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Abstract 

This paper introduces a new dynamic green bike repositioning problem (DGBRP) that 

simultaneously minimizes the total unmet demand of the bike-sharing system and the fuel and 

CO2 emission cost of the repositioning vehicle over an operation period. The problem 

determines the route and the number of bikes loaded and unloaded at each visited node over a 

multi-period operation horizon during which the cycling demand at each node varies from 

time to time. To handle the dynamic nature of the problem, this study adopts a rolling horizon 

approach to break down the proposed problem into a set of stages, in which a static bike 

repositioning sub-problem is solved in each stage. An enhanced artificial bee colony (EABC) 

algorithm and a route truncation heuristic are jointly used to optimize the route design in each 

stage, and the loading and unloading heuristic is used to tackle the loading and unloading 

sub-problem along the route in a given stage. Numerical results show that the EABC 

algorithm outperforms Genetic Algorithm in solving the routing sub-problem. Computation 

experiments are performed to illustrate the effect of the stage duration on the two objective 

values, and the results show that longer stage duration increases total unmet demand and the 

total fuel and CO2 emission cost. Numerical studies are also performed to illustrate the effects 

of the weight and the loading and unloading times on the two objective values and the 

tradeoff between the two objectives. 

 

Keywords: green bike repositioning problem, dynamic bike repositioning problem, rolling 

horizon approach, artificial bee colony algorithm, vehicle emissions 

  



2 
 

1. Introduction 

Bike-sharing systems (BSSs) are evolving worldwide. They provide numerous advantages 

such as reducing the short-distance motorized trips, complementing public transport, and 

reducing the greenhouse gas emissions. These systems escalate bikes to become a convenient 

and efficient transport mode by offering an automatic rental use of bikes in all bike-sharing 

stations within a city and allowing the users to return the bikes in any stations. Due to the 

characteristics of the stations, such as altitude, proximity to the public transport stations, time 

of day, or the regions they sited, some stations have bike surpluses while some stations have 

bike deficits. With bike deficiency, some cyclists cannot rent bikes at those deficit stations, 

leading to unmet demand. Therefore, the BSS operators need to redistribute their bikes among 

stations regularly to minimize the demand dissatisfaction. This redistribution can be done by 

employing vehicles to pick up their bikes from bike surplus stations to bike deficient stations. 

The redistribution problem is currently known as a bike repositioning problem (BRP). 

 The aim of a BRP is to determine optimal truck routes and the loading/unloading 

activities of each truck at stations based on the design objective, subject to various constraints 

related to the repositioning vehicles, stations, and operational constraints. This problem is 

more complicated than the classical vehicle routing problem (VRP) and the classical traveling 

salesman problem (TSP) because the repositioning problem further requires determining the 

pick-up and drop-off quantities at each station (Ho & Szeto, 2014). 

 The unique problem setting of a BRP has attracted the interest of many researchers in 

recent years. Table 1 has summarized the BRP publications according to their operation types 

and design objectives. In terms of operation type, the problems can broadly be classified into 

two classes: static and dynamic. The static problem considers nighttime operations in which 

station demand variations are negligible, while the dynamic problem considers daytime 

operations and real-time station demand variations. As seen in Table 1, a large portion of 

studies focuses on static BRPs while very few studies have addressed on dynamic BRPs. The 

contrast in the number of publications is mainly due to the difficulty in handling the varying 

demand during the operation period. In dynamic BRPs, the routes need to be updated 

regularly to resolve the demand variations arisen from time to time. Table 1 also illustrates 

that the existing studies adopt various objectives, such as minimizing vehicle travel time or 

cost (e.g., Benchimol et al., 2011; Chemla et al., 2012; Lin & Chou, 2012), minimizing total 
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unmet demand (e.g., Contardo et al., 2012; Szeto et al., 2016), minimizing maximum tour 

length (Schuijbroek et al., 2017), minimizing the sum of travel and handling costs (Erdoğan et 

al., 2014), minimizing total relocation and lost user cost (e.g., Caggiani & Ottomanelli, 2012), 

and minimizing a weighted sum of total travel time, the total absolute deviation from perfect 

balance at each station, and the total number of loading and unloading quantities (e.g., Raidl 

et al., 2013; Rainer-Harbach et al., 2013, 2015). From these reviewed papers, the objective 

highlighted most is to minimize the total absolute deviation from perfect balance in public 

bike sharing systems, either by directly determining the number of bikes or indirectly in the 

form of penalty functions. Minimizing total unmet demand is a similar objective while it only 

focuses on bike deficits and neglects bike surpluses. These studies show that total unmet 

demand is a crucial indicator for the repositioning activity, but there are other important 

considerations for an optimal repositioning strategy. Specifically, Wiersma (2010) highlighted 

the threat of bike repositioning activities by vehicles to the environmental creditability of bike 

sharing systems, given that the bikes are generally relocated by fossil-fueled vehicles. 

Therefore, a repositioning plan that solely focuses on minimizing total unmet demand may 

result in long repositioning routes or heavy vehicle loads, which may adversely affect the 

environment by producing more air pollutants. However, to the best of our knowledge, no 

existing BRP studies have considered environmental needs (or green elements) in their design 

objectives.  

Table 1 Summary of the characteristics of BRPs in the existing studies 

Reference Type Objectives 

Benchimol et al. (2011) Static Minimize total travel time 

Caggiani & Ottomanelli (2012) Dynamic Minimize relocation and lost user cost 

Chemla et al. (2012) Static Minimize total travel cost 

Contardo et al. (2012) Dynamic Minimize total unmet demand 

Lin & Chou (2012) Static Minimize total transportation cost (time or distance) 

Chemla et al. (2013) Static Minimize total travel distance 

Di Gaspero et al. (2013) Static Minimize the weighted sum of total travel time and total 

absolute deviation from the target number of bikes 

Nair et al. (2013) Static Minimize total redistribution cost 

Raidl et al. (2013) Static Minimize the weighted sum of total absolute deviation 

from the target number of bikes, total number of 
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loading/unloading activities, and overall time required for 

all routes 

Rainer-Harbach et al. (2013) Static Minimize the weighted sum of total absolute deviation 

from the target number of bikes, total number of 

loading/unloading activities, and overall time required for 

all routes 

Raviv et al. (2013) Static Minimize the weighted sum of total travel time and 

penalty cost 

Schuijbroek et al. (2017) Static Minimize maximum tour length 

Erdoğan et al. (2014) Static Minimize travel and handling costs 

Ho & Szeto (2014) Static Total penalty cost 

Kloimüllner et al. (2014) Dynamic Minimize firstly unfulfilled demand and absolute 

deviation from the target fill level, and then total number 

of loading instructions and total drive time 

Forma et al. (2015) Static Minimize the weighted sum of the expected number of 

unserved users during the next working day and total 

travel distance 

Rainer-Harbach et al. (2015) Static Minimize the weighted sum of total absolute deviation 

from the target number of bikes, total number of 

loading/unloading activities, and overall time required for 

all routes 

Li et al. (2016) Static Minimize the sum of total vehicle travel cost, total 

unbalanced penalty costs for all bike types, total 

substitution penalty cost, and total occupancy penalty 

cost 

Szeto et al. (2016) Static Minimize the weighted sum of unmet customer demand 

and operational time 

Ho & Szeto (2017) Static Minimize the weighted sum of total travel time and 

penalty cost 

This study Dynamic Minimize the weighted sum of total unmet demand and 

total fuel and CO2 emission cost 

 As a first step to consider environmental objectives, this study proposes a new problem, 

referred to as a dynamic green bike repositioning problem (DGBRP). This problem considers 

total carbon dioxide (CO2) emission related cost as the environmental objective, which has 

been widely adopted in other types of green logistic problems (e.g., Demir et al., 2012; Koç et 

al., 2014), as CO2 is regarded as one of the most serious threats to the environment through 
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the greenhouse effect (Ericsson et al., 2006) and road transport, especially road freight 

transport, which constitutes a large portion of CO2 emissions (Jabali et al., 2012). As bike 

repositioning is also a logistical activity that heavily relies on fossil-fueled vehicles (Wiersma, 

2010), minimizing total CO2 emission related cost is a representative and significant 

environmental objective for the DGBRP. 

 With respect to the emission minimization objective, the DGBRP is similar to a 

pollution routing problem (PRP), in which the designated route should minimize the pollutant 

emissions. For a PRP, its design objective is to minimize emission cost, plus other costs if any; 

and the quantities of commodities delivered to each customer (or node) are known at the 

beginning of the operation. In other words, some routing problems that are not named as 

PRPs should be considered to be PRPs or their variants, given that they consider emission 

minimization (or fuel consumption minimization or the corresponding cost minimization) to 

be the sole objective or one of the objectives in their design problems, and the quantities 

delivered to each node are known at the beginning of the operation. Examples include 

eco-routing problems (e.g., Ericsson et al., 2006) and emission vehicle routing problems (e.g., 

Figliozzi, 2010; Kopfer et al., 2014). The proposed DGBRP, however, differs from the 

abovementioned problems in several ways. First, the pickup or drop-off locations are not 

given, and therefore any node (i.e., any station and the depot) can be a source or destination of 

bikes. Second, the pickup or drop-off quantity at each node is a decision variable and has an 

effect on the objective function value (i.e., total unmet demand and the total fuel and CO2 

emission cost). Third, the pickup or drop-off quantity at each node varies with respect to time. 

These three points distinguish the DGBRP from existing PRPs. 

 To measure the CO2 emissions or their cost, the conventional approach is to determine 

the vehicle emissions based on existing fuel consumption models as the emissions are directly 

proportional to the fuel consumption (Demir et al., 2012). As greenhouse gas emissions from 

transportation have received attention for a long while, there has been a wide range of fuel 

consumption and vehicle emission models in the literature. Demir et al. (2014) categorized 

fuel consumption (vehicle emission) models into three main groups with respect to data 

complexity: factor models, macroscopic models, and microscopic models. Factor models 

adopt simple fuel consumption methods, e.g., the distance-based method introduced in GHG 

Protocol (2013) and the emission factor calculation by DEFRA (2012), to convert fuel 
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consumption to vehicle emissions, and are particularly useful when the information of traffic 

flow and operation is insufficient. Due to the lower level of data complexity, factor models 

are adopted in some green logistic problems (e.g., Kopfer et al., 2014; Zhang et al., 2014). In 

macroscopic models, the fuel consumption is generally formulated as a function of average 

speed, which reflects the empirical findings that the fuel consumption rate varies with respect 

to speed (e.g., Demir et al., 2011) and is consistent with the vehicle emission literature (Szeto 

et al., 2012). Examples for popular macroscopic models include MEET 1 , COPERT 2 , 

MOVES3, and HBEFA4. In particular, COPERT is often used in some emission reduction 

projects, such as AMITRAN (AMITRAN, 2016), PRIMES (and also PRIMES-TREMOVE) 

(E3M Lab, 2014), EMEP/EEA air pollutant emission inventory guidebook 2016 (European 

Environment Authority, 2016), and ICT-emission (Vock et al., 2014). Microscopic models 

include more instantaneous kinematic or aggregated modal variables than the macroscopic 

models to predict fuel consumption and vehicle emissions more accurately. Readers can refer 

to the review by Demir et al. (2014) which listed 12 existing microscopic emission (fuel 

consumption) models and the attributes associated with the models. Among all microscopic 

models, CMEM5 (presented by Barth et al. (2005)) has been the most popular one used to 

determine fuel consumption or vehicle emissions in green logistic problems (e.g., Bektaş & 

Laporte, 2011; Jabali et al., 2012). Furthermore, as highlighted by Demir et al. (2014), simple 

factor models, MEET, COPERT, and CMEM are commonly adopted emission models in the 

existing green logistic studies. 

 In this DGBRP, we use the modified version of CMEM proposed by Demir et al. (2012) 

to determine the fuel consumption and hence the total fuel and CO2 emission cost associated 

with the vehicle instead of other models. There are five reasons behind our choice of this 

model: (1) it is a function of the payload of the vehicle. This relationship is not found in many 

of the existing models, such as MEET and COPERT; (2) it considers the link-specific vehicle 

speed, another significant yet unique component for each road link which directly contributes 

to emissions; (3) it includes vehicle travel distance for each link, an operational attribute that 

is recognized to influence vehicle emissions (GHG Protocol, 2013); (4) compared with a 

                                                       
1 Methodology for Calculating Transport Emissions and Energy Consumption (Hickman et al., 1999) 
2 Computer Programme to calculate Emissions from Road Transport (Ntziachristos et al., 2009) 
3 Motor Vehicle Emission Simulator (United States Environmental Protection Agency, 2010) 
4 Handbook Emission Factors for Road Transport (Hausberger et al., 2009) 
5 Comprehensive Modal Emission Model (Barth et al., 2005) 
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similar model introduced by Bektaş & Laporte (2011), it can determine the vehicle emissions 

at low speeds (i.e., speed smaller than 40 km/h). Given that the average vehicle speed in an 

urban region during daytime is always lower than 40 km/h for trucks, the chosen model can 

determine the emissions at those speeds; (5) it is one of the commonly used models in the 

existing green logistic studies. 

 In this modified model, the fuel consumption is the sum of two components: the fuel 

consumption associated with the engine performance and the tractive power. The fuel 

consumption associated with engine performance is inversely proportional to vehicle speed, 

while the fuel consumption associated with the tractive power is jointly proportional to the 

vehicle payload and inversely proportional to speed. When the average vehicle speed on each 

link is known, the fuel consumption is directly proportional to the vehicle payload. According 

to this relationship, holding a large number of bikes on a repositioning vehicle or visiting 

more nodes may not be an optimal strategy from the perspective of vehicle emissions. 

Nevertheless, holding too few bikes on vehicles or visiting too few nodes may not reduce the 

demand dissatisfaction significantly. This study, therefore, investigates the trade-off between 

demand dissatisfaction and emission (cost) minimization objectives in this DGBRP. 

 This paper focuses on a dynamic BRP, which considers a static BRP as a sub-problem, 

which in turn is an extension of the selective pickup and delivery problem. As highlighted by 

Ting & Liao (2013) and Ho and Szeto (2016), the selective pickup and delivery problem is 

already NP-hard. Moreover,  Benchimol et al. (2011) also proved that their static BRP for 

general networks and inputs is also NP-hard. Therefore, our proposed problem with a refined 

objective function, which also captures the selective pickup and delivery problem as a 

sub-problem and has a similar static repositioning sub-problem, is also NP-hard. Also, the 

problem in this paper is new and non-linear with respect to the introduction of the 

environmental objective. The non-linear problem nature disables the direct use of the existing 

exact methods shown in Table 2, which are often used for solving linear integer programming 

problems. Moreover, it is inefficient to use exact methods such as those shown in Table 2 to 

solve large, realistic repositioning problems in general. Furthermore, the existing heuristics or 

approximation methods shown in Table 2 are tailored for solving their bike repositioning 

problems that are different from ours in terms of constraints. For example, our problem has a 

new set of constraints that allow the vehicle to travel to more than one node in each period 
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and require the vehicle to travel until passing the beginning of the next period. These 

constraints allow the travel times between arcs not to be necessarily equal to the multiples of 

time periods. These constraints significantly increase the problem complexity. Therefore, their 

methods cannot be directly applied to solve our problem and new methods are needed to 

develop to cater for these constraints. 

  As our ultimate objective is to develop a solution method that can solve large and 

realistic bike repositioning problems efficiently, we prefer to develop a heuristic to solve the 

proposed problem. As seen from Table 2, only classical metaheuristics, including ant colony 

optimization and tabu search, are adopted in solving BRPs, while some recent metaheuristics 

have not been considered in these studies. As a recently developed metaheuristic, the 

enhanced artificial bee colony (EABC) algorithm proposed by Szeto et al. (2011) is used in 

this paper to determine a route for the repositioning vehicle. The EABC algorithm is not 

bounded by the mathematical properties of the objectives so it can find nearly optimal 

solutions with much shorter computational time compared with other existing heuristics when 

proper methods to handle solution feasibility are introduced. The EABC algorithm and its 

former version, the artificial bee colony (ABC) algorithm, have the advantages of easy 

application and prove their capability of handling various discrete and combinatorial 

problems, such as leaf-constrained minimum spanning tree problems (e.g., Singh, 2009), 

knapsack problems (e.g., Sundar et al. 2010), TSPs (e.g., Karaboga & Gorkemli, 2011), 

periodic VRPs (e.g., Yao et al., 2013), capacitated VRPs (e.g., Szeto et al., 2011; 

Alvarado-Iniesta et al., 2013), and job shop scheduling problems (e.g., Li et al., 2011; Pan et 

al., 2011). Providing that the potential of ABC and EABC algorithms are still under 

exploration, it is anticipated that they are efficient solution methods for other problems. 

Therefore, the EABC algorithm is used to generate the vehicle route, but it can be replaced by 

other routing heuristics without conceptual difficulty. 

 To solve the DGBRP, this paper adopts a rolling horizon approach to handle the 

time-varying demand. This approach is useful for real-time traffic assignment (Peeta & 

Mahmassani, 1995), tour scheduling problems (Stolletz & Zamorano, 2014), and vehicle 

routing problems for auto-carriers (Cordeau et al., 2015). The main idea is to decompose the 

repositioning route for the whole service time horizon into smaller but well-connected 

sub-problems that cover only part of the entire service horizon. By this approach, the dynamic 
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BRP can be decomposed into a set of static BRPs for each fixed duration (consisting of a 

number of periods), with the demand and inventory levels updated after each period, which 

can be solved more easily. To the best of our knowledge, no previous dynamic BRP study has 

adopted a rolling planning horizon approach to solve the proposed problem at the time of this 

writing. To deal with the fixed duration for each static problem, we propose a route truncation 

heuristic for revising the route generated within the EABC algorithm in which the route 

duration is longer than the fixed duration. This heuristic invokes a loading and unloading 

heuristic from time to time to determine the loading and unloading quantities for determining 

the service time required at each node on the concerned route during the calculation of the 

route duration. 

Table 2 Summary of the solution methods for BRPs 

 

 To summarize, the main contributions of this paper are the following: 

1. We propose a solution framework for solving the DGBRP. The dynamic problem is 

Approach Solution Method Reference 

Exact method Branch-and-cut algorithm Erdoğan et al. (2014); 

Dell’Amico et al. (2014) 

Approximation 9.5-approximation algorithm Benchimol et al. (2011) 

Heuristics/metaheuristics Cluster-first route-second Schuijbroek et al. (2017) 

Ant colony + constraint programming Di Gaspero et al. (2013) 

Iterated tabu search  Ho & Szeto (2014) 

PILOT+ variable neighbor descent, GRASP + variable 

neighbor descent 

Kloimüllner et al. (2014); 

Rainer-Harbach et al. 

(2014) 

Variable Neighborhood Search (VNS) Raidl et al. (2013); 

Rainer-Harbach et al. 

(2014); Kloimüllner et al. 

(2014) 

Chemical reaction optimization Szeto et al. (2016) 

Destroy and repair algorithm Dell’ Amico et al. (2016) 

Hybrid genetic algorithm Li et al. (2016) 

Hybrid large neighborhood search Ho & Szeto (2017) 

Hybrid exact and 

heuristics 

Branch-and-cut algorithm with tabu search Chemla et al. (2013) 

Cluster-first, cluster-route-second, route-third heuristic Forma et al. (2015) 
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decomposed into several static BRP sub-problems by the rolling horizon approach. An 

EABC algorithm and a proposed route truncation heuristic are jointly adopted to 

determine vehicle route in each static sub-problem, and a loading and unloading 

heuristic is used to solve the loading and unloading sub-problem along a given route; 

and 

2. we investigate the trade-off between total unmet demand and the total fuel and CO2 

emission cost and illustrate the properties of the problem through sensitivity analysis. 

The remainder of this paper is organized as follows. Section 2 discusses the problem 

setting and the fuel consumption and CO2 emission cost model of the DGBRP. Section 3 

describes the solution framework to solve the DGBRP. Section 4 illustrates the performance 

of the proposed solution method and the effect of varying problem parameters on total unmet 

demand and the total fuel and CO2 emission cost. Finally, Section 5 gives conclusions. 

 

2. Problem description 

2.1. Problem setting 

We consider a network N that has one depot (denoted by 0) only and multiple bike 

stations. The whole study horizon  0,H  is discretized into |T| equal periods of length l such 

that H l T , where T is a set of periods and | | 2T  . A vehicle with its capacity Q is 

employed to reposition bikes among the stations and the depot within the study horizon. The 

rebalancing strategy is determined and updated at the beginning of each period t based on the 

latest information or prediction of the demand and the number of bikes available (i.e., 

inventory level) at each node for the current period t and next tn  periods, where 

0 | |tn T t   . As the demand and inventory levels at the nodes (including stations and the 

depot) are changing across periods, the vehicle is allowed to visit a node multiple times to 

perform the rebalancing operation. The vehicle starts from the depot, travels to the assigned 

nodes to perform loading and unloading, and finally returns to the depot at the end of the 

operation. The vehicle is also allowed to visit the depot to load and unload bikes throughout 

the whole study horizon and the depot is assumed to always have enough bikes for pickup and 

docks for bike storage. It is also assumed that each period is long enough so that the vehicle 
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can visit at least one node in a period. Because the demand is assumed to remain unchanged 

during each period, the vehicle only requires visiting each node at most once in each period. 

The vehicle is not allowed to wait at any node except for loading and unloading. However, the 

vehicle can wait at the depot in the last period |T| even after the unloading process is finished 

because the remaining operational time may not be enough to serve other stations. The 

loading and unloading times for each bike at each node are fixed. The distance of each arc and 

the average vehicle speed on each arc in each period are given, and thus the travel time of 

each arc in each period can be deduced.  

The problem aims to determine a route for the operating vehicle over the horizon and 

the loading and unloading quantities at each node during each period in order to minimize the 

weighted sum of penalty cost for the total unmet demand of the system and the fuel and CO2 

emission cost of the operating vehicle of each design interval, where a design interval consists 

of a period t in the horizon plus the following tn  periods.  

 

2.2. Fuel consumption and CO2 emission cost 

To capture the environmental influence of the repositioning activity, we adopt the modified 

CMEM adopted by Demir et al. (2012), based on Barth et al. (2005), to estimate the 

instantaneous fuel consumption and then the corresponding fuel and CO2 emission cost. 

According to that model, the fuel consumption rate R   (in gram/second) is given by 

 0 0R hZV P     ,  (1) 

where ξ is the fuel-to-air mass ratio, h is the engine friction factor, Z is the engine speed, V is 

the engine displacement, and 0  and 0  are constants. P is the engine power output (in 

kilowatt) and can be calculated as 

T F AP P P  ,   (2) 

where F  is the vehicle drive train efficiency, and AP  is the engine power demand for 

energy losses of the engine and operation of vehicle accessories, which is assumed to be zero 

for simplicity. TP  is the total tractive power requirements (in kilowatt) of the wheels: 

 2
T D Rsin 0.5 cos 1000P J Jg C Av JgC v       ,  (3) 

where J is the total vehicle weight (in kilogram), v is the vehicle speed (meter/second),   is 



12 
 

the acceleration (meter/second2), θ is the road angle, g is the gravitational constant,   is the 

air density, A is the frontal surface area of the vehicle, and DC  and RC  are the coefficients 

of the aerodynamic drag and rolling resistance, respectively. 

For link (i, j) that joins nodes i and j, let ijd  be the length of the link (meter), and ijv  

be the average speed traveling on this link. If all variables in equations (1)-(2) except the 

vehicle speed ijv  remain constant on this link, the fuel consumption (in liter),  ij ijE v , on 

this link can be formulated as a function of ijv  and expressed as 

  1 T 1 1ij ij ij ij ij ijE v hZV d v P d v    ,  (4) 

where 1 0     and 1 F 01 1000    are constants, and ψ is the conversion factor of 

fuel from gram/second to liter/second. Besides, let J w S  , where w is the curb weight 

(i.e., the weight of an empty vehicle) and S is the payload on the vehicle. Let 

1 Rsin cosg gC       be a vehicle-link specific constant, and 2 D0.5C A    be a 

vehicle-specific constant. By omitting the link indices (i, j) on S and 1  for simpler 

presentation,  ij ijE v  can be rewritten as 

   3
1 1 1 1 1 2 1ij ij ij ij ij ij ijE v hZV w v S v v d v          .  (5) 

The parameters used in this fuel consumption model and their corresponding values are listed 

in Table 3, following the values for light duty vehicles given in Koç et al. (2014) as light duty 

vehicles are often employed in daytime bike repositioning. As the fuel consumption rate is 

determined, the fuel and CO2 emission cost can be determined because the emission cost is 

directly proportional to the fuel consumption. 

As highlighted in Bektaş & Laporte (2011) and Demir et al. (2012), the term related to 

hZV (i.e., the engine term) in (5) is significant at a low vehicle speed (i.e., less than 40 km/h), 

while the remaining terms (i.e., the terms associated with tractive power) are significant for 

higher speed levels. In the context of DGBRP, as the average vehicle speed in the urban 

region is seldom greater than 40 km/h (or approximately 11 m/s), this engine term must be 

considered. Meanwhile, we assume each bike has a weight of 17 kilograms, which is 

equivalent to the weight of a second-generation bike of YouBike (DIT Taipei, 2013). 
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Meanwhile, the vehicle is assumed to have an extra dead load of 160 kilograms other than the 

curb weight for the bike-related accessories, such as bike racks, and thus the vehicle can load 

a maximum of 20 bikes on each vehicle due to the maximum load constraint. 

 

Table 3 Parameters used in the fuel consumption and CO2 emission cost model 

Notation Description Value 

w  Curb weight of the vehicle, excluding the dead load of 
bike-related accessories (kilogram) 

3500 

w   Curb weight of the vehicle, including the dead load of 
bike-related accessories (kilogram) 

3660 

J Maximum total weight of the vehicle (kilogram) 4000 
  Weight of a bike (kilogram) 17 
   Fuel-to-air mass ratio 1 

h   Engine friction factor (kilojoule/rev/liter) 0.25 
Z Engine speed (rev/second) 38.34 
V Engine displacement (liters) 4.5 
g   Gravitational constant (meter/ second2) 9.81 

DC  Coefficient of aerodynamic drag 0.6 

RC  Coefficient of rolling resistance 0.01 

  Air density (kilogram/ meter3) 1.2041 
A Vehicle frontal surface area (meter2) 7.0 

F  Vehicle drive train efficiency 0.45 

0   Efficiency parameter for diesel engines 0.45 

0  Heating value of a typical diesel fuel (kilojoule/ gram) 44 
ψ Conversion factor (from gram/second to liter/second) 737 
Ω Acceleration (meter/ sq. second) 0 
θ Road angle 0 

Cf  Fuel and CO2 emission cost per liter (₤) 1.4 

 

Based on the above notations, the fuel consumption of the vehicle that loads q bikes can be 

expressed as 

   3
1 1 1 1 1 2 1ij ij ij ij ij ij ijE v hZV w v q v v d v           . (6) 

In this equation, the term w   is the curb weight of the vehicle plus the dead load of the 

bike-related accessories (e.g., bike racks to place the bikes on the vehicle), and the term q  

is the bike load on the vehicle. The fuel and CO2 emission costs of the vehicle associated with 

link (i, j), ije , can then be expressed as 

 3
C 1 1 1, , 1 1, 2 1

k
ij ij ij ij ij t ij ij ije f b hZV w v q v v           ,  (7) 

where /ij ij ijb d v  represents the travel time on link (i, j). 

 

3. A hybrid rolling horizon Artificial Bee Colony Algorithm 
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This study introduces a hybrid rolling horizon artificial bee colony algorithm to solve this 

DGBRP. The proposed algorithm is formed by four main components: the rolling horizon 

algorithm, the EABC algorithm, a proposed route truncation heuristic for route determination 

in each stage of the rolling horizon algorithm, and the loading and unloading (LU) heuristic. 

The first one is the main algorithm, which invokes the EABC algorithm from time to time, 

which in turn invokes the proposed route truncation heuristic and then the LU heuristic upon 

request. 

 

3.1. The rolling horizon algorithm  

Figure 1 explains the rolling horizon approach by showing two consecutive stages. In general, 

the planning horizon for the vehicle to travel is subdivided into several stages (i.e., design 

intervals), each of which consists of a roll period and the overlapping portion with the next 

stage (except the last stage with no overlapping portion). Each stage τ consists of ( tn +1) 

periods and the length of each roll period is l time units, where t is the index of the roll period 

in stage τ and is numerically equal to τ. Therefore, the time span ρ of each stage τ is ( tn +1) l 

time units, which is a multiple of the length of roll period l. In this study, all stages have the 

same number of consecutive periods, denoted as   , except that for the last (   -1) stages, 

the number of consecutive periods is the number of periods remaining until the end of the 

modeling horizon. At the beginning of each stage, the demand for bikes and the inventory 

level at each node at the beginning of the roll period and the corresponding forecasts at the 

beginning of the following periods (i.e., the periods in the overlapping portion) are known and 

used in the main algorithm. The repositioning problem over each stage (τ-1) is a static 

problem and solved by the EABC algorithm (which invokes the proposed route truncation 

heuristic and the LU heuristic) by using the available information from that stage, but 

implemented only in the roll period of stage (τ-1). The start of projection horizon is then 

rolled forward by l time units to obtain the next stage τ. The demand and inventory level at 

each node are updated in the next stage τ and used to determine a new routing, loading, and 

unloading strategy in the new roll period in stage τ. This procedure is repeated until the end of 

the modeling horizon. Note that in this algorithm, the stage length (or the projection horizon) 

is not fixed to ensure that the end of each stage cannot be later than the end of the modeling 

horizon. 
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Figure 1 Successive stages of the solution procedure 

The outline of the solution procedure is provided as follows: 

Step 1: Obtain the demand and inventory level at each node for each period in the first 

stage. Set τ = 1.  

Step 2: Determine a route (node sequence) in current stage τ by the EABC algorithm,  a 

proposed route truncation heuristic, and the LU heuristic.  

Step 3: Determine the loading and unloading activity at each visited node of the best route 

determined in Step 2 by the LU heuristic. 

Step 4: Update the nodes’ demand and inventory level in each period of stage τ. Store the 

route and the loading and unloading activities in stage τ that are not overlapped with the next 

stage. Update the starting position of the vehicle as the first node in the overlapping period 

and update the corresponding load on the vehicle at that node. 

Step 5: If the current stage is not the last stage, then τ = τ + 1 and go to step 2. Otherwise, 

the algorithm stops and outputs the result. 

 

3.2. The enhanced Artificial Bee Colony algorithm for the routing sub-problem 

The static BRP in each stage is divided into a routing sub-problem and a loading and 

unloading sub-problem. The routing sub-problem determines the route of the repositioning 

vehicle in a given stage which consists of a sequence of visited nodes. In each stage, the 

vehicle visits at least one node. The route travel time is not necessarily equal to the multiples 

of time periods, and the lengths of all stages are not necessarily equal. The requirements for 

the starting and/ or ending positions of the route in different stages are listed below: 
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1. In the first stage, the route must start at the depot; 

2. Except the first stage, the starting position of the route is the last visiting node of the 

route in the last stage; 

3. In the last stage, the route must end at the depot. 

As the above constraints have not been considered and handled in the literature, this paper 

develops a new method based on the enhanced Artificial Bee Colony algorithm to determine 

the route in each stage to cater for these constraints. 

 The enhanced Artificial Bee Colony (EABC) algorithm is an improved heuristic 

proposed by Szeto et al. (2011) based on the ABC algorithm, which is a swarm-based 

meta-heuristic algorithm introduced by Karaboga (2005). The ABC algorithm is developed 

based on the intelligent behavior of the honeybees’ foraging process (Karaboga, 2009). Three 

types of bees, including employed bees, onlooker bees, and scout bees, are found in the ABC 

algorithm. Different types of bees play different roles in the exploration and exploitation of 

food sources. Food sources are considered to be solutions to specific problems or 

sub-problems. 

 This whole process of the ABC algorithm can be described as follows. In each iteration, 

each employed bee is firstly assigned to a food source. It collects the information of that food 

source (e.g., the nectar amount of the food source, equivalent to the fitness of the solution) 

and carries out a neighborhood search to find a better food source nearby. If a better source is 

found, the employed bee abandons the assigned food source and remembers the better one. 

After all of the employed bees have collected the information, they fly back to their hive to 

share the information of their assigned food sources with other unemployed onlooker bees. 

The onlooker bees choose to follow a certain employed bee based on a probabilistic selection 

and exploit the region near the corresponding food source (using a neighborhood operator) 

and calculate the nectar amount of the neighbor food source. Then, for each old food source, 

the best food source among all food sources near the old food source is determined. The 

employed bee associated with the old food source is assigned to the best food source and 

abandons the old food source if the best food source is better than the old food source. 

Otherwise, the employed bee still reports the old food source as its current best food source 

found. A food source is also abandoned by an employed bee if the quality of the food source 

has not been improved for Limit (a predetermined number) successive iterations. The 
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employed bee abandons that food source and becomes a scout bee, which randomly finds a 

new food source to replace the old one. The actions of the three types of bees become the 

three major steps within an iteration in the ABC algorithm, namely (1) the employed bee 

phase, (2) the onlooker bee phase, and (3) the scout bee phase. A stopping criterion (generally 

the maximum number of iterations) is applied to terminate the foraging process. 

 The basic ABC algorithm can solve certain types of problems with great success, but 

there are rooms for improving its performance. Two improving mechanisms are introduced by 

Szeto et al. (2011) to enhance the performance of the ABC algorithm. 

 First, the current onlooker bee phase is to use a newly searched and better food source to 

replace the corresponding old neighbor food source. The improved mechanism is to replace a 

food source with a newly search food source by fulfilling two criteria: (1) the value of Limit 

of the food source being replaced is the largest among all existing food sources known, which 

implies that the replaced food source has not been improved for the largest number of times; 

and (2) the newly searched food source is better than the corresponding old neighbor food 

source and the food source identified by criterion (1). This modified approach gives more 

chance for potential food sources to be explored and excludes non-potential food sources 

which have not improved for a relatively large number of times and are worse than the new 

food sources (Szeto et al., 2011). 

 Second, in the scout bee phase of the basic ABC algorithm, the scout bees are sent to 

randomly search for a new food source to replace the old one that reaches the limit. Instead of 

random search, the modified procedure is to search for a new food source by applying a 

neighborhood operator to that old one, without evaluating its nectar amount. This approach 

can limit the search in bad food source regions with no control of the quality of food sources 

(Szeto et al., 2011). 

 Based on the above discussion, the procedure of the EABC algorithm used for solving 

the routing problem of the static BRP is summarized as follows: 

Step 2.1. Food sources (i.e., routes) yz  are randomly generated, where y = 1, … , Y, and Y is 

the number of food sources. 
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Step 2.2. Each employed bee is assigned to a food source. Each food source’s fitness value 

 yf z  is evaluated. 

Step 2.3. Initialize B = 0 and 1 2 0YL L L    ,  

where B = Number of times of repeating the whole foraging process;  

yL  = Number of times of applying a neighborhood operator to food source y, y = 

1, …, Y. 

Step 2.4. The foraging process is repeated: 

a. Employed Bee Phase 

i. Each food source is applied by a neighborhood operator: yyz z  .  

ii. If    y yf z f z , yz  is replaced with yz  and yL  = 0. Otherwise, yL  = 

yL  + 1. 

b. Onlooker Bee Phase 

i. Each onlooker bee selects a food source among all existing food sources using 

the roulette wheel selection method based on their fitness values. 

ii. Each food source is applied by a neighborhood operator: yyz z  .  

iii. If f( yz ) > f( yz ), select 'yz  to be replaced by yz , where 'yL  is the maximum 

among all existing food sources and  f( yz ) >  'yf z , and then set ' 0yL  . 

Otherwise, yL  = 1yL  . 

c. Scout Bee Phase 

i. For each food source, if yL  = Limit, the food source is modified by a 

neighborhood operator: y yz z   and yz  is replaced by yz . 

ii. B = B + 1. 

Step 2.5. Record the best route so far. 

Step 2.6. The foraging process is stopped when B = Maximum number of iterations. 
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3.3. Route representation in the EABC algorithm 

In the EABC algorithm, a route yz  is represented by a sequence of visited nodes 

(including stations and the depot). Each station is given an index number, e.g., 1 to 5, and the 

depot is represented by 0. For a single vehicle traveling across 5 nodes, one possible 

representation is 0 1 4 5 2 3     , which shows that the vehicle departs from the 

depot, passing through stations 1, 4, 5, 2, and 3 subsequently. For an intermediate stage 

starting at station 3, a possible route can be 3 2 4 1 5 6     . The route generated by 

the EABC algorithm and kept in the pool of food sources should be long enough for the 

vehicle to traverse during each stage considered. A long and fixed route length (measured by 

the number of nodes) is determined in advance, based on the comparison of average vehicle 

travel time between nodes (in minutes) and maximum stage length (in minutes). In the 

previous example, the long and fixed route length is 6. 

 

3.4. Fitness evaluation and the proposed route truncation heuristic 

The fitness of a route is directly related to the objective function. Because this function is also 

related to loading and unloading quantities at each node, these quantities must be determined 

before evaluating the fitness of a route. Moreover, the loading and unloading decisions 

significantly depend on and can be derived from the route. Furthermore, each route generated 

by the EABC algorithm is always longer than that required by a stage, and thus a method is 

required to determine the route in each stage. In addition, when determining the route in each 

stage, the actual loading and unloading times other than travel times between nodes should be 

taken into account to ensure that the stage length is not exceeded. Taking into account the 

preceding four considerations, we propose a route truncation heuristic to determine the route 

in each stage yz , loading and unloading quantities at each node, and the fitness of a route 

yz .  

For a route yz  in a stage τ, we define G as the set of visited nodes on the route, i.e., 

G N , and define mi G , 1,2, ,m G  , where the subscript m is used to define the order 

of nodes being visited in stage τ. Based on these notations, let 
mi

p  and 
mi

r  be the pickup and 
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drop-off quantities at the m-th visited node, respectively, and 
1m mi iq


 and 
1m mi ie


 to be the 

number of bikes on the vehicle and the fuel and CO2 emission cost, respectively, when the 

vehicle travels from the (m-1)-th to the m-th visited node of the route. Moreover, let j  and 

j  represent the unmet demands at the visited and the non-visited nodes, respectively. 

Furthermore, let   be the weight for total unmet demand. Based on these notations, the 

procedure can be described as follows. 

Step 2.2.1: Set c
0
 = 1, X = 1. 

Step 2.2.2: Generate a new route yz  for a stage   based on the first X nodes on the route 

concerned yz  (obtained from Step 2 of the EABC algorithm). If | |T  , add the depot at 

the end of the new route. 

Step 2.2.3: Solve the loading and unloading sub-problem by the LU heuristic (introduced in 

Section 3.5) based on yz  to obtain the loading and unloading quantities at each node along 

the route of that stage, i.e., 
mi

p  and 
mi

r . 

Step 2.2.4: If the sum of the travel times and the loading and unloading times from the 

loading and unloading strategy (i.e., the operation time in the stage) from Step 2.2.3 does not 

exceed the “effective” stage length, set c
0
 = c

0
 + 1 and X = X + 1, and then go to Step 2.2.2.  

Step 2.2.5: Calculate the number of bikes on the vehicle 
1m mi iq


 along the route. 

Step 2.2.6: Evaluate the fitness of each route yz  by

 
1

1

\ 1

1 +
X

y j j i i
j G j N G

f z e
 








  

        
   

   . 

 

To reduce the computation time for Step 2.2.1, X can be initialized to a positive value 

based on the estimated sum of in-vehicle travel times and loading and unloading times of the 

first X nodes on the route yz . In this estimation, for the loading and unloading times, this 

paper adopts a greedy method—the vehicle is assumed to 1) load as many bikes as possible at 

each bike surplus node (i.e., a station with more bikes available to serve the cycling demand 

there) onto the vehicle until the vehicle is full or all bikes at that node are loaded, and 2) 



21 
 

unload as many bikes as possible to each bike shortage node (i.e., a station with not enough 

bikes to serve the cycling demand there) until the unmet demand at that node is eliminated or 

all bikes on the vehicle are unloaded. 

The “effective” stage length of a stage in Step 2.2.3 is used to determine the route of a 

stage because the vehicle may not reach any node sharply at l time units. The effective stage 

length is defined as (ρ-ε) time units, where ε is the time of the vehicle arrived at the first node 

of the stage. 

Figures 2 and 3 show the procedure related to Steps 2.2.2-2.2.4. For any stage σ (which 

is not the last stage), the operation time in the stage does not reach the “effective” stage length, 

the next node on the route yz  is added to the route yz  and re-calculate the loading and 

unloading quantities (
mi

p , 
mi

r ). This process is repeated until the operation time exceeds the 

“effective” stage length. The solution ( yz , 
mi

p , 
mi

r )  of the last iteration becomes the 

solution of that run. 

When the current stage is the final stage in the whole modeling horizon, the route yz  

needs to consider the total service time constraint in addition to effective stage length to 

maintain solution feasibility. As shown in Figure 3, nodes on the route yz  are added one by 

one to form a node sequence with the depot to be the final node, and the service time is then 

evaluated. When the route has not violated the total service time constraint, a new node is 

added to yz  (in iteration (c
0
 + 1)). If the newly added node violates the constraint, the 

solution ( yz , 
mi

p , 
mi

r ) in the last iteration becomes the solution of that run. 

 

Figure 2 Mechanism of the iterated insertion of nodes in each stage except the final stage 



22 
 

 

Figure 3 Mechanism of the iterated insertion of nodes in the final stage 

According to Steps 2.2.2-2.2.4, each solution ( yz , 
mi

p , 
mi

r ) passed into Steps 2.2.5 and 

2.2.6 consists of a feasible route (that satisfies the operation duration constraint) and the 

loading and unloading quantities of each visited node along the route. Step 2.2.5 determines 

the number of bikes on the vehicle between every pair of nodes (i.e., bike flows) along the 

route of stage τ based on the number of bikes on the vehicle at the beginning of this stage, q̂ , 

and the loading and unloading quantities of all nodes along the route, i.e., 
mi

p  and 
mi

r . 

Mathematically, the bike flow between the (m-1)-th and the m-th nodes can be calculated by  

     

 
1 2 1 1 1 3 2 2 2 1 1

1

1

...

ˆ .

m m m m m m m m m m m mi i i i i i i i i i i i

m

i i

q q p r q p r p r

q p r
 



          





             

   
 

In Step 2.2.6, the unmet demand and the fuel and CO2 emission cost are firstly 

determined based on the given loading and unloading quantities at each visited node and the 

bike flows along the route, respectively. The unmet demand of the m-th visited node along the 

route of stage   can be determined by  max ,0
m m m m m mi i i i i iD s r p             , where 

mi
D  and 

mi
s  respectively represent the expected cycling demand during that stage at node 

mi  and the number of bikes at the beginning of that stage at node mi , and 
mi

  is the total 

number of bikes returned to node mi  within that stage. For a non-visited node \j N G , its 

unmet demand is determined in a similar way but without loading and unloading quantities, 

i.e.,  max ,0j j j jD s          . The fuel and CO2 emission cost between the (m-1)-th node 

and the m-th node along the route of this stage (i.e., τ) is determined by 

 1 1 11 1 1 1 1 1

3
C 1 , 1 1, , 1 1, , 2 1 ,m m m m i m i m i m m m i m i m i mm m m m m m

i i i i i i i i i i i i i i i i i ie f d v hZV w v q v v          
       

    , where 
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1 ,m mi iv 
 is the average vehicle speed between the (m-1)-th node and the m-th node of this stage. 

Then, the weighted sum of the unmet demand and the fuel and CO2 emission cost of a stage, 

1

1

\ 1

+
X

j j i i
j G j N G

e
 








  

       
   

   , can be calculated, and finally the fitness, which is the 

reciprocal of the above weighted sum, can be obtained. 

 

3.5. The loading and unloading heuristic for the loading and unloading sub-problem  

The loading and unloading sub-problem determines the loading and unloading quantities (
mi

p , 

mi
r ) of each visited node on a given route in a given stage. To solve this sub-problem, the 

simplest and fastest way is to adopt the greedy loading and unloading approach: 1) load as 

many bikes as possible at each bike surplus node onto the vehicle until the vehicle is full or 

all bikes at that node are loaded, and 2) unload as many bikes as possible to each bike 

shortage node until the unmet demand at that node is eliminated or all bikes on the vehicle are 

unloaded. However, the loading quantity at a bike surplus node depends on not only the node 

condition itself and the vehicle capacity but also the bike deficits of the drop-off nodes along 

the rest of the vehicle route. This greedy loading approach may let the vehicle load excessive 

amount of bikes and thus increase the fuel and CO2 emission cost. This paper, therefore, 

introduces a novel and simple loading and unloading heuristic to determine the loading and 

unloading quantities at each node for a given route in each period. The objectives of this 

approach are two-folded: (1) avoid loading excess bikes (that are useless in solving unmet 

demand but increase the fuel and CO2 emission cost); and (2) reduce the total distance 

travelled by the loaded bikes (which can hence reduce the fuel and CO2 emission cost). 

In this heuristic, we made use of the characteristics of pickup and drop-off nodes. The 

depot can be a drop-off and pickup node. The depot is a drop-off node only in the final stage 

for bike drop-off at the end of the repositioning operation, while it is a pickup node in other 

stages. We also define mu  as the total bike deficits of all nodes after the m-th node along the 

given route that can be satisfied by loading bikes at bike surplus nodes at or before this node. 

In other words, when mu  is positive, the total bike deficits of all nodes after the m-th node 

can only be solved by loading bikes at bike surplus nodes at or before the m-th node. The 

procedure of this heuristic is shown in the following steps. 
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Step 2.2.3.1: Set the current node position m = X (i.e., route length) and u
X
 = 0. 

Step 2.2.3.2: Determine mu  for 2,...,m X  and the loading quantities of all bike surplus 

nodes: 

(a) If the m-th node on the route is a drop-off node, set  1 min ,m m mu Q u a    and 
mi

p

= 0, where ma  is the bike deficit of the m-th node. (The vehicle capacity term is 

used inside the minimum operator as bike deficits that exceed vehicle capacity cannot 

be solved anyway).  

(b) If the m-th node on the route is a pickup node, set  1 max ,0m m mu u    , where 

m  is the bike surplus of the m-th node. (The zero term is used inside the maximum 

operator as u
m
 is always non-negative.) Meanwhile, the initial pickup quantity at this 

pickup node 
mi

p  is calculated by  min ,
mi m mp u   . (The term u

m
 is included to 

ensure that all bikes loaded onto the vehicle at the m-th node are unloaded in 

subsequent nodes.) 

(c) Set m = m – 1 and repeat the above steps until m = 2. 

Step 2.2.3.3: Determine the loading and unloading quantities at the first node: 

(a) In stage 1 (when the first node of the route must be the depot), the pickup quantity at 

the depot is equal to u
1
, i.e., 

1 1ip u   (because the number of bikes loaded to the 

vehicle at the depot must not be greater than the vehicle capacity Q), and 
1

0ir  .  

(b) In subsequent stages, if the node is a pickup node, the loading quantity is determined 

by   
1 1 1 ˆmin ,max ,0ip u q    and 

1
0ir  . If the node is a drop-off node, the 

unloading quantity is calculated by  
1 1 ˆmin ,ir a q   and 

1
0ip  . 

Step 2.2.3.4: Adjust the loading quantities of all subsequent pickup nodes:  

(a) Set 
1 1

ˆB i iF q p r      and m = 2. 

(b) If the m-th node is a drop-off node, m = m + 1.  

(c) If the m-th node is a pickup node, the loading quantity is obtained by 

 max ,0
m mi i Bp p F    . Then, update BF   by  

m mB B i iF F p p       and m = m + 1.  
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(d) Repeat (b)-(c) until m = X.  

Step 2.2.3.5: Determine the unloading quantities of all subsequent drop-off nodes:  

(a) Set 
1 1

ˆB i iF q p r      and m = 2. 

(b) If the m-th node on the route is a pickup node, BF   is updated by 
mB B iF F p    .  

(c) If the m-th node on the route is a drop-off node, the unloading quantity at that node is 

calculated by  min ,
mi B mr F a  , and then update 

mB B iF F r    .  

(d) Set m = m + 1. If m  X, go to (b). 

 

3.6. Neighborhood operators 

Neighborhood operators are used to obtain new routing strategies by altering the 

positions of different bike nodes on a route yz . When a new route is required in any phase of 

the EABC algorithm, a neighborhood operator is randomly chosen from a set of pre-selected 

neighborhood operators and applied once to the current route. In this study, we adopt three 

operators introduced by Szeto et al. (2011), including random swaps, subsequence reverse, 

and random swaps of reversed subsequence. 

 

4. Numerical studies 

We conducted computational experiments to (1) show the effectiveness of using the EABC 

algorithm compared with Genetic Algorithm to solve the routing sub-problem, (2) illustrate 

the effects of the weight α on the two objective values in different lengths of the modeling 

horizon, (3) demonstrate the effect of the stage length towards the objective values, and (4) 

investigate the effect of different loading and unloading times towards the objective values. 

The proposed solution method was coded in Visual C++ 2010 and ran on a computer with an 

Intel® Core™ i5 CPU1.6 GHz PC with a 4 GB RAM. 

 The experiments were performed using the sample networks adopted by Kloimüllner et 

al. (2014). However, in those instances, only the travel times but not the average vehicle 

speeds of all periods are given. As the fuel and CO2 emission cost depends on both the travel 

times and average vehicle speeds of the links, this study assumes that the average vehicle 

speeds of all links are identical in the first stage (i.e., τ = 1 and ,1 5ijv  m/s), and thus the 
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average vehicle speed of link ( , )i j  in subsequent stages, ,ijv  , can be deduced by 

, ,1 ,1 ,ij ij ij ijv v b b   , where ,1ijb  and ,ijb   are the travel times of link ( , )i j  in the first stage 

and the τ-th stage, respectively. Meanwhile, it is assumed that the average speeds of the links 

change every 4 hours. Also, the target demand level at each node in each stage is defined, 

unlike the target demand level remains unchanged throughout the whole operation in the 

study of Kloimüllner et al. (2014). The experiments worked on networks with sizes varying 

from 30 to 180 with one repositioning vehicle. The demand and number of returned bikes of a 

node were updated per hour. All the instances are available from 

http://web.hku.hk/~ceszeto/ShuiSzeto_DBGRP_data.zip. Both the loading time and 

unloading time of each bike are set to be 30 seconds (i.e., 0.5 minute) unless stated otherwise. 

For the parameter setting of the EABC algorithm, after considering the trade-off between 

computation time and solution quality in the preliminary experiments, the bee colony size was 

set to be 50 and the numbers of employed bees and onlooker bees were equal (i.e., 25 for 

each). The maximum cycle was set to be 200 times of the network size per stage and the value 

of ‘Limit’ was fixed to 20 times of network size (i.e., the number of nodes). The stage length 

(except the last stage length) was set to be 2l (i.e., 2 times of the roll period) unless specified 

otherwise, and the length of each roll period l is set to be 60 minutes. All the test instances 

were run for 20 times. 

 

4.1. Effectiveness of the EABC algorithm compared with Genetic Algorithm 

 

To justify the use of the EABC algorithm for solving the routing sub-problem in the proposed 

solution method, the EABC algorithm was compared with the Genetic Algorithm (GA) 

introduced and investigated by Holland (1975). The whole process of the adopted GA 

approach is described as follows. In each iteration of GA, it involves crossover and mutation 

processes. The crossover process aims to generate a new set of routes (i.e., offspring) by the 

existing routes (i.e., parents). In this process, the parents are selected by the roulette wheel 

selection method according to their fitness, and then the selected parents then undergo the 

information exchange and create offspring. The selection and exchange processes are repeated 

until a targeted number of offspring have been generated. The mutation process is to introduce 

a degree of randomness in the pool of candidate routes, in which the information within each 
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selected route is altered irreversibly. In this study, the mutation process is to apply one of the 

neighborhood operators introduced in Section 3.6 to a randomly selected route. After 

crossover and mutation, the parents and offspring are then evaluated. The better routes are left 

for the next iteration as the parents and the remaining (worse) routes are abandoned. The 

crossover and mutation processes become the two major components in the GA. A stopping 

criterion (generally the maximum number of iterations) is applied to terminate the algorithm.  

The Genetic Algorithm here was coded by the authors. The route representation follows 

the work by van Breedam (1996), which used GA to solve classic vehicle routing problems. 

This representation is the same as that for the EABC algorithm coded in this study.  

The GA and EABC algorithm were compared using 45 instances, which have different 

network sizes (from 30 to 180 nodes), lengths of modeling horizon (i.e., 6|T|, 12|T|, and 18|T|), 

and values of α. To have a fair comparison between the proposed method and the GA, both 

methods adopted the same set of neighborhood operators, had the same population size, and 

had approximately the same computation time for route search. The crossover and mutation 

rates of the GA were calibrated preliminarily and the rates of 0.5 and 0.05 were found to be 

the best choice in this problem, respectively. The average and best results of the proposed 

method and the GA are summarized in Table 4. For every instance, it can be named according 

to its network size |N|, its total number of periods over the time horizon T, and the value of 

the weight α. For the computation times of all instances, they are set to be (approximately) 

equal to the average computation times of the 20 runs of the EABC algorithm. 

 Table 4 demonstrates that the proposed EABC method outperforms the GA in all 45 

instances, in which the average and minimum objective values obtained in the proposed 

method are lower than the corresponding values obtained by the GA. Moreover, the p-values 

of the t-test on the difference between the mean objective values generated by the two 

algorithms in all 45 instances are smaller than 0.01, which shows that the proposed method 

has statistically significant improvement over the GA in all the instances considered. To 

conclude, the test results show that the EABC algorithm is better than the GA as the 

sub-algorithm in the rolling horizon framework in solving our DGBRP. 

 

Table 4 A comparison of the experimental results between the EABC and GA-based rolling horizon 

methods 
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Instances EABC algorithm Genetic algorithm CPU 
time c 

Imp%d P-Value 

|N| T α Minimuma Averageb Minimuma Averageb 

30 6 0.001 380.3  381.2 390.7 403.8 7.0 5.94  2.05E-06 
1 550.2  550.3 550.2 561.8 7.0 2.09  5.76E-03 

1000 109407.4  134803.9 154387.0 163896.9 7.0 21.58  4.46E-03 
12 0.001 776.2  779.7 794.7 812.2 14.0 4.16  2.59E-06 

1 950.3  951.9 974.8 996.1 14.0 4.64  2.30E-05 
1000 124805.7  147112.1 182813.2 191889.9 14.0 30.44  6.08E-03 

18 0.001 1165.9  1166.7 1209.9 1242.9 21.0 6.53  2.16E-07 
1 1394.8  1424.3 1439.4 1492.8 21.0 4.81  2.00E-05 

1000 161223.1  191802.2 212210.6 239671.1 21.0 24.96  1.30E-04 
60 6 0.001 355.6  386.5 394.1 410.7 13.0 6.28  2.72E-04 

1 730.9  759.7 764.8 778.5 13.0 2.48  8.74E-05 
1000 343390.2  358409.2 368380.0 379790.1 13.0 5.97  2.44E-03 

12 0.001 756.1  766.6 791.0 809.2 27.0 5.57  2.94E-06 
1 1179.1  1206.1 1196.6 1223.9 27.0 1.48  2.68E-04 

1000 386812.7  404406.4 416756.4 438074.7 27.0 8.33  1.86E-04 
18 0.001 1112.0  1133.1 1162.7 1204.9 40.0 6.33  1.52E-06 

1 1726.8  1749.0 1784.9 1802.6 40.0 3.06  4.23E-08 
1000 518164.3  550070.4 613121.2 626220.9 40.0 13.84  2.99E-06 

90 6 0.001 366.2  371.1 385.3 397.0 23.0 6.98  9.19E-07 
1 927.2  934.0 925.9 945.8 23.0 1.27  5.92E-03 

1000 512381.5  547693.9 553386.7 565378.3 23.0 3.23  7.47E-03 
12 0.001 752.0  757.3 773.9 795.2 47.0 5.01  2.72E-05 

1 1472.9  1482.8 1476.9 1518.3 47.0 2.39  6.64E-04 
1000 662792.9  685377.6 705747.1 715649.4 47.0 4.42  6.66E-07 

18 0.001 1107.1  1117.6 1148.8 1175.0 70.0 5.14  5.38E-06 
1 2042.2  2066.1 2104.1 2130.3 70.0 3.11  2.91E-06 

1000 851127.9  894455.2 851127.9 926109.8 70.0 3.54  3.20E-03 
120 6 0.001 346.8  374.7 374.8 400.2 33.0 6.80  1.16E-03 

1 1227.0  1232.9 1227.5 1247.9 33.0 1.21  3.56E-03 
1000 812396.2  834607.9 833397.6 847577.2 33.0 1.55  4.72E-03 

12 0.001 736.7  748.1 780.6 793.1 67.0 6.02  7.18E-08 
1 1846.9  1860.4 1886.0 1905.8 67.0 2.44  7.55E-06 

1000 1004781.7  1020773.1 1076753.1 1094133.7 67.0 7.19  4.94E-09 
18 0.001 1114.8  1125.7 1164.9 1202.1 100.0 6.78  4.71E-06 

1 2523.1  2556.6 2591.0 2625.4 100.0 2.69  8.49E-07 
1000 1336167.4  1368564.4 1347104.2 1438601.0 100.0 5.12  1.19E-05 

180 6 0.001 379.6  382.9 385.6 412.8 60.0 7.80  2.30E-05 
1 1543.6  1552.6 1564.7 1582.1 60.0 1.90  1.23E-04 

1000 988391.4  1002896.7 1154382.3 1172786.5 60.0 16.94  3.31E-12 
12 0.001 749.8  761.4 798.1 827.4 120.0 8.66  1.53E-06 

1 2122.9  2140.7 2195.4 2223.0 120.0 3.85  8.20E-07 
1000 1265789.6  1299890.4 1359726.0 1398552.4 120.0 7.59  6.07E-07 

18 0.001 1104.5  1130.8 1201.2 1233.9 180.0 9.12  9.78E-08 
1 3408.3  3431.4 3495.7 3551.5 180.0 3.50  1.07E-06 

1000 2178154.7  2226582.7 2248091.4 2292298.5 180.0 2.95  1.31E-05 
a Average objective value obtained in 20 runs 
b Minimum objective value obtained in 20 runs 
c Average computation time obtained in 20 runs (in seconds) 
d Calculated based on the mean values, referred to the improvement percentage against the GA-based method 

 

4.2. Effect of the weight α towards the total fuel and CO2 emission cost and total unmet 

demand  

 

Due to the multi-objective nature of the DGBRP, the setting of the weight α for total unmet 
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demand is important to achieve a balance between total unmet demand and the total fuel and 

CO2 emission cost of the vehicle. Replicates of the algorithm with different weights were run 

and each replicate was run 20 times. In these experiments, the value of α varied from 0.0001 

to 1000. This section presents the results for H = 3|T|, 6|T|, and 12|T| with network size |N| = 

30 for illustrative purposes. 

 Figure 4 illustrates the computational results of the experiments for H = 3|T|. It can be 

seen that the two objectives, the total unmet demand and the fuel and CO2 emission cost per 

km, are conflicting. When α is smaller than 1, the algorithm considers the fuel and CO2 

emission cost to be extremely important. The algorithm then gives the largest total unmet 

demand and the lowest total fuel and CO2 emission cost among all replicates. When α is 

greater than 1, the total fuel and CO2 emission cost increase and the total unmet demand 

decreases simultaneously with respect to the increase of α. When α is greater than 100, the 

algorithm achieves the smallest total unmet demand while the total fuel and CO2 emission 

cost still increases. A similar tradeoff is observed in Figure 5 and Figure 6. The total fuel and 

CO2 emission cost reach the minimum when α was set to be very small values whereas total 

unmet demand is minimized when α was set to large values. It is noted that when the 

modeling horizon is longer, total unmet demand starts to drop with a smaller value of α but 

stops reducing at the same α value, i.e., 100. Meanwhile, the total fuel and CO2 emission cost 

has slight fluctuations when α is smaller than 1 and keeps increasing when α is greater than 1. 

In all cases, when the weight for total unmet demand increases, the total fuel and CO2 

emission cost becomes less important. The repositioning strategy therefore aims to handle 

more unmet demand by loading more bikes on the vehicle to transport and serve bike deficit 

nodes, and as a result increases the average vehicle load and the total fuel and CO2 emission 

cost. 
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Figure 4 Effect of the weight α at H = 3|T| 

 
 Figure 5 Effect of the weight α at H = 6|T| 

  
 Figure 6 Effect of the weight α when H = 12|T| 
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4.3. Effect of the stage length towards the total fuel and CO2 emission cost and total unmet 

demand  

 

This section investigates how the stage length influences the total fuel and CO2 emission cost 

and total unmet demand. The stage length ρ can be 2l, 3l, and 4l and the total operation time 

|H| is set to be 6l. The 30-node network was used and α ranges from 0.01 to 1000. 

Figure 7 depicts the total fuel and CO2 emission cost with stage lengths to be 2l, 3l, and 4l 

under different values of α. The trends of all cases are similar that the fuel and CO2 emission 

cost increases with the value of α. For the case of ρ = 4l, its total fuel and CO2 emission cost 

is higher than that in the other two cases for all α values. With a longer stage length, the 

vehicle may tend to plan for a route to load more bikes at the earlier stages to solve the bike 

deficits of a series of bike deficit nodes, but not to visit the bike surplus and deficit nodes 

alternately. This results in a larger bike load on the vehicle and thus higher fuel and CO2 

emission cost. For the cases of ρ = 2l and ρ = 3l, their difference in the total cost are small 

when the α value is smaller than 10. However, the total cost of the case of ρ = 3l increases 

sharply when the α value is greater than 10, while the increase in fuel and CO2 emission cost 

of the case of ρ = 2l is less steep. In other words, the total fuel and CO2 emission cost of the 

case of ρ = 2l is the lowest when the α value is greater than 10. For the total unmet demands 

shown in Figure 8, the differences among all three cases are not significant when the α value 

is smaller than 1. However, for all α values greater than 1, the case of ρ = 2l achieves the 

lowest total unmet demand compared with the other two cases. This implies that for larger α 

values, a longer stage period can result in higher total unmet demand (and the gap can be as 

large as 13 bikes at α = 1000 between the cases of ρ = 2l and ρ = 4l). This difference may be 

due to prediction accuracy. Planning a route for a longer period can create larger total unmet 

demand because the demand forecasts for later time intervals are available with lower 

reliability. 

An additional note related to the stage length is about the computation times. Table 5 

displays the average computation times for 20 runs for all three different stage lengths with α 

= {0.01, 1, 1000}. The computation times do not have observable differences with respect to 

the α value (as the largest gap is less than 0.2s), but show an increasing trend with respect to 
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the length of stage period ρ. With a longer stage length, the route is longer and thus requires 

more time to evaluate the loading and unloading quantities at each node. 

 
Figure 7 Effect of stage length on the total vehicle fuel and CO2 emission cost 

 
Figure 8 Effect of stage length on total unmet demand 

 

Table 5 Computation times under different combinations of stage lengths and α values 

α value ρ = 2l ρ = 3l ρ = 4l 
0.01 8.89 9.28 9.76 
1 8.76 9.18 9.81 
1000 8.83 9.13 9.85 
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The loading and unloading times of a bike vary from one public bike sharing system to 

another. Though the deviation of loading and unloading times per bike may not be very large, 

the accumulated time deviation can be significant when the service time horizon is long. This 

section compares how the lengths of these times influence total unmet demand and the total 

fuel and CO2 emission cost per unit travel time. This example assumes that both loading and 

unloading time are equal and considers the loading time (and unloading time) to be 6, 30, and 

60 seconds per bike, with H = 6|T| and |N| = 30. 

 Figure 9 shows the effect of loading time on total unmet demand. For small values of α, 

the differences in loading time do not influence total unmet demand because minimizing the 

total fuel and CO2 emission cost is the dominant objective. When α increases, we can observe 

that a shorter loading time can achieve a lower total unmet demand. A shorter loading time 

per bike allows more time for travel within a roll period, and thus the vehicle can visit more 

nodes to satisfy their demand.  

Figure 10 compares the total emissions per unit travel time under different loading and 

unloading times. This normalization of the fuel and CO2 emission cost is required because the 

vehicle travel times of the three instances have large deviations despite the same length of 

modeling horizon. The total travel time occupies approximately 96% of the modeling horizon 

when the loading time is 6 seconds, whereas it only occupies 68–72% when the loading time 

is 60 seconds. As it is assumed that there is no fuel consumption and CO2 emission during the 

loading and unloading periods, the total fuel and CO2 emission cost in all instances should be 

normalized by the total travel time to obtain the total fuel and CO2 emission cost per unit time 

(and hence the emission rate). The results show that the higher loading and unloading times 

always give a higher total fuel and CO2 emission cost per unit time. It is because a longer 

loading time results in visiting fewer nodes, and thus more bikes need to be loaded onto 

vehicles when visiting a bike surplus node. These results also indicate that shortening loading 

and unloading times is an effective way to reduce total unmet demand and the emission cost 

per unit time of the vehicle.  
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Figure 9 Effect of loading time on total unmet demand 

 
Figure 10 Effect of loading time on the total fuel and CO2 emission cost per km 

 

5. Conclusions 

We propose a novel dynamic green bike repositioning problem in a bike-sharing system. The 

problem aims to reduce the total unmet demand of the bike-sharing system and total fuel and 

CO2 emission cost of the repositioning vehicle over a specific service time horizon. To handle 

the dynamic nature of the problem, this study adopts a rolling horizon approach to break 

down the proposed problem into a set of stages, in which a static bike repositioning 

sub-problem is solved in each stage. An EABC algorithm and a route truncation heuristic are 

jointly used to optimize the route design in each stage, and the loading and unloading 

heuristic is used to tackle the loading and unloading sub-problem along the route in a given 

stage.  

Numerical examples are set up to illustrate the performance of the proposed algorithm 
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and the properties of the problem. The results show that the EABC algorithm outperforms the 

classic Genetic Algorithm to solve the routing sub-problem. The results also reveal that the 

shorter stage length can achieve a better solution; in addition to computation time, total unmet 

demand and the total fuel and CO2 emission cost are higher with a longer stage length. 

Moreover, the results also demonstrate that the setting of weight is important for achieving a 

balance between the two objectives, i.e., minimizing total unmet demand and minimizing the 

total vehicle fuel and CO2 emission cost, despite the length of the service time horizon. The 

observed tradeoff leaves the decision of the best balance between two objectives to the 

operator. In addition, to reduce total unmet demand and the total fuel and CO2 emission cost 

per unit time in practice, the numerical results show that one of the solutions is to shorten 

loading and unloading times per bike.  

To the best of our knowledge, the branch and price method has not been used to solve 

bike repositioning problems, including ours. This can be left for future research. 
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