully picks up a 

customer in cell z. This can be formulated as follows: 

1

,
, 1 1

,                                            if 1,

(1 ) / | |,  if 1 ,
l
z

z

z l
z z z l l

z
z K

P l
P P s P K l L




  



  



 
     


  (24) 

where 1l
zK   is the set of neighbor cells of cell z with the maximum EROR, i.e.,  

1 , 1 , 1{ | , }l z l z l
z zK z R R z K 

        , and  

1| |l
zK   is the number of elements in 1l

zK  . zK  is the set of neighbor cells of cell z. Similarly, the expected 

occupied travel time of a vacant taxi driver who successfully picks up a customer during the customer search 

that starts from cell z during interval   and prepares to make a local search decision l times in total before 

meeting a customer, i.e., ,z lT , can be formulated as follows: 

1

,
, 1 1

,                                            if 1,

(1 ) / | |,  if 1 .
l
z

z

z l
z z z l l

z
z K

T l
T T s T K l L




  



  



 
     


  (25) 
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The expected search time of a vacant taxi driver over l cells before successfully picking up a customer during 

the customer search that starts from cell z during interval   (i.e., ,z lT
 ) can be formulated as follows: 

1

,
, 1 1

0,                                                  if 1,

(1 ) / | | ,  if 1 ,
l
z

z l
z z z l l

z
z K

l

T
s t T K l L
  



  






         
 




  (26) 

where zt  is the average time for taxis traveling through cell z. 

For each cell and time period, the EROR used for formulating the route choice strategy is defined when l = 

L; i.e., 
,

,
, ,

z L
z L

z L z L

P
R

T T



 


 

. 

3.2.4. A mixed vacant taxi customer-search strategy 

In the whole cell-based network, various cells may have different expected rates of return. Vacant taxis 

intend to move from a cell with a lower EROR to that with a higher EROR. We assume that vacant taxi 

drivers can have two types of customer-search strategies: (1) the vacant taxi drivers in a cell with an 

acceptable EROR travel to an adjacent cell with the highest EROR, and (2) the vacant taxi drivers in a cell 

with an unacceptable EROR aims to directly travel to a cell with an acceptable EROR as quick as possible. 

Based on this assumption, we define the cells with a large enough EROR as the target cells, and define the 

other cells as the non-target cells. The boundedly rational user optimal principle can be used to define the set 

of target cells: 

* , max{ | (1 )}z LZ z R R      , (27) 

where max ,max { }z L
z ZR R  , and   is the tolerance and 0 1  .  

It is assumed that vacant taxi drivers in target cells select their neighbor cells with the maximum EROR. 

When there is only one cell with the largest EROR, all vacant taxis in the same cell travel towards the same 

search direction. When there is more than one cell with the same maximum EROR, the vacant taxis in cell z 

randomly travel to one of these adjacent cells L L
zz K  as their subsequent cell.  

In general, the flow direction of vacant taxis in target cells satisfies the following: 

*

0 ( , )// , ( , ) ,
L
z

zz zz Z
z Z

x y x y


  


   n n  , (28) 

where zzn  is the direction from the center point of cell z  to the center point of cell z. 

Vacant taxi drivers in a non-target cell select their own travel time-based shortest path to their closest 

target cell. The minimum travel time from any non-target cell to the target cell can be obtained by the 

following two-dimensional HJ equation: 
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*

*

\

max

( , ) ( , ), ( , ) , ,

( , ) 0, ( , ) , ,

( , ) , ( , ) , ,

zz Z Z

zz Z

x y t x y x y

x y x y

x y x y





 





 

 

  





     
     


   


  (29) 

where max  is a very large positive constant. The first equation in Eq. (29) is the Eikonal equation which 

represents that vacant taxis require ( , )t x y  time units to travel unit distance at location (x, y) during time 

interval  . The second equation in Eq. (29) represents that the minimum travel time of each vacant taxi 

driver in a target cell to another target cell is zero; the third equation in Eq. (29) represents that the minimum 

travel time of each vacant taxi driver at the boundary of modeling region is very large, and hence the vacant 

taxis cannot travel through the CBDs and the obstacles and cannot leave the region. Vacant taxi drivers in 

non-target cells choose their paths to their own target cell in a dynamic reactive user-optimal manner if the 

following condition is satisfied: 

*

0

\
( , )// ( , ), ( , ) ,zz Z Z
x y x y x y


  


    n  . (30) 

3.3. Flow conservation laws 

3.3.1. Traffic flow determination 

The following equation can be used to express the relationship between the speed, flow, and density of 

each type of vehicle: 

( , , ) ( , , ) ( , , ), , ( , ) ,k k kx y t x y t x y t k K x y t T    f v . (31) 

According to Eq. (31), we have ( , , )// ( , , )k kx y t x y tf v . By definition, we have ( , , )// ( , , )k kx y t x y tv n  

for all t T , and hence we have 

( , , )
( , , ), , ( , ) , ,

| ( , , ) |

k
k

k

x y t
x y t k K x y t T

x y t      
v

n
v

. (32) 

Substituting | ( , , ) | ( , , )x y t V x y tv  into Eq. (32) and rearranging the resultant equation, we have 

( , , ) ( , , ) ( , , ), , ( , ) , ,k kx y t V x y t x y t k K x y t T     v n . (33) 

Substituting Eq. (33) into Eq. (31), we have 

( , , ) ( , , ) ( , , ) ( , , ), , ( , ) , .k k kx y t x y t V x y t x y t k K x y t T    f n  (34) 

Once an occupied taxi arrives at a CBD, the customer pays the driver and gets out of it using 1t  time 

units, and then it becomes a vacant taxi and leaves the boundary of the CBD with an opposite direction, where 

1t  is the average time for a customer to pay the driver and get off a taxi. Hence, we have 

0
1( , , ) ( , , ), , ( , ) , .m m

cx y t t x y t m M x y t T       f f  (35) 
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3.3.2. The flow conservation laws of private cars and occupied taxis 

According to the flow conservation law (CL) of continuous medium mechanics, the traffic density and 

flow vector for each type of private car flow must satisfy the following continuity equation: 

1 2( , , ) ( , , ) ( , , ), , ( , ) , ,k k k
t x y t x y t q x y t k K K x y t T       f   (36) 

where 
( , , )

( , , )
k

k
t

x y t
x y t

t

 



, 

( , , ) ( , , )
( , , )

k k
k f x y t g x y t

x y t
x y

 
   

 
f , ( , , )kq x y t  is the source 

term in the flow CL, which represents the number of vacant taxis per kilometers picking up customers to the 
k-th CBD at location (x, y) at time 2t t   for 1k K , and further represents the private car demand at 

location (x, y) at time t for 2k K . By definition, we have ( , , ) ( , , )k k Mq x y t q x y t  for 2k K , where 

k M  is the CBD (destination) for the k-th type of private car. 

We assume that no vehicle is allowed to enter the obstruction through the boundary n
o  or leave the city 

through 0 . This implies the following boundary condition: 

1 2( , , ) 0, , ( , ) ,k x y t k K K x y t T      . (37) 

Let 0t   and ( , )k x y , respectively, be the start time and the density of private car flow at location (x, 

y) at the beginning of the modeling period. We have the following initial condition: 

1 2( , , 0) ( , ), , ( , )k kx y x y k K K x y     . (38) 

The CL part of the traffic flow model for occupied taxis and private cars can be summarized as follows: 

1 2

1 2

1 2

1 2

( , , ) ( , , ) ( , , ), , ( , ) , ,

( , , ) ( , , ) ( , , ) ( , ), , ( , ) , , ,

( , , ) 0, , ( , ) , ,

( , ,0) ( , ), , ( , ) ,

k k k
t

k k k

k

k k

x y t x y t q x y t k K K x y t T

x y t x y t V x y t x y k K K x y t T

x y t k K K x y t T

x y x y k K K x y

 



 



 

      


      


    
    

f

f n







 (39) 

where the flow direction ( , )k x yn  and the source term ( , , )kq x y t  are the inputs of Eq. (39). 

3.3.3. The flow conservation laws of vacant taxis and customers 

We assume that customers are immediately picked up by vacant taxis when they meet, and that the vacant 

taxis become occupied taxis 2t  time units later, where 2t  is the average time for a vacant taxi picking up 

a customer after they meet. Under this assumption, either the density of vacant taxis or the density of 

customers at a given location is zero. This implies that we should consider three cases: (i) the density of 

vacant taxis is positive and the total density of customers is zero at location (x, y), (ii) the density of vacant 

taxis is zero and the total density of customers is positive at location (x, y), and (iii) the density of both vacant 

taxis and customers are the same and equal to zero at location (x, y). For the ease of analysis, Case (iii) is 

divided into two sub-cases: (iii.i) 0 ( , , ) ( , , )m

m M
x y t q x y t


 f , and (iii.ii) 
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0 ( , , ) ( , , )m

m M
x y t q x y t


 f , where 0 ( , , )x y t f  is the arrival rate of vacant taxis at location (x, y) 

at time t, and ( , , )m

m M
q x y t

  is the sum of customer demand at location (x, y) at time t. 

According to the first two cases, we define the following two sets of time instants: 

0
1( , ) : ( , , ) 0, ( , , ) 0 ,m

m M

T x y t x y t x y t 


    
 

   and (40) 

0
2 ( , ) : ( , , ) 0, ( , , ) 0m

m M

T x y t x y t x y t 


    
 

  . (41) 

According to the two sub-cases of case (iii), we define the following two sets of time instants: 

0 0
3( , ) : ( , , ) ( , , ) 0, ( , , ) ( , , ) ,m m

m M m M

T x y t x y t x y t x y t q x y t 
 

      
 

 f  and (42) 

0 0
4 ( , ) : ( , , ) ( , , ) 0, ( , , ) ( , , ) .m m

m M m M

T x y t x y t x y t x y t q x y t 
 

      
 

 f  (43) 

For cases (i) and (iii.i), the customer densities are zero. Hence, the densities of the vacant taxis and 

customers follow the following CL: 

0 0
1 3

1 3

( , , ) ( , , ) ( , , ), ( , ) , ( , ) ( , ),

( , , ) 0, , ( , ) , ( , ) ( , ).

m
t

m M

m
t

x y t x y t q x y t x y t T x y T x y

x y t m M x y t T x y T x y






       

     

f  

 
 (44) 

A vacant taxi meeting a customer at location (x, y) becomes an occupied taxi 2t  time units later. Hence, 

we can obtain the demand of occupied taxis at location (x, y) for cases (i) and (iii.i) as follows: 

2 1 3( , , ) ( , , ), , ( , ) , ( , ) ( , ).m mq x y t t q x y t m M x y t T x y T x y         (45) 

For cases (ii) and (iii.ii), the vacant taxi densities are zero. Hence, the densities of the vacant taxis and 

customers follow the following CL: 

0
2 4

0
2 4

( , , ) 0, ( , ) , ( , ) ( , ),

( , , ) ( , , ) ( , , ) ( , , ), , ( , ) , ( , ) ( , ),

t

m m m
t

x y t x y t T x y T x y

x y t x y t x y t q x y t m M x y t T x y T x y



 

    


       f


  

 (46) 

where ( , , )m x y t  is the proportion of customers to the m-th CBD waiting and is defined as 

2 4

( , , )
( , , ) , ( , ) , ( , ) ( , ).

( , , )

m
m

m

m M

x y t
x y t x y t T x y T x y

x y t


 



   




   

Similar to Eq. (45), we can obtain the occupied taxi demand at location (x, y) for cases (ii) and (iii.ii) as 

follows: 

0
2 1 2 4( , , ) ( , , ) ( , , ), , ( , ) , ( , ) ( , ).k kq x y t t x y t x y t k K x y t T x y T x y        f   (47) 

Note that type k-th occupied taxis head to the k-th CBD as their destination. 



17 
 

4. Solution algorithm 

In this paper, we use the Lax-Friedrichs Hamiltonian to solve the proposed HJ equations based on a 

rectangular mesh. The Lax-Friedrichs sweeping scheme is extremely simple to carry out, no matter whether 

the Hamiltonian is convex or not, and no matter how complicated the Hamiltonian could be (Kao et al., 2004). 

The solution process is mainly based on the adjacent grid information during the same time interval. In this 

section, we also describe the Lax-Friedrichs scheme to solve the proposed CLs. 

4.1. The Lax-Friedrichs sweeping scheme used to solve the HJ equations 

4.1.1. The Lax-Friedrichs sweeping scheme for a general static HJ equation 

We consider the following general static two-dimensional HJ equation (Zhang et al., 2006): 

( , ) ( , ), ( , ) ,

( , ) ( , ), ( , ) ,

x yH g x y x y

x y x y x y

 

 

  


  
 (48) 

where ( , )x y  is a two-dimensional function, 
( , )

x

x y

x

 



, 

( , )
y

x y

y

 



, ( , )g x y  is a nonnegative 

function,   is a computational domain,   is the boundary of the domain  , and ( , )x y  is the 

boundary value of ( , )x y  on  . The Hamiltonian H is a nonlinear Lipschitz continuous function. 

Before computing the viscosity solution of Eq. (48), a rectangular mesh h  is used to discretize the 

domain   and h  is used to discretize the boundary  . Let x  and y  be the grid lengths in the 

x-direction and the y-direction, respectively. Let (i, j) denote a grid point in h , i.e., 

{( , ) :1 ,1 }h i j i I j J      , where I and J are the numbers of grids in the x- and y-directions, 

respectively. Let ,i j  be the numerical solution ( , )x y  at grid point (i, j), ,i j  be the boundary value 

( , )x y  at grid point (i, j), and ,i jg  be the value of ( , )g x y  at grid point (i, j).  

The Lax-Friedrichs numerical Hamiltonian (Osher and Shu, 1991) is the simplest among all monotone 

numerical Hamiltonians. In this paper, the following first-order Lax-Friedrichs sweeping scheme for general 

static HJ equations is adopted to update the numerical solution at grid point (i, j) (Kao et al., 2004): 

1, 1, , 1 , 1 1, 1, , 1 , 1
, ,

1
, ,

2 2 2 2
i j i j i j i j i j i j i j i jnew

i j i j x y
yx

g H
x y x y

x y

       
  

       

 
                        

 (49) 

where x  and y  are the viscosity constants and are respectively defined as 

1 2max | ( , ) |, max | ( , ) |,x y

A u B A u B
C v D C v D

H u v H u v 
   
   

   (50) 

1( , )H u v  and 2 ( , )H u v  are the partial derivatives of ( , )H u v  with respect to the both arguments. [A, B] is 

the value range for u , and [C, D] is the value range for v . u and v can be approximated by the following 

schemes: 
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1, 1,

2
i j i ju

x

  



 and , 1 , 1

2
i j i jv

y

  



. (51) 

By using Eq. (49), the solution to the HJ equation (48) can be updated by Gauss-Seidel iterations with the 

following four alternating direction sweepings (Zhang et al., 2006): 

(1) 1: , 1:i I j J  ;  

(2) :1, 1:i I j J  ;  

(3) :1, :1i I j J  ;  

(4) 1: , :1i I j J  .  

The first-order Lax-Friedrichs sweeping method for general static HJ equation (48) can be summarized as 

follows: 

Step 0: Initialization. According to the boundary condition ( , ) ( , ), ( , )x y x y x y    , assign an exact 

value at each grid point of h , i.e., , , , ( , )i j i j hi j    , initialize the values at other grid points 

of \h h  , set , , , ( , )old
i j i j hi j    , and set the convergence tolerance 0  .  

Step 1: Sweeping following the direction 1: , 1:i I j J  . 

Step 1.1: Initialize 1i  , 1j  . 

Step 1.2: Update ,
new
i j  by Eq. (49), and then set , ,

new
i j i j  . 

Step 1.3: If i I  and j J , then go to Step 2; if j J , then 1i i  , 1j  , and go to Step 1.2; 

otherwise, 1j j   and go to Step 1.2. 

Step 2: Sweeping following the direction :1, 1:i I j J  . 

Step 2.1: Initialize i I , 1j  . 

Step 2.2: Update ,
new
i j  by Eq. (49), and then set , ,

new
i j i j  . 

Step 2.3: If 1i   and j J , then go to Step 3; if j J , then 1i i  , 1j  , and go to Step 2.2; 

otherwise, 1j j   and go to Step 2.2. 

Step 3: Sweeping following the direction :1, :1i I j J  . 

Step 3.1: Initialize i I , j J . 

Step 3.2: Update ,
new
i j  by Eq. (49), and then set , ,

new
i j i j  . 

Step 3.3: If 1i   and 1j  , then go to Step 4; if 1j  , then 1i i  , j I , and go to Step 3.2; 

otherwise, 1j j   and go to Step 3.2. 

Step 4: Sweeping following the direction 1: , :1i I j J  . 

Step 4.1: Initialize 1i  , j J . 

Step 4.2: Update ,
new
i j  by Eq. (49), and then set , ,

new
i j i j  . 

Step 4.3: If i I  and 1j  , then go to Step 5; if 1j  , then 1i i  , j I , and go to Step 4.2; 

otherwise, 1j j   and go to Step 4.2. 

Step 5: Convergence checking. If ( , ) , ,max | |
h

new old
i j i j i j     , then stop the algorithm; otherwise, set 

, , , ( , )old
i j i j hi j     and go to Step 1. 
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4.1.2. An application of Lax-Friedrichs scheme for solving the proposed HJ equations 

The preceding Lax-Friedrichs scheme is general and can be used to solve any static HJ equation. To solve 

HJ equation (15), we set ( , ) ( , )kx y x y  , 2 2( , ) | |k
x y x yH         , 1( , ) ( , )kg x y c x y  , 

0 ( , ) ( , )kx y x y  ,   , and    . Hence, we have 

1 2 2
( , )

u
H u v

u v



 and 2 2 2

( , )
v

H u v
u v




. (52) 

HJ equation (29) can be solved by a similar Lax-Friedrichs scheme for solving HJ equation (15).  

To solve HJ equation (21), we set ( , ) ( , )mx y P x y  , ( , ) ( , ) ( , )m m
x yH P x y x y     n , 

( , ) ( , )mg x y x y , 0 ( , ) ( , )mx y P x y  ,   , and    . Let ( , )m x y  be the angle between the 

direction of the movement of occupied taxis to the m-th CBD and the x-axis at location (x, y) during interval 

 , and hence we have ( , ) (cos ( , ), sin ( , ))m m mx y x y x y   n . According to (52), we have 

1( , ) cos ( , )mH u v x y  and 2 ( , ) sin ( , )mH u v x y . HJ equation (22) can be solved by a similar 

Lax-Friedrichs scheme for solving HJ equation (21). 

4.2. The Lax-Friedrichs scheme used to solve the CLs 

4.2.1. The Lax-Friedrichs scheme for the flow conservation laws of private cars and occupied taxis 

Before solving the proposed CLs, we solve the HJ equations to obtain the flow directions of private cars 
and occupied taxis. Hence, the flow directions are assumed to be known beforehand when solving the 

proposed CLs of private cars and occupied taxis. Let ( )k
ij tn  be the flow direction of the k-th type of vehicle 

at grid point (i, j) at time t, and ( )k
ij t  be the corresponding angle of the flow direction ( )k

ij tn . By definition, 

we have ( ) ( , ),k k
ij i it x y t T   n n and hence we have ( ) (cos ( ),sin ( ))k k k

ij ij ijt t t n , where ( , )i ix y  is 

the center of grid point (i, j). Let , ( )k
i j t  be the numerical solution of ( , , )k x y t  at grid point (i, j) at time t. 

Let , , ,( ) ( ( ), ( ))k k k
i j i j i jt f t g tf  be the flow of the k-th type of vehicle at grid point (i, j) at time t, where 

, ( )k
i jf t  and , ( )k

i jg t  are the flows of the k-th type of vehicle in the x- and y-directions at grid point (i, j) at 

time t, respectively. According to Eq. (34), we have  

, , ,( ) ( ) ( ) cos ( )k k k
i j i j i j ijf t t V t t    and  (53) 

, , ,( ) ( ) ( )sin ( )k k k
i j i j i j ijg t t V t t   ,  (54) 

where , ( )i jV t  is the speed of all vehicle flows at grid point (i, j) at time t. According to Eq. (1), , ( )i jV t  is a 

function of the vehicle density , ( )k
i j t , and hence both , ( )k

i jf t  and , ( )k
i jg t  are functions of , ( )k

i j t . 

The following scheme can be used to update the density of private cars and occupied taxis: 

   1 1 1 1
2 2 2 2

, , ,, , , ,
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k

i j i j i ji j i j i j i j

t t
t t t f t f t g t g t q t t

x y
     

 
       

 
, (55) 
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where t  is the time step for updating vehicle density, , ( )k
i jq t  is the given demand of the k-th type of 

vehicle at grid point (i, j) at time t, and 1
2,

ˆ ( )k
i j

f t  and 1
2,

ˆ ( )k
i j

g t  are the numerical fluxes of the k-th type of 

vehicle in the x- and y-directions at time t, respectively. 
Following Du et al. (2013), we use the Lax-Friedrichs flux, which is a monotone flux: 

 1
2

1
, 1, 1, ,2,

ˆ ( ) ( ) ( ) ( ) ( ) ( )k k k k k k
i j i j f i j i ji j

f t f t f t t t t   
      , and (56) 

 1
2

1
, , 1 , 1 ,2,

ˆ ( ) ( ) ( ) ( ) ( ) ( )k k k k k k
i j i j g i j i ji j

g t g t g t t t t   
      , (57) 

where  

,

( , )
,

( )
( ) max

( )h

k
i jk

f ki j
i j

f t
t

t








 and   

,

( , )
,

( )
( ) max

( )h

k
i jk

g ki j
i j

g t
t

t








.  

4.2.2. The Lax-Friedrichs scheme for the flow conservation laws of vacant taxis and customers 

Let 0
, ( )i jh t  be the number of vacant taxis arriving at grid point (i, j) during [ , ]t t t  . The following 

scheme can be used to update 0
, ( )i jh t : 

   1 1 1 1
2 2 2 2

0 0 0 0 0
, , , , ,

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i j i j i j i j i j

t t
h t f t f t g t g t

x y   

 
    

 
, (58) 

where 1
2

0
,

ˆ ( )
i j

f t  and 1
2

0
,

ˆ ( )
i j

g t  are the numerical fluxes of vacant taxis in the x- and y-directions at time t, 

respectively. Similar Lax-Friedrichs schemes as in Eqs. (56) and (57) can be used to compute them. 

The following scheme can be used to update the densities of vacant taxis and customers: 

0 0
, , , ,

0
, 0 0

, , , ,

0,  if ( ) ( ) ( ( ) ( ) ),

( )
( ) ( ) ( ( ) ( ) ),  otherwise,

m m
i j i j i j i j

m M
i j m m

i j i j i j i j
m M

t h t t q t t

t t
t h t t q t t

 


 




    
   

   






 

 
 and (59) 
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 (60) 

where , ( )m
i j t  and , ( )m

i jq t  are respectively the customer density and customer demand at grid point (i, j) at 

time t. Note that if vacant taxis did not pick up customers during ( , ]t t t , then , ,( ( ) ( ) )m m
i j i jm M

t q t t


     

would be the density of customers at grid point (i, j) at t t  , and 0 0
, ,( ) ( )i j i jt h t   would be the density of 

vacant taxis at grid point (i, j) at t t  . Because we assume that customers are immediately picked up by 
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vacant taxis when they meet, either the density of vacant taxis or the density of customers at a given location 

is zero. Therefore, the density of vacant taxis at grid point (i, j) at t t   is zero if 

0 0
, , , ,( ) ( ) ( ( ) ( ) );m m

i j i j i j i jm M
t h t t q t t 


       otherwise, the density of customers at grid point (i, j) at 

t t   is zero. However, we don’t know beforehand that either , ( )m
i j t  or 0

, ( )i j t ) is zero. 

 

4.3. The overall procedure for solving the taxi traffic assignment problem 

The overall solution algorithm for solving the proposed DTTA model can be stated as follows: 

Step 1: Initialization. Initialize the probability of success for all cells, and the densities of private cars, 

occupied taxis, vacant taxis, and customers. Set the number of search decisions anticipated 0L  , the 

tolerance 0  , 0t  , 0t  , and the time interval 0  . 

Step 2: Determining traffic flow directions.  

Step 2.1: Use the Lax-Friedrichs sweeping method to solve HJ equation (15) and obtain the flow 

directions of occupied taxis and private cars by Eq. (11). 

Step 2.2: Substitute the obtained flow directions of occupied taxis to HJ equations (21) and (22). Then, 

use the Lax-Friedrichs sweeping method to solve the two HJ equations and obtain the fare of a 

taxi ride and the occupied travel time. 

Step 2.3: Use the intervening opportunity model to determine the EROR for vacant taxis associated with 

each cell according to Eq. (23), and determine the set of target cells according to Eq. (27). 

Step 2.4: Determine the flow directions of vacant taxis in target cells according to Eq. (28). 

Step 2.5: Use the Lax-Friedrichs sweeping method to solve HJ equation (29) and obtain the flow 

directions of vacant taxis in non-target cells by Eq. (30). 

Step 3: Updating density according to the CLs. 

Step 3.1: Update traffic flows according to Eqs. (34) and (35). 

Step 3.1: Use Lax-Friedrichs scheme (55) to solve CL (39), and update the densities of occupied taxis 

and private cars at time t t  . 

Step 3.2: Use Lax-Friedrichs schemes (59) and (60) to solve CLs (44) and (46), and update the densities 

of vacant taxis and customers at time t t  . 

Step 2.5: Update occupied taxi demands by Eqs. (45) and (47). 

Step 4: Stop checking. If t T , then stop; if t T , t t t   , 1    and go to Step 2; otherwise, 

t t t    and go to Step 3. 

In Step 2, the proposed HJ equations were solved to obtain traffic flow directions. For the first iteration 

(i.e., 1  ), beside the boundary grid points with predetermined trial values, large values were used as the 

initial trial values at all other grid points. After that, the solution to the HJ equations of interval   was used 
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as the initial solution to the HJ equations of interval 1  . The CL part of the proposed DTTA model was 

solved in Step 3 to update the density of each type of vehicle at each grid in the region. 

5. Numerical examples and case study 

To demonstrate the properties of the proposed model, the performance of the proposed algorithm, and the 

significance of using our proposed methodology for network performance prediction, we present three 

numerical examples and a case study in this section. In Section 5.1, we illustrate the intervening opportunity 

customer-search behavior of vacant taxi drivers captured by our methodology using a numerical example with 

a single CBD, and show that the results obtained are consistent with our expectation. In Section 5.2, we give a 

numerical example with two CBDs to highlight more basic features of the studied problem that has not been 

discussed in the literature so far. In particular, this section demonstrates the temporal and spatial variations of 

system performance, the effects of different parameter values on average customer waiting time, the effect of 

traffic congestion mainly due to private cars on taxi customer-search efficiency, and the effect of customer 

demand to CBDs on the average travel time of private cars. In Section 5.3, we give a numerical example with 

five CBDs. This example illustrates the computation performance under various information update durations, 

which has important implications for online applications. In Section 5.4, we present a case study of Hong 

Kong Island to illustrate the better performance of the proposed DTTA model than the pure DTTA model, in 

which the private car DTA is given. This case study confirms the necessity of simultaneously modeling taxi 

and car movements for estimating network performance more accurately. All experiments were run on a 

computer with an Intel (R) Core(TM) 2 Quad Q9550 2.83GHz CPU and a 3.5GB RAM. 

5.1. Single CBD 

5.1.1. Problem setting 

As shown in Fig. 3, we consider a rectangular domain that is 30 km long and 24 km wide. A single CBD is 

located at the center (15 km, 12 km) of the modeling domain. The following flow-density relationship is 

adopted (Du et al., 2013): 

 2( , , ) ( , ) exp ( , ) ( , , ) , ( , ) ,fV x y t V x y x y x y t x y t T      , (61) 

where ( , )x y  is a positive scalar related to the road condition, and ( , )fV x y is the
,
free-flow speed of 

vehicles at location (x, y). We set 6( , ) 2 10x y   km4/veh2 and the free-flow speed is given as follows: 

max( , ) [1 ( , )]fV x y V d x y  , (62) 

where max 56V  km/h is the maximum speed, 34 10   km-1, ( , )d x y  is the distance from location (x, y) 

to the center of the CBD. Travelers’ value of time is 90   $/h. The disutility function of congestion is 
7 2( ) 9.0 10     (in $). The mileage and delay-based charges to a taxi customer are 1 3   $/km and 
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2 60   $/h, respectively (Wong et al., 2008). The critical speed for the delay-based charge to a taxi 

customer is 12V   km/h. We use uniform mesh grids with 0.2x y     km. Each grid also represents 

one cell. The numerical boundary conditions for solving the HJ equations are summarized as follows: 

 At the solid wall boundaries, i.e., the outer boundary of the city and the boundary of the obstruction, we 

let the normal numerical flux be 0. In the HJ equations, the numerical boundary values of   are 

obtained by extrapolation, and we set   = 104 at the ghost points (i.e., the points on the boundaries). 

 At the boundary of the compact CBD, we set   = 0.  

In this example, we have two scenarios to illustrate the intervening opportunity customer-search behavior 

of vacant taxi drivers: 

 Scenario 1: All cells have a uniform probability of success at the initial time, which is denoted as p. 

(This can be achieved when both customer demand and initial vacant taxi distributions are uniform over 

the modeling region.) 

 Scenario 2: Only the cells in the sub-area (from 7 km to 10 km in both directions) shown in Fig. 3 have a 

uniform probability of success at the initial time. 

5.1.2. Scenario 1: Uniform initial probability of success  

We set different initial probabilities of success in this scenario and different values for the number of 

customer-search decisions anticipated (L) and solved the proposed HJ equations and the proposed cell-based 

opportunity customer-search model for   = 0. Fig. 4 illustrates the expected occupied travel time, the 

expected vacant search time, the cumulative profit, and the EROR of vacant taxi drivers at location (23 km, 6 

km) under different values of L and various probabilities of success. We can observe from the figure that the 

expected occupied travel time, the expected vacant search time, and the cumulative profit of vacant taxis 

increase as the value of L increases. This result is consistent with the non-decreasing property of the three 

indices. One can also observe that the EROR has a quick drop when the value of L is small, and has a very 

slow increase when the value of L is large. This is because vacant taxi search time has been underestimated 

when the value of L is small, and the EROR is about steady due to a slow increase in the expected occupied 

travel time, the expected vacant search time, and the cumulative profit when the value of L is large. The 

results presented in Fig. 4 also show that a lower probability of success leads to lower expected occupied 

travel time, cumulative profit, and EROR, but more expected vacant search time. This result is consistent with 

our common sense. 

We set a uniform probability of success of 0.1 for all cells and set L = 15. Fig. 5 provides the expected 

occupied travel time, the expected vacant search time, the cumulative profit, and the EROR for the whole 

modeling domain. Fig. 6 shows the expected occupied travel time, the expected vacant search time, the 

cumulative profit, and the EROR at y = 10 km. We can observe from the two figures that the expected 
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occupied travel time, the cumulative profit, and the EROR are increasing from the CBD. This is because taxi 

occupied travel time and profit are mainly determined by the distance of a ride. A farther ride leads to more 

occupied travel time and more profit. However, the travel speed of vehicles nearby the CBD is low and the 

free flow speed is increasing from the CBD, and this leads to a low EROR of vacant taxi drivers nearby the 

CBD and the EROR is increasing from the CBD. On the contrary, the expected vacant search time slightly 

decreases from the CBD. This is also because the low vehicle speed nearby the CBD leads to the long 

customer-search time of vacant taxi drivers there. 

5.1.3. Scenario 2: Non-uniform initial probability of success  

In this scenario, we set a uniform probability of success of 0.1 for all cells in the sub-area indicated in Fig. 

3. The probability of success outside the sub-area is zero. Fig. 7 provides the expected occupied travel time 

and the expected vacant search time when L = 15. We can observe from the figure that the expected occupied 

travel time decreases from the sub-area while the expected vacant search time increases from the sub-area. 

This is because vacant taxi drivers in the sub-area have a higher probability to meet a customer and hence 

have less expected vacant search time and more expected occupied travel time. Fig. 8 provides the EROR of 

each cell when L takes different values. We can observe from the figure that the EROR decreases from the 

sub-area outwards. Because vacant taxi drivers’ local search direction follows the principle of maximizing the 

EROR, vacant taxi drivers outside the sub-area select local search directions towards the sub-area. When 

vacant taxi drivers outside the sub-area can meet a customer in the sub-area after making enough search 

decisions, they have a positive EROR associated with their current position. However, the farther vacant taxi 

drivers are from the sub-area, more search decisions are made to meet a customer in the sub-area and thus the 

lower is their EROR.  Fig. 8 also shows that the area with a positive EROR enlarges as the value of L 

increases, because vacant taxi drivers are expected to make more search decisions before meeting a customer 

in the sub-area. 

5.2. Two CBDs with a single obstruction 

5.2.1. Problem setting 

As shown in Fig. 9, we consider a rectangular computational domain with two CBDs and one lake. The 

center of CBD 1 is located at (8 km, 12 km). The center of CBD 2 is located at (22 km, 12 km). The lake is 

located at (15 km, 12 km). The modeling period is 5 h. We assume that there is no traffic at the beginning of 

the modeling period, and that no additional cost is incurred by entering the CBDs. The traffic demand 

functions for private cars and taxi customers are respectively defined as follows: 

max 1( , , ) [1 ( , )] ( ),m C
mq x y t q d x y g t   and  (63) 

max( , , ) ( ),m TCq x y t q g t   (64) 
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where max 120Cq   veh/km2/h and max 30TCq   person/km2/h are the maximum demands of private cars and 

taxi customers, respectively. 1
1 0.01 km  , which is a positive scalar. ( , )md x y  is the distance from 

location (x, y) to the center of the m-th CBD. ( )g t  is a non-negative and time-varying function defined as 

follows: 

,                             [0,1],

1,                             [1,2],

( ) 0.8( 3) 0.2     [2,3],

0.2,                         [3, 4],

0,                            [4,5].

t t

t

g t t t

t

t


     
 



 (65) 

In this example, the speed-density function (61) is also used, in which 6( , ) 2 10x y   km4/veh2, and 

the free-flow speed is given as follows: 

max( , ) [1 min { ( , )}]f m mV x y V d x y  , (66) 

where max 56V   km/h and 34 10    km-1. 

The average times for a customer to get off and get on a taxi are, respectively, 1 60t  s and 2 30t  s. 

The time step for updating vehicle density is 1t  s. Unless otherwise specified, the length of information 

time 120   s (i.e., 2 min), the number of search decisions anticipated 15L  , and the tolerance 

0.4  .Initially, the densities of both private cars and occupied taxis are zero, the vacant taxis are uniformly 

distributed in the whole modeling region, the density of vacant taxis is 25 veh/km2, and all cells have the same 

probability of success. Other parameter values are the same as those in Section 5.1. 

5.2.2. The temporal and spatial variations of the system performance  

Using the proposed model, we can obtain the cumulative car demand of the whole modeling domain up to 

time t ( ( )Q t ) and the cumulative number of cars that enter the two CBDs up to time t ( ( )CBDF t ) as follows, 

respectively: 

0
( ) ( , , )

t m

m M

Q t q x y w dxdydw




    , and  

0
( ) ( , , ) ( , , )

m
c

t M m M m
CBD

m M

F t x y w x y w dsdw 




    f n .  

The cumulative customer demand of the whole modeling domain up to time t ( ( )Q t ), and the cumulative 

number of customers picked up by taxis and arrived at the CBDs up to time t ( ( )pickedF t  and ( )CBDF t ) can 

be formulated as follows: 

0
( ) ( , , )

t m

m M

Q t q x y w dxdydw




     ,   

20
( ) ( , , )

t m
picked

m M

F t q x y w t dxdydw




     , and  
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0
( ) ( , , ) ( , , )

m
c

t m m
CBD

m M

F t x y w x y w dsdw




    f n  .  

By changing the value of t, the above cumulative values for the whole study period can be obtained.  

Fig. 10(a) shows the cumulative car demand of the whole modeling domain and the cumulative number of 

cars that enter the two CBDs over the studied period. We can see that the two curves overlap and remain flat 

after t = 4.51 h, which demonstrates that all of the private cars have entered the CBD by that time. Fig. 10(b) 

shows the cumulative customer demand of the whole modeling domain and the cumulative number of 

customers picked up by taxis and arrived at the CBDs. We can also see that the three curves overlap and 

remain stable at t = 4.54 h, which demonstrates that all of the customers have been picked up by taxis and 

arrived at the CBD by that time. 

Fig. 11 shows the average speed, the EROR, and the probability of success of the modeling region. We 

can observe from the figure that the average speed initially decreases due to the growth of traffic demand. 

Although the traffic demand starts to decrease from t = 2 h, the average speed continues to decrease until t = 

2.5 h. This is because the regions around the CBDs are still congested. As the demand of private cars 

decreases further, the average speed grows up. Different from the average speed, the average probability of 

success increases with an increasing customer demand and decreases with a decreasing customer demand, and 

decreases to zero at t = 4.06 h due to no customer demand after t = 4 h. The average EROR increases quickly 

at the beginning due to the growth of average probability of success, and then drops due to the increase in 

network congestion (i.e., decrease in average speed). After t = 2.5 h, as the average speed increases, the 

average EROR grows up again for the following 0.5 h and then decreases because of the decreasing customer 

demand. As the average probability of success drops to zero, the average EROR also drops to zero. 

To illustrate the distributions of and changes in congestion of the modeling domain, we graphically show 

the temporal and spatial distributions of the density of private cars within the modeling region in Fig. 12. We 

can observe that the density of private cars is low at the beginning and the traffic is in the non-congested state 

(see Fig. 12(a)). As the traffic demand grows, the areas around the CBD boundaries become congested (see 

Figs. 12(b) and 12(c)). Although the demand of private cars starts to decrease since t = 2 h, the areas around 

the CBDs are still in the congested state at t = 2.5 h (Fig. 12(d)). As the demand of private cars decreases 

further, all parts of the city return to the non-congested state (Figs. 12(e) and (f)). Finally, all of the private 

cars have entered the CBDs and there is no private cars in the city at t = 5 h. 

Fig. 13 shows the temporal and spatial distributions of the probability of success for taxi customer-search 

within the modeling region. We can observe that the areas with a high probability of success are small at the 

beginning due to low customer demand (see Fig. 13(a)). As the customer demand grows, the areas with a high 

probability of success increase (see Figs. 13(b) and (c)) until t = 2 h (see Fig. 11). As the customer demand 

decreases, the areas with a high probability of success also decrease (Figs. 13(d), (e), and (f)). Finally, all 

customers have arrived at the CBDs and the probability of success of each cell decreases to zero at t = 4.06 h. 



27 
 

Fig. 14 shows the temporal and spatial distributions of the EROR for taxi customer-search within the 

modeling region. We can observe that the EROR is low from t = 1.5 h to 2.5 h for the areas around the CBDs 

(see Figs. 14(b), (c), and (d)) due to high congestion in those areas (see Fig. 12(b), (c), and (d)). Before and 

after this period, the vacant taxi drivers have a higher EROR (see Figs. 14(a), (e), and (f)).  

5.2.3. The effect of the number of search decisions anticipated 

The number of search decisions anticipated L is an important parameter in the intervening opportunity 

model (Wong et al. 2014a). We solved the proposed DTTA model with different values of L. Using the 

proposed model, we can obtain the average customer waiting time as follows: 

20 0 0

0

( ) ( ) [ ( , , ) ( , , )]

( ) ( , , )

T T t m m
picked

m M m M
T m

m M

Q t F t dt q x y w q x y w t dxdydwdt
W

Q T q x y t dxdydt


 




     
 
    

  

  


 
,  

where the numerator on the rightmost hand side of the above equation is the total customer waiting time over 

the whole modeling domain and the studied period, and the denominator is the total number of customers 

generated over the whole modeling domain and the studied period. 

The average customer waiting time against L is shown in Fig. 15. It can be seen that the average customer 

waiting time drops firstly and has an increasing tendency later as L grows up, and that there is an optimal 

value of L. This implies that the value of L has to be calibrated carefully to estimate the waiting time 

accurately. 

5.2.4. The effect of the tolerance 

We solved the proposed DTTA model with different values of tolerance   and graphically show the 

average customer waiting time against   in Fig. 16. From this figure, we can observe that the average 

customer waiting time drops firstly and increases later as   grows up, and the average customer waiting 

time has a minimum value at 0.4  . An explanation for the result presented in Fig. 16 is that when   is 

too small, vacant taxi drivers tend to search for customers in limited areas (with a very high EROR) and get 

together, and this leads to low search efficiency. In contrast, when   is too large, the vacant taxi drivers 

mainly search for customers locally (i.e., in adjacent areas) without considering cells with a high EROR due to 

high customer demand. 

5.2.5. The effect of the length of information update interval 

We set different lengths of information update interval, and solved the proposed DTTA model. The 

average travel time of private cars and the average customer waiting time are graphically shown in Fig. 17. 

We can see that shortening information update interval can effectively improve traffic mobility as measured 
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by the average travel time of private cars and taxi customer-search efficiency as measured by the average 

customer waiting time. 

5.2.6. The effect of traffic congestion 

We set different values of the maximum demand of private cars, and solved the proposed DTTA model. 

The average travel time of private cars and the average customer waiting time are graphically shown in Fig. 

18. We can see that the average travel time of private cars increases with the demand, because the system is 

more congested when the demand is higher. Moreover, higher private car demand leads to a more significant 

increase in the search time, and hence lower taxi customer-search efficiency, due to a more congested 

network. 

5.2.7. The effect of customer demand 

We set different values of the maximum demand of customers, and solved the proposed DTTA model. The 

average travel time of private cars and the average customer waiting time are graphically shown in Fig. 19. 

We can see that the average travel time of private cars slightly increases when customer demand grows up. 

This is because higher customer demand leads to more (occupied and vacant) taxis traveling around the CBDs 

and more serious traffic congestion around those areas. We can also observe from the figure that the average 

customer waiting time increases quickly when customer demand grows up. 

5.3. Five CBDs 

As shown in Fig. 20, we consider a rectangular computational domain with five CBDs. The centers of 

CBDs are located at (6 km, 5 km), (8 km, 15 km), (13 km, 10 km), (20 km, 19 km), and (23 km, 8 km). The 

modeling period is 5 h. The traffic demand functions for private cars and taxi customers respectively follow 

Eqs. (63) and (64), where max 36Cq   veh/km2/h and max 12TCq   person/km2/h. Other parameter values are 

the same as those in Section 5.2. 

We varied the length of information time from 0.5 min to 5 min, and solved the proposed taxi traffic 

assignment model. The CPU times for solving the whole problem, and the total CPU times, respectively, for 

solving the HJ part and the CL part of the whole problem for all intervals are graphically shown in Fig. 21. We 

can observe that a shorter information update interval can lead to longer CPU times for solving the whole 

problem and the HJ part, while the total CPU time for solving the CL part basically remains unchanged. This 

implies that most CPU time is spent on solving the HJ part of the DTTA model (i.e., updating the flow 

direction of each type of vehicle) if we shorten information update interval. Fig. 22 shows the number of 

intervals in the modeling period and the CPU times for solving the HJ part of the proposed model for one time 

interval when the length of information update interval increases. We can observe that the number of intervals 

decreases with the increase in the length of information update interval. However, the CPU time for solving 
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the HJ part for one time interval increases with an increasing length of information update interval. This is 

because when the length of information update interval is small, the traffic flow state changes slightly, the 

initial solution of the HJ equations is closer to the optimal solution, and less CPU time is required to solve the 

HJ equations. 

The CPU time is an important consideration for online applications. Fig. 23 plots the maximum CPU time 

for solving the whole problem for one interval and the ratio of the maximum CPU time to the length of 

information update interval against the length of information update interval. We can observe that the 

maximum computation time for solving the whole problem for one interval is much less than the length of 

information update, which implies that it satisfies the requirement for online applications.  

 

5.4. A case study of Hong Kong Island 

Hong Kong Island is considered in this case study. It is an island in the southern part of Hong Kong with 

the size of approximately 80 km2. The population and employment are heavily concentrated along its northern 

shore. We identify nine major districts in Hong Kong Island as shown in Fig. 24. The modeling domain is 11.4 

km long and 14.8 km wide. We use uniform mesh grids with 0.2x y     km.  

In this case study, the survey data were collected from GPS devices previously installed in 460 urban taxis 

that tracked the taxi movements. By using satellite communication, the database recorded the taxis’ location in 

terms of longitude and latitude, travel speeds, and occupational statuses at 30 seconds intervals. Hong Kong 

has 15,250 licensed urban taxis. The sample of 460 urban taxis represents approximately 3% of the taxi 

population which offer an adequate sample size to deduce the taxi movements. The GPS survey data was 

collected in two weeks starting from 16 to 30 August 2009 inclusively between 7:00 am and 9:30 am. We 

extracted the initial distribution of taxis at 7:00am and their associated occupational statuses, and the 

origin-destination demand of taxi customers in 15 minutes intervals based on the occupied taxi trips. An 

expansion factor of 2.37 (=15,250/460/14) was applied to each observation for the total numbers of taxis and 

customer demand on Hong Kong Island during our concerned period. 

At 7:00 am, 394 occupied taxis and 2162 vacant taxis were identified in Hong Kong Island, and 18,042 

taxi customers traveled by taxis between 7:00 am and 9:30 am. Based on Travel Characteristics Survey 2011 

commissioned by the Hong Kong Transport Department of The Hong Kong Special Administrative Region 

Government, the total demand of private cars was estimated to be 55,124 during the modeling horizon.  

The traffic demand function for private cars is defined as follows: 

max( , , ) ( , ) ( ),m Cq x y t q x y g t   (67) 

where max ( , )Cq x y  is the maximum demand of private cars at location (x, y), and 
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2( 7),    [7,7.5),

1,              [7.5,8.5),
( )

9.5 ,      [8.5,9.5),

0,              otherwise.

t t

t
g t

t t

 
    


 (68) 

According to the calibration by Peng (2013), the Pipes-Munjal and Drake models have the best 

performance in terms of fitting the MFDs for Sai Ying Pun and Causeway Bay, respectively, and the 

Underwood model has the best performance in terms of fitting the MFDs for other areas of Hong Kong Island. 

The MFDs in terms of the speed-density relationship of the Underwood, Drake, and Pipes-Munjal models are 

given as follows, respectively: 

 ( , , ) ( , ) exp ( , , ) / ( , )f cV x y t V x y x y t x y   ,   

 ( , , ) ( , )exp 1 ( , , ) / ( , )f cV x y t V x y x y t x y   , and   

 21
2( , , ) ( , ) exp ( ( , , ) / ( , ))f cV x y t V x y x y t x y   ,  

where ( , )c x y  is the critical density at location (x, y). The two parameters, ( , )fV x y  and ( , )c x y , for 

each area of Hong Kong Island are provided in Table 1. 

The other parameter values of the proposed DTTA model are the same as those in Sections 5.2 and 5.3. 

The proposed solution algorithm was adopted to solve the proposed DTTA problem in Hong Kong Island. To 

illustrate the distributions of and changes in congestion of the studied region, we graphically show the 

temporal and spatial distributions of the vehicular speed within the modeling region in Fig. 25. We can 

observe that Sheung Wan, Central, Wan Chai, and Causeway Bay are more congested than other areas in Hong 

Kong Island during the peak hour from 8:00 am - 9:00 am (see Figs. 25(a), (b) and (c)), and the studied area 

becomes non-congested at 9:30 am (see Fig. 25(d)). These results are consistent to our observation of the 

temporal and spatial distributions of congestion in Hong Kong Island. 

In the proposed DTTA model, private car and taxi movements are simultaneously modeled. To illustrate 

that it is important to model them simultaneously, we compared the results obtained by the proposed model 

and a pure DTTA model, in which the private car DTA is given, and real-time information from the private car 

DTA is used to describe the spatiotemporal characteristics of congestion. To have a fair comparison, we first 

determined the time-varying flow pattern of private cars using a private car DTA model without taxis, which is 

a special case of the proposed model, and then obtained the temporal and spatial distributions of speed of the 

whole network from the flow pattern. Afterwards, we solved the pure DTTA model, which is also a special 

case of our proposed model. The pure DTTA model let taxi drivers select their routes according to the 

spatiotemporal characteristics of congestion obtained from the private car DTA model without taxis, and the 

private car drivers directly follow their route choices determined by the private car DTA model without taxis. 

The performance of the two DTTA models is provided in Table 2. We can observe that, compared with using 
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the pure DTTA model, using proposed DTTA model can significantly improve the network performance in 

terms of reducing average travel time of private cars, and average customer waiting time, average customer 

in-vehicle travel time, and average customer total travel time (i.e., sum of the average customer in-vehicle and 

waiting times). This result implies that modeling of car and taxi movements should be taken part together. 

 

6. Conclusions 

We develop a two-level continuum transportation system approach to modeling a DTTA problem. In the 

proposed model, traffic density in the system is governed by the conservation law (CL), and the flow direction 

is determined by the following path-choice strategies: Each private car driver chooses the path that minimizes 

his/her own generalized travel cost; each occupied taxi driver chooses the path that minimizes his/her 

customer’s generalized in-vehicle travel cost, and each vacant taxi driver has a mixed strategy to determine 

his/her customer-search direction according to the expected rate of return (EROR). An intervening opportunity 

model is proposed to estimate the EROR of vacant taxi drivers during their customer-search. HJ equations are 

developed to capture the path choice of different drivers. Both the proposed CL and HJ equations were solved 

by the Lax-Friedrichs scheme, which forms the backbone of the developed algorithm. Numerical examples 

and a case study are presented to demonstrate the properties of the model, the computation performance of the 

solution algorithm, and the significance of using our methodology for estimating network performance more 

accurately. The results show that a more congested system leads to a higher customer search time. The results 

also show that shortening information update interval can effectively improve traffic mobility as measured by 

the average travel time of private cars and taxi customer-search efficiency as measured by the average 

customer waiting time, but lead to a longer CPU time for solving the whole problem. 
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Table 1. Parameters of the MFD of each of the areas associated with the nine CBDs. 

CBD Model type ( , )fV x y (km/h) ( , )c x y (veh/km2) 

Sai Ying Pun Pipes-Munjal 31.1 754 

Sheung Wan Underwood 35.8 709 

Central Underwood 37.3 716 

Wan Chai Underwood 28 1041 

Causeway Bay Drake 29.4 411 

Happy Valley Underwood 43.6 433 

Tai Koo Underwood 49.1 822 

Shau Kei Wan Underwood 38.2 672 

Chai Wan Underwood 36.4 501 

 

Table 2. Comparison of the performance of two DTTA models. 

Performance Pure DTTA model 

(min) 

Proposed DTTA model 

(min) 

Decrease (%) 

Average travel time of private cars 17.34 15.23 12.15 

Average customer waiting time 21.58 15.64 27.53 

Average customer in-vehicle travel 

time 
15.44 14.57 5.62 

Average customer total travel time 37.02 30.21 18.39 
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Fig. 1. The modeling domain. 
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Fig. 2. Customer-search boundaries for different numbers of search decisions anticipated. 

 

 
Fig. 3. The modeling domain with a single CBD. 

  



39 
 

 

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

 sz

 = 0.05

 sz

 = 0.10

 sz

  = 0.15

C
um

ul
at

iv
e 

oc
cu

pi
ed

 tr
av

el
 ti

m
e 

(h
)

Number of search decisions anticipated

(a)

 

0 10 20 30 40
0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
um

ul
at

iv
e 

va
ca

nt
 s

ea
rc

h 
tim

e 
(h

)

Number of search decisions anticipated

(b)

 

0 10 20 30 40
0

5

10

15

20

25

30

35

C
um

ul
at

iv
e 

pr
of

it 
($

)

Number of search decisions anticipated

(c)

 

0 10 20 30 40
120

130

140

150

160

170

E
R

O
R

 (
$/

h)

Number of search decisions anticipated

(d)

  

Fig. 4. The expected occupied travel time, expected vacant search time, cumulative profit, and EROR of 

vacant taxi drivers located at (23 km, 6km) under different probabilities of success. 
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Fig. 5. The expected occupied travel time, expected vacant search time, cumulative profit, and EROR of 

vacant taxi drivers in each cell (p = 0.1 and L = 15). 

 

 
Fig. 6. The expected occupied travel time, expected vacant search time, cumulative profit, and EROR of 

vacant taxis at y = 10 km. 
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Fig. 7. Expected occupied travel time and expected vacant search time in Scenario 2. 
 

 
Fig. 8. The EROR of vacant taxi drivers in Scenario 2. 
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Fig. 9. The modeling domain with two CBDs and one lake. 

 

 

 

 
Fig. 10. The cumulative numbers of private cars and customers during the study period. 
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Fig. 11. The average speed, probability of success, and EROR of the whole modeling domain. 
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Fig. 12. The density of private cars. 
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Fig. 13. The probability of success. 
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Fig. 14. The expected rate of return. 
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Fig. 15. The influence of the number of search decisions anticipated on the average customer waiting time. 

 
Fig. 16. The influence of tolerance on the average customer waiting time. 

 

 

Fig. 17. The influence of the length of information update interval on the average travel time of private cars 

and the average customer waiting time. 
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Fig. 18. The influence of private car demand on the average travel time of private cars and the average 

customer waiting time. 

 

 

Fig. 19. The influence of customer demand on the average travel time of private cars and the average customer 

waiting time. 
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Fig. 20. The modeling domain with five CBDs. 

 

 
Fig. 21. The effect of length of information update interval on CPU time. 

 

 
Fig. 22. The effect of the length of information update interval on the number of intervals in the modeling 
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period and the average CPU time for solving HJ equations for one interval. 

 

Fig. 23. The effect of the length of information update interval on the maximum CPU time for solving the 

whole problem for one interval, and the ratio of the CPU time to the length of information update interval. 

 

 

 
Fig. 24. The modeling domain of Hong Kong Island. 
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Fig. 25. The speed distribution of the modeling domain in Hong Kong Island at four different time instants. 

 

 


