
APUS: Fast and Scalable Paxos on RDMA
Cheng Wang

The University of Hong Kong
Hong Kong

cwang2@cs.hku.hk

Jianyu Jiang
The University of Hong Kong

Hong Kong
jyjiang@cs.hku.hk

Xusheng Chen
The University of Hong Kong

Hong Kong
chenxus@hku.hk

Ning Yi
The University of Hong Kong

Hong Kong
ezreal10@hku.hk

Heming Cui
The University of Hong Kong

Hong Kong
heming@cs.hku.hk

ABSTRACT
State machine replication (SMR) uses Paxos to enforce the same
inputs for a program (e.g., Redis) replicated on a number of hosts,
tolerating various types of failures. Unfortunately, traditional Paxos
protocols incur prohibitive performance overhead on server pro-
grams due to their high consensus latency on TCP/IP. Worse, the
consensus latency of extant Paxos protocols increases drastically
when more concurrent client connections or hosts are added. This
paper presents APUS, the first RDMA-based Paxos protocol that
aims to be fast and scalable to client connections and hosts. APUS
intercepts inbound socket calls of an unmodified server program,
assigns a total order for all input requests, and uses fast RDMA
primitives to replicate these requests concurrently.

We evaluated APUS on nine widely-used server programs (e.g.,
Redis and MySQL). APUS incurred a mean overhead of 4.3% in
response time and 4.2% in throughput. We integrated APUS with an
SMR system Calvin. Our Calvin-APUS integrationwas 8.2X faster
than the extant Calvin-ZooKeeper integration. The consensus
latency of APUS outperformed an RDMA-based consensus protocol
by 4.9X. APUS source code and raw results are released on github.
com/hku-systems/apus.

CCS CONCEPTS
• Computer systems organization → Reliability; Availabil-
ity;

KEYWORDS
State Machine Replication, Fault Tolerance, Remote Direct Memory
Access, Software Reliability

ACM Reference Format:
Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. 2017.
APUS: Fast and Scalable Paxos on RDMA. In Proceedings of SoCC ’17,
Santa Clara, CA, USA, September 24–27, 2017, 14 pages.
https://doi.org/10.1145/3127479.3128609

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/0. . . $15.00
https://doi.org/10.1145/3127479.3128609

1 INTRODUCTION
State machine replication (SMR) runs the same program on replicas
of hosts and invokes a distributed consensus protocol (typically,
Paxos [53]) to enforce the same total order of inputs among replicas.
Since the consensus on an input can be reached as long as a quorum
(typically, majority) of replicas agree, SMR tolerates various errors,
including hardware failures of minor replicas. SMR is deployed
on clouds to make the metadata (e.g., leadership) of a distributed
system highly available.

The strong fault-tolerance of SMRmakes it an ideal high-availability
service for general server programs. Recent SMR systems [29, 40,
49] use Paxos to enforce the same inputs for a server program,
and they use advanced techniques (e.g., deterministic inter-thread
synchronization [29, 78]) to make the program transit the same exe-
cution states across replicas. These SMR systems tolerate hardware
failures for server programs.

Unfortunately, despite much effort, state-of-the-art still lacks a
fast, scalable Paxos protocol for general server programs. A main
reason is that traditional Paxos protocols [29, 66, 75] go through
software network layers in OS kernels [72], which incurs high
consensus latency. For efficiency, Paxos protocols typically take the
Multi-Paxos approach [54]: it assigns one replica as the “leader"
to invoke consensus requests, and the other replicas as “backups"
to agree on requests. To agree on an input, at least one round-trip
time (RTT) is required between the leader and a backup. Given that
a ping RTT in LAN typically takes hundreds of µs, and that the
request processing time of key-value store servers (e.g., Redis) is
at most hundreds of µs, Paxos incurs high overhead in the response
time of server programs.

Worse, the consensus latency of extant consensus protocols is
often scale-limited: it increases drastically when the number of con-
current requests or replicas increases. For instance, the consensus
latency of ZooKeeper [42] increases by 2.6X when the number of
concurrent proposing requests increases from 1 to 20 (on 3 replicas).
Scatter [37] shows that the consensus latency of its Paxos protocol
increases by 1.6X when the number of replicas increases from 3 to
9.

Our evaluation found that the scalability problem in traditional
consensus protocols mainly stem fromOS kernels. We ran 4 popular
consensus protocols [10, 21, 29, 75] on 24-core hosts with 40Gbps
network (i.e., network bandwidthwas not a bottleneck), we then ran
24 concurrent request connections. When the number of replicas
increased from 3 to 9, the consensus latency of 3 protocols increased

94

github.com/hku-systems/apus
github.com/hku-systems/apus
https://doi.org/10.1145/3127479.3128609
https://doi.org/10.1145/3127479.3128609

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

by 105.4% to 168.3%, and 36.5% to 63.7% of the increase was in OS
kernels.

As modern server programs tend to support more concurrent
client connections, and advanced SMR systems tend to deploy more
replicas (e.g., Azure [52] deploys seven or nine replicas) to support
both replica failures and upgrades, the limited scalability in extant
consensus protocols becomes even more pronounced.

Recent hardware-accelerated consensus protocols [33, 43, 44, 74]
are effective on reducing consensus latency, but they are either
unsuitable for general server programs or are not designed to be
scalable on concurrent client connections. For instance, DARE [73],
a novel consensus protocol, achieves the lowest consensus latency
on a small number of client connections, but both its evaluation and
ours show that its consensus latency increases quickly when more
connections are added. Other recent works [32, 33, 55, 74] leverage
the synchronous network ordering in a datacenter to safely skip
consensus if packets arrive at replicas in the same order. These
works require rewriting a server program to use their new libraries
for checking the order of packets, so they are not designed to run
legacy server programs.

We argue that the problem of high, scale-limited consensus la-
tency is not fundamental in Paxos. OS kernels, a major source of
this problem, can be bypassed with advanced network features
such as Remote Direct Memory Access (RDMA) within the same
datacenter.

We present APUS,1 the first RDMA-based Paxos protocol and
runtime system. APUS intercepts an unmodified server program’s
inbound socket calls (e.g., recv()), assigns a total order for all
received requests in all connections, and uses fast RDMA primi-
tives to invoke consensus on these requests concurrently. To ensure
the same robustness as regular Paxos, APUS’s runtime system effi-
ciently tackles several reliability challenges, including atomic de-
livery of messages (§4.2), transparent replication (§5.1), and failure
recovery (§5.2).

A fast and scalable Paxos protocol, APUS has many practical
applications, and we elaborate two below. First, it can be integrated
into existing SMR systems (e.g., Calvin [78]), making the response
time of a server program running in these systems almost as fast
as the program’s unreplicated execution.

Second, it can support many server programs that are already
well-tested or deterministic, including single-threaded ones such
as Redis [76] and multi-processed ones such as Nginx [67] and
MediaTomb [12]. Even if a program is pre-mature and undergoing
debugging, enforcing the same order of inputs by APUS can still
help debugging tools (e.g., PRES [71]) easily reproduce bugs. §3.2
further illustrates APUS’s broad applications.

We implemented APUS in Linux and compared it with five open
source consensus protocols, including four traditional ones (lib-
Paxos [75], ZooKeeper [10], Crane [29] and S-Paxos [21]), and
an RDMA-based one (DARE [73]). We evaluated APUS on nine
widely used or studied programs, including 4 key-value stores
(Redis [76], Memcached [62], SSDB [77], and MongoDB [65]), a SQL
server MySQL [13], an anti-virus server ClamAV [26], a multime-
dia server MediaTomb [12], an LDAP server OpenLDAP [70], and

1We name our system after apus, one of the fastest birds.

3 5 7 9

C
on

se
ns

us
 la

te
nc

y
(u

s)

Number of replicas

8.2 8.8

24.8

41.5

250

750

1250

LibPaxos
ZooKeeper

CRANE

S-Paxos
DARE
APUS

Figure 1: Comparing APUS to five existing consensus proto-
cols. All six protocols ran a client with 24 concurrent con-
nections. The Y axis is broken to fit in all protocols.

Calvin [78], a SMR-like database built on top of ZooKeeper [10].
Evaluation shows that

(1) APUS is fast and scalable. Figure 1 shows that APUS’s con-
sensus latency outperformed four traditional consensus pro-
tocols by at least 32.3X. Its consensus latency stayed almost
constant to the number of concurrent requests and repli-
cas. Its consensus latency was faster than DARE by 4.9X in
average.

(2) APUS is easy to work with SMR. The Calvin-APUS inte-
gration took only 39 lines of code. Calvin-APUS’s response
time was 8.2X faster than the extant Calvin-ZooKeeper in-
tegration, and it incurred only 10.6% overhead in response
time and 4.1% in throughput over Calvin’s unreplicated
execution.

(3) APUS achieves low overhead on real-world server programs.
Compared to all nine server programs’ unreplicated execu-
tions, APUS incurred 4.3% overhead in response time and
4.2% in throughput.

(4) It is robust on replicas failures and packet losses.

Our major contribution is the first Paxos protocol that achieves
low performance overhead on diverse, widely-used server programs.
A fast, scalable, and deployable Paxos protocol, APUS can widely
promote the adoption of SMR and improve the fault-tolerance of
various systems [20, 21, 29, 40, 48, 52] within a datacenter.

are The remaining of this paper is organized as follows. §2 intro-
duces Paxos and RDMA background. §3 gives an overview of APUS.
§4 presents APUS’s consensus protocol with its runtime system. §5
presents implementation details. §6 compares APUS with DARE.
§7 does evaluation, §8 discusses related work, and §9 concludes.

2 BACKGROUND
2.1 Paxos
Paxos [53, 54] enforces a total order of inputs for a program running
across replicas. Because a consensus can be reached as long as a
majority of replicas agree, Paxos is known for tolerating various

95

APUS: Fast and Scalable Paxos on RDMA SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

faults, including hardware failures of minor replicas and packet
losses.

SMR systems [29, 40] often use Paxos to replicate important
online services. An typical SMR system contains two orthogonal
parts: (1) a Paxos protocol that enforces a total order of inputs for
the same program running across replicas; and (2) a technique (e.g.,
deterministic mutex locks [29, 78]) that makes the program transit
same execution states on the same inputs.

The consensus latency of Paxos protocols is notoriously high and
unscalable [10, 37]. As datacenters incorporate faster networking
hardware and more CPU cores, traditional consensus protocols [10,
21, 29, 40, 75] are having fewer performance bottlenecks on network
bandwidth and CPU resources.

However, software TCP/IP layers in OS kernels remain perfor-
mance bottlenecks [72]. To quantify this bottleneck, we evaluated
four traditional consensus protocols [10, 21, 29, 75] on 24-core hosts
with 40Gbps network, and we spawned 24 concurrent consensus
connections. When changing the replica group size from 3 to 9,
although network and CPUs were not saturated, the consensus
latency of 3 protocols drastically increased by 105.4% to 168.3%
(Figure 1), and 36.5% to 63.7% of this increase was in OS kernel.
When only one consensus connection was spawned, the latency
increase on the number of replicas was more gentle (Table 2 in
§7.1).

This evaluation shows that both the number of concurrent re-
quests and replicas make consensus latency increase drastically.
This problem becomes worse as server programs tend to support
more concurrent requests and advanced SMR systems (e.g., Azure [52])
deploy seven to nine replicas to in case replica failures and upgrades.

2.2 RDMA
RDMA architectures (e.g., Infiniband [1] and RoCE [8]) become
common within a datacenter due to its ultra low latency, high
throughput, and its decreasing prices. The ultra low latency of
RDMA not only comes from bypassing the OS kernel, but also
its dedicated network stack implemented in hardware. Therefore,
RDMA is considered the fastest kernel bypassing technique [46, 64,
73]; it is several times faster than software-only kernel bypassing
techniques (e.g., DPDK [7] and Arrakis [72]).

RDMA has three operation types, from fast to slow: one-sided
read/write operations, two sided send/recv operations, and IPoIB
(IP over Infiniband). IPoIB runs unmodified socket programs, but it
is a few times slower than the other two types. A one-sided RDMA
write can directly write from one replica’s memory to a remote
replica’s memory without involving the remote OS kernel or CPU.
Prior work [64] shows that one-sided operations are up to 2X faster
than two-sided operations [47], so APUS uses one-sided operations
(or “WRITE" in this paper). On a WRITE success, the remote NIC
(network interface card) sends an RDMA ACK to local NIC.

A one-sided RDMA communication between a local and a remote
NIC has a Queue Pair (QP), including a send queue and a receive
queue. Such a QP is a global data structure between every two
replicas, but pushing a message into a local QP takes at most 0.2 µs
in our evaluation. Different QPs between different replicas work
in parallel (leveraged by APUS in §4.1). Each QP has a Completion
Queue (CQ) to store ACKs. A QP belongs to a type of “XY": X can

Input
coordinator

Output
checker

Checkpoint & restore
guard

Checkpoint & restore
guard

accept()
accept()

recv()
recv()

T1
T1

A
A

R
R

H
H

close()
close()

C
C

RDMA
QP

RDMA
QP

send()
send()

T2
T2

Tn
Tn

consensus
log

Client2
Client2

Client N
Client N

Client 1
Client 1

...
...

Checkpoint &restore

guard

Input
coordinator

Output
checkerRDMA

QP

TCP/IP

...
A

A
R

R
...

...

append

append append append

accept()

A

R
R recv()

H
H output hash

C
C close()

A server program
TCP/IP

TCP/IP

TCP/IP

Leader Backup

Figure 2: APUS Architecture (key components are in blue).

be R (reliable) or U (unreliable), and Y can be C (connected) or U
(unconnected). HERD [46] shows that WRITEs on RC and UC OPs
incur almost the same latency, so APUS uses RC QPs.

Normally, to ensure a WRITE resides in remote memory, the
local replica busily polls an ACK from the CQ before it proceeds
(or signaling). Polling ACK is time consuming as it involves syn-
chronization between the NICs on both sides of a CQ. We looked
into the ACK pollings in a recent RDMA-based consensus proto-
col DARE [73]. We found that, although it is highly optimized (its
leader maintains one global CQ to receive all backups’ ACKs in
batches), busily polling ACKs slowed DARE down (§7.3): when the
CQ was empty, each poll took 0.039∼0.12 µs; when the CQ has one
or more ACKs, each poll took 0.051∼0.42 µs.

Fortunately, depending on protocol logic, one can do selective
signaling [46]: it only checks for an ACK after pushing a number
of WRITEs. Because APUS’s protocol logic does not rely on RDMA
ACKs, it just occasionally invokes selective signaling to clean up
ACKs.

3 OVERVIEW
3.1 APUS Architecture
APUS deployment is similar to a typical SMR’s: it runs a program on
replicas within a datacenter. Replicas connect with each other using
RDMA QPs. Client programs located in LAN or WAN. The APUS
leader handles client requests and runs its RDMA-based protocol
to enforce the same total order for all requests across replicas.

Figure 2 shows APUS’s architecture. APUS intercepts a server
program’s inbound socket calls (e.g., recv()) using a Linux tech-
nique called LD_PRELOAD. APUS involves four key components: a
Paxos consensus protocol for input coordination (in short, the coor-
dinator), a circular in-memory consensus log (the log), a guard pro-
cess that handles checkpointing and recovering a server’s process
and file system state (the guard), and an optional output checking
tool (the checker).

The coordinator is involved when a thread of a program running
on the APUS leader calls an inbound socket call (e.g., recv()). The
thread executes the Libc call, gets the received data, appends a log

96

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

entry on the leader’s local consensus log, and replicates this entry
to backups’ consensus logs using our Paxos protocol (§4).

In this protocol, all threads in the server program running on
the leader replica can concurrently invoke consensus on their log
entries (requests), but APUS enforces a total order for all entries
in the leader’s local consensus log. As a consensus request, each
thread does an RDMA WRITE to replicate its log entry to the
corresponding log entry position on all APUS backups. Each APUS
backup polls from the latest unagreed entry on its local consensus
log; if it agrees with the proposed log entry, it does an RDMA
WRITE to write a consensus reply on the leader’s corresponding
entry.

To ensure Paxos safety [60], all APUS backups agree on the
entries proposed from the leader in a total order without allowing
any entry gap.When amajority of replicas (including the leader) has
written a consensus reply on the leader’s local entry, this entry has
reached a consensus. By doing so, APUS consistently enforces the
same consensus log for both the leader and backups. §4.5 presents
a proof sketch on the correctness of the protocol, and §4.6 analyzes
why it is fast and scalable.

The output checker is periodically invoked as a program repli-
cated in APUS executes outbound socket calls (e.g., send()). For
every 1.5KB (MTU size) of accumulated outputs per connection, the
checker unions the previous hash with current outputs and com-
putes a new CRC64 hash. For simplicity, the output checker uses
APUS’s input consensus protocol (§4) to compare hashes across
replicas.

Our evaluation found that the output checker had negligible
performance impact and all output divergence were due to physical
times (§7.4). This suggests that many server programs are well-
tested, and the output checker can be turned on only in program
debug phase. If APUS is integrated into an SMR system, the out-
put checker is not needed because SMR already has techniques to
enforce the same program executions.

A guard runs on each APUS replica to cope with replica manage-
ment, including checkpointing program states and adding/recovering
replicas (§5.2).

3.2 Motivating Applications of APUS
Building fast SMRsystems. Extant SMR systems (e.g.,Crane [29],
Rex [40], and Calvin [78]) use TCP/IP-based consensus protocols,
thus they incur high overhead in server programs’ response time.
APUS can greatly alleviate this overhead. Evaluation (§7.2) shows
that the response time of our Calvin-APUS integration on realistic
SQLworkloads was 8.2X than its extant Calvin-ZooKeeper integra-
tion. Compared to Calvin’s unreplicated execution, APUS incurred
only 10.6% overhead in response time and 4.1% in throughput.

Improving the availability of server programs. Many real-
world server programs handle online requests and store important
data, so they naturally demand high availability against hardware
failures. Many programs are suitable to run with APUS because
they are already well-tested or deterministic (e.g., single-threaded
ones such as Redis and multi-processed ones such as Nginx and
MediaTomb). Other orthogonal techniques such as deterministic
multithreading [16, 30, 56, 78] can be combined with APUS to make
a replicated server program behave the same on the same inputs.

Our evaluation (§7.4) shows that, compared to all nine evaluated
programs’ unreplicated executions at peak performance, APUS
incurs 4.2% overhead in throughput and 4.3% in response time.

Improving debugging efficiency. Even if a server program is
under development and may contain nondeterministic concurrency
bugs, APUS can still benefit extant debug tools [14, 50, 71] because
these tools often require extra mechanisms to frequently replay the
same total order of inputs. APUS logs program inputs persistently,
and it can efficiently replay these inputs in the same order when
integrated into debug tools (e.g., PRES [71]).

4 THE RDMA-BASED PAXOS PROTOCOL
4.1 Normal Case
APUS’s consensus protocol has three main elements. First, a Paxos
consensus log. Second, threads of a server program running on
the leader host (or leader threads). APUS hooks the inbound socket
calls (e.g., recv()) of these leader threads and invoke consensus
requests on these calls. We denote the data received from each of
these calls as a consensus request (i.e., an entry in the consensus
log). Third, an APUS internal thread running on every backup (or
backup threads), which agrees on consensus requests. The APUS
leader enables the first and second elements, and backups enable
the first and third elements.

struct log entry t {
consensus ack reply[MAX]; // Per replica consensus reply.
viewstamp t vs;
viewstamp t last committed;
int node id;
viewstamp t conn vs; // client connection ID.
int call type; // socket call type.
size t data sz; // data size in the call.
char data[0]; // data, with a canary value in the last byte.

} log entry;

Figure 3: APUS’s log entry for each socket call.

Figure 3 depicts the format of a log entry in APUS’s consensus
log. Most fields are the same as those in a typical Paxos proto-
col [60] except three: the reply array, conn_vs, and call_type.
The reply array is a piece of memory on the leader side, preserved
for backups to do RDMA WRITEs for their consensus replies. The
conn_vs is for identifying which TCP connection this socket call
belongs to (see §4.3). The call_type identifies different types of
socket calls (e.g., the accept() type and the recv() type) for the
entry.

Figure 4 shows APUS’s consensus protocol. Suppose a leader
thread invokes a consensus request when it calls a socket call
recv(). This thread’s consensus request has four steps. The first
step (L1, not shown in Figure 4) is executing the actual socket call,
because the thread needs to get the received data and returned
value, to allocate a distinct log entry, and to replicate the entry in
backups’ consensus logs.

The second step (L2) is local preparation, including assigning a
viewstamp (a totally-ordered Paxos consensus request ID [60]) for
this entry in the consensus log, allocating a distinct entry in the
log, and storing the entry to a local storage. We denote the time
taken on storing an entry as tSSD .

97

APUS: Fast and Scalable Paxos on RDMA SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

 RDMA WRITE

 Store SSD

 Begin/End of consensus

 Begin/End of waiting quorumSSD

SSD

Backup 1

Backup 2

Leader

Time axis

L2

L3

L4

B1

B2
SSD

B1

B2L3

Figure 4: APUS consensus algorithm in normal case.

Third, each leader thread concurrently invokes a consensus via
the third step (L3): WRITE the log entry to remote backups. This
step is thread-safe because each leader thread works on its own
distinct entry and remote backups’ corresponding entries. An L3
WRITE returns quickly after pushing the entry to its local QP
connecting the leader and each backup. We denote the time taken
for this push as tPU SH , which took at most 0.2 µs in our evaluation.
tPU SH is serial for concurrently arriving requests on each QP, but
the WRITEs (all L3 arrows in Figure 3) to different QPs run in
parallel.

The fourth step (L4) is that the leader thread polls on its reply
field in its local log entry to wait for backups’ consensus replies. It
breaks the poll if a number of heartbeats fail (§4.4). If a majority
of replicas agrees on the entry, an input consensus is reached, the
leader thread leaves this recv() call and proceeds with its program
logic.

On each backup, a backup thread polls from the latest unagreed
log entry. It breaks the poll if a number of heartbeats fail (§4.4). If
no heartbeat fails, the backup thread then agrees on entries in the
same total order as those on the leader’s consensus log, using three
steps. First (B1), it does a regular Paxos view ID check [60] to see
whether the leader’s view ID matches its own one, it then stores the
log entry in its local SSD. To scale to concurrently arriving requests,
the backup thread scans multiple entries it agrees with at once. It
then stores them in APUS’s parallel storage.

Second (B2), on each entry the backup agrees, the backup thread
does an RDMA WRITE to send back a consensus reply to the
reply array element in the leader’s corresponding entry. Third
(B3, not shown in Figure 4), the backup thread does a regular Paxos
check [60] on last_committed and to know the latest entry that
has reached consensus. It then “executes" the committed entries by
forwarding the data in these entries to the server program on its
local replica. Carrying latest committed entries in next consensus
requests is a common, efficient Paxos implementation method [60].

To ensure Paxos safety, the backup thread agrees on log entries
in order without allowing any gap [60]. If the backup suspects it
misses some log entries (e.g., because of packet loss), it invokes

a learning request to the leader asking for the missing entries.
We found one backup thread per backup suffices to achieve low
overhead on concurrent connections (§7.3).

4.2 Atomic Message Delivery
On a backup side, one tricky challenge is that atomicity must be
ensured on the leader’s RDMA WRITEs on all entries and backups’
polls. For instance, while a leader thread is doing a WRITE on
vs to a remote backup, the backup’s thread may be reading vs
concurrently, causing a corrupted read value.

To address this challenge, one prior approach [34, 46] leverages
the left-to-right ordering of RDMAWRITEs and puts a special non-
zero variable at the end of a fix-sized log entry because they mainly
handle key-value stores with fixed value length. As long as this
variable is non-zero, the RDMAWRITE ordering guarantees that
the log entry WRITE is complete. However, because APUS aims to
support general server programs with largely variant received data
lengths, this approach cannot be applied in APUS.

Another approach is using atomic primitives provided by RDMA
hardware, but a prior evaluation [80] has shown that RDMA atomic
primitives are much slower than normal RDMA WRITEs and local
memory reads.

APUS tackles this challenge by using the leader to add a canary
value after the data array. A backup thread always first checks the
canary value according to data_size and then starts a standard
Paxos consensus reply decision [60]. This synchronization-free ap-
proach ensures that a APUS backup thread always reads a complete
entry efficiently.

4.3 Handling Concurrent Connections
Unlike traditional Paxos protocols which mainly handle single-
threaded programs due to the deterministic execution assumption
in SMR, APUS aims to support both single-threaded as well as multi-
threaded or -processed programs running on multi-core machines.
Therefore, a strongly consistent mechanism is needed to map each
connection on the leader and its corresponding connection on
backups. A naive approach is matching a leader connection’s socket
descriptor to the same one on a backup, but programs on backups
may return nondeterministic descriptors due to systems resource
contention.

Fortunately, Paxos already makes viewstamps [60] of requests
(log entries) strongly consistent across replicas. For TCP connec-
tions, APUS adds the conn_vs field, the viewstamp of the the first
socket call in each connection (i.e., accept()) as the connection
ID for log entries.

4.4 Leader Election
Leader election on RDMA raises a main challenge: because back-
ups do not communicate with each other in normal case, a backup
proposing itself as the new leader does not know the remote mem-
ory locations where the other backups are polling. Writing to a
wrong remote memory location may cause the other backups to
miss all leader election messages. A recent system [73] establishes
an extra control QP to handle leader election, complicating deploy-
ments.

98

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

APUS addresses this challenge with a simple, clean design. It
runs leader election on the normal-case consensus log and QP. In
normal case, the leader does WRITEs to remote logs as heartbeats
with a period of T. Each consensus log maintains an elect[MAX]
array, one array element for each replica. This elect array is only
used in leader election. Once backups miss heartbeats from the
leader for 3*T, they suspect the leader to fail, close the leader’s QPs,
and start to work on the elect array to elect a new leader.

Backups use a standard Paxos leader election algorithm [60]
with three steps. Each backup writes to its own elect element
indexed by its replica ID on other replicas’ elect. First, each backup
waits for a random time (similar to random election timeouts in
Raft [68]), and it proposes a new view with a standard two-round
Paxos consensus [54] by including both its view and the index of
its latest log entry. The other backups also propose their views and
poll on this elect array in order to agree on an earlier proposal or
confirm itself as the winner. The backup with a more up-to-date
log will win the proposal. A log is more up-to-date if its latest entry
has either a higher view or the same view but a higher index.

Second, the winner proposes itself as a leader candidate using
this elect array. Third, after the second step reaches a quorum,
the new leader notifies remote replicas itself as the new leader
and it starts to WRITE periodic heartbeats. Overall, APUS safely
avoids multiple “leaders" to corrupt consensus logs, because only
one leader is elected in each view, and backups always close an
outdated leader’s QPs before electing a new leader. For robustness,
the above three steps are inherited from a practical Paxos election
algorithm [60], but APUS makes the election efficient and simple
in an RDMA domain.

4.5 Correctness
APUS’s protocol derives from Paxos Made Practical (PMP) [60], a
practical viewstamp-based Paxos protocol. We made this design
choice because Paxos is notoriously difficult to understand [53,
54, 79], implement [25, 60], and verify [39, 82]. Deriving from a
practical protocol [60] helps us incorporate these readily mature
understanding and theoretically verified safety rules into APUS.

We made two major modifications from PMP. Modification 1:
APUS replicas use the faster and more scalable one-sided RDMA
WRITE to replicate log entries (§4.1) and do leader elections (§4.4).
Modification 2: to prevent outdated leaders from messing up log
entries, APUS’s backups conservatively close the QP with the out-
dated leader right after suspecting it has failed (§4.4).

These two modifications empower APUS’s protocol to comply
with Paxos safety guarantee: all replicas see the same total order
of request entries in their local consensus logs. We will show that
APUS satisfies three properties: (1) leader completeness: all agreed
entries should present in the logs of subsequent leaders; (2) log
matching: two replicas’ logs cannot have different agreed entries
(entries agreed by a majority) on the same log position; (3) data
integrity: all replicas cannot read corrupted data from log entries.
The first two properties are widely considered sufficient to ensure
safety [68] in traditional TCP/IP based Paxos protocols, while we
add data integrity because our protocol is based on RDMA.

The leader completeness property of APUS inherits from PMP.
APUS follows PMP’s view change protocol to ensure at most one

leader in each view and the newly elected leader is most up-to-
date (§4.4). Therefore, we admit this property and omit the proof
here. Below, we are going to prove the log matching and the data
integrity properties.

Log matching. We prove the log matching property by induc-
tion on the view number. The base case holds because the initial log
is empty. For the inductive case, we hypothesize that the property
holds for the views up to v and prove the property still holds in the
next view. We can safely assume there is a leader (the current leader)
in the new view, because if no leader presents, no new entries can
get agreed and the property will not be broken.

The inductive case can be proved in two steps. First, since the
current leader is elected, a majority of replicas must have closed QPs
with old leaders to prevent them writing to their logs (modification
2). Therefore, only the current leader can replicate its log entries to
a majority of replicas and get the entries agreed. Second, when one
leader thread replicates data messages in one log entry, it WRITEs
to the same position on remote backups’ logs (§4.1). Therefore, the
newly replicated entries to be agreed are all identical to those of the
current leader. Combining the two steps, the newly agreed entries
in the new view are all identical. Therefore, the inductive case is
proved and thus the log matching property holds.

Data integrity. All replicas will not read corrupted entries be-
cause of three reasons. First, each leader thread replicates log en-
tries to disjoint memory addresses (§4.1). Therefore, the replication
mechanism is thread-safe and will not cause contentions. Second,
RDMA provides error detection mechanisms to prevent data corrup-
tion during network transmission, which is a basic requirement of
Paxos deployment. Third, APUS has an atomic log entry read/write
mechanism (§4.2) to prevent replicas from reading incomplete log
entries. These three factors work together to ensure all replicas
see correctly replicated, non-corrupted log entries and hence the
property holds.

4.6 Analytical Analysis on Performance
APUS is designed to be scalable to the number of concurrent client
connections for general server programs. In contrast, a recent
RDMA-based protocol DARE [73] is designed to achieve the lowest
latency on a small number of connections for its own key-value
store server. Below is an analytical analysis on APUS’s consensus
latency, and we compare APUS and DARE in §6.1.

Suppose the APUS leader has N client connections, and N re-
quests arrive at the same time. APUS invokes consensus on all
requests in the same way without distinguishing them as “read
only" or “write". Suppose there are only three replicas.

According to the leader’s four steps L1∼L4, to reach consensus
for all these N requests, the time taken on the leader’s ith request
includes five parts: (1) an SSD storage time tSSD in L2 (each leader
thread does a SSD store in parallel) ; (2) because an RDMA QP
is a global data structure between every two replicas, pushing a
message to a QP is serialized, which costs i × tPU SH for ith request;
(3) a 1

2 tRTT in L3; (4) an SSD storage time tSSD in B1 for each
backup (done by backups in parallel); and (5) a 1

2 tRTT in B2. On
APUS’s leader, the average consensus latency for all N requests
sums up as the equation below:

99

APUS: Fast and Scalable Paxos on RDMA SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

APUS = (
N∑
i=1

(2tSSD + i × tPU SH + tRTT))/N

= 2tSSD +
(N + 1)

2
tPU SH + tRTT

(1)

This equation shows that APUS’s consensus latency is scalable to
N because tPU SH is often below 0.2 µs (§2.2).

5 IMPLEMENTATION DETAILS
5.1 Replicating an unmodified server program
To replicate an unmodified server program, APUS leverages a Linux
technique called LD_PRELOAD. This technique enables intercep-
tion of libc function calls and customized code injection. With this
mechanism, APUS intercepts all the libc inbound socket calls and
invokes the RDMA-based consensus protocol (§4) to replicate the
inputs from the leader to backups. By doing so, any server program
using the POSIX socket can run in APUS without being modified.

5.2 Checkpoint and Restore
To handle replica failures, a Paxos protocolmust provide a persistent
input logging storage. We explicitly designed the input logging
storage mechanism in APUS to be thread-safe and scalable to the
number of concurrent client connections. Specifically, the input
logging operation bypasses the kernel cache, and is directly applied
onto the disk.

In APUS, the guard process on a backup replica checkpoints the
local server program’s process state and file system state (including
the input logging storage) of current working directory within a
one-minute duration.

Such a checkpoint operation and its duration is not sensitive
to normal case performance because it is invoked on one backup
replica, and hence the other backups can still reach quorum rapidly.
Each checkpoint is associated with a last committed socket call
viewstamp of the server program. After each checkpoint, the backup
dispatches the checkpoint zip file to the other replicas.

Specifically, APUS leverages CRIU [28], a popular, open source
tool, to checkpoint a server program’s process state (e.g., CPU
registers and memory). Since CRIU does not support checkpointing
RDMA connections, APUS’s guard first sends a “close RDMA QP"
request to an APUS internal thread, lets this thread closes all remote
RDMA QPs, and then invokes CRIU.

5.3 Network Output Checking Tool
Server programs often send replies with non-blocking IO. To align
outputs across replicas, APUS uses a bucket-based hash computa-
tion mechanism. When a server calls a send() call, APUS puts the
sent bytes into a local, per-connection bucket with 1.5KB (MTU
size). Whenever a bucket is full, APUS computes a new CRC64 hash
on a union of the current hash and this bucket. To compare a hash
across replicas, the output checker uses APUS’ input consensus
protocol (§4.1). Because this protocol is invoked rarely, we did not
observe its performance impact. The output checker is mainly for
server programs’ development purpose (§3.1).

1 2 3 Legend:

RDMA WRITE

RDMA ACK

Backup 1

Leader

Backup 2

1 2 3

Time axis

Figure 5: DARE’s RDMA-based protocol. It is a sole-leader,
two-round protocol with three steps: (1) the leader WRITEs
a consensus request to all backups’ consensus logs andwaits
for ACKs to check if they succeed; (2) for the successful back-
ups in (1), the leader does WRITEs to update tail pointer of
their consensus logs; and (3) on receiving amajority ofACKs
in (2), a consensus is reached, the leader doesWRITEs to no-
tify backups.

6 DISCUSSIONS
6.1 Comparing APUS with DARE
DARE [73] deviates from Paxos due to its centralized, sole-leader
protocol: in normal case, the leader does all consensus work via
RDMA, and the other replicas are silent and do not consume CPU.
Figure 5 shows DARE’s protocol with two-rounds: first, leader does
RDMA WRITEs of consensus requests on each replica; second,
leader does RDMA WRITEs on each replica to update a global
variable that points to the latest request (tail of consensus log) in
each backup. DARE backups are silent in both rounds, and only their
RDMA NICs send back RDMA ACKs to the leader’s NIC. Because
the second round updates a global variable on every backup, which
serializes all consensus requests, DARE is not designed to be scalable
to concurrent connections.

DARE is mainly designed to achieve the lowest consensus latency
on a small number of concurrent key-value connections. To this
end, it has two clever features. First, on an input consensus, DARE
needs to store the input only once on the leader, because its backups
are silent. In current DARE implementation, leader does not store
inputs and works purely in-memory. Second, it batches SET and
GET requests separately. For GET requests, leader does only one-
round RDMA READs to check view IDs from backups. Both DARE’s
evaluation and ours (§7.3) show that, when there were at most
six concurrent connections, DARE achieved the lowest consensus
latency in extant evaluation [33, 43, 44, 55, 74].

Despite the two features, the serialization problem in DARE still
affects its scalability, especially when many SET and GET requests
arrive concurrently. DARE’s evaluation [73] confirmed this prob-
lem: on three replicas and nine concurrent connections, DARE’s

100

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

throughput on the 50% SET and 50% GET randomly arrival work-
load was 43.5% lower than that on the 100% SET workload. Our
evaluation (§7.3) reproduces this problem when increasing the num-
ber of concurrent connections from 1 to 24: DARE’s consensus
latency increased approximately linearly to the number of connec-
tions; APUS’s consensus latency was faster than DARE by 4.9X in
average.

Overall, APUS differs from DARE in three aspects. First, APUS
is a Paxos protocol for general server programs; DARE is a novel,
sole-leader consensus protocol for its own key-value store. Second,
APUS is designed to be scalable on many concurrent client connec-
tions; DARE is mainly designed to achieve lowest consensus latency
on a smaller number of connections. Third, APUS is a persistent
protocol; DARE currently works purely in-memory. These differ-
ences show that APUS is more suitable for general server programs,
and DARE more suitable for maintaining metadata.

6.2 APUS Limitations
APUS currently does not replicate physical times such as time()
because these physical results are often explicit and easy to examine
from network outputs (e.g., a timestamp in the header of a reply).
Existing Paxos approaches [49, 60] can be leveraged to intercept
these functions andmake programs produce the same results among
replicas.

To replicate general client requests [29, 73], APUS totally or-
ders all types of requests and it has not incorporated read-only
optimization [49], because its performance overhead is already low
(§7.4).

7 EVALUATION
Evaluation was done on nine RDMA-enabled Dell R430 and five
Supermirco SuperServer 1019P hosts. Each host has Linux 3.16.0
and 2.6 GHz Intel Xeon CPU. The Dell R430 hosts are equipped
with 24 hyperthreading cores, 64 GB memory, and 1 TB SSD. The
SuperServer 1019P hosts have 28 hyperthreading cores, 32 GB mem-
ory, and 375GB SSD. All NICs are Mellanox ConnectX-3 (40Gbps)
connected with RoCE [8]. All programs’ unreplicated executions
run on IPoIB (§2.2). Workloads run on idle replicas.

We compared APUS with five open source consensus proto-
cols, including four traditional ones (libPaxos [75], ZooKeeper [10],
Crane [29] and S-Paxos [21]) and an RDMA-based one (DARE [73]).
S-Paxos is designed to achieve scalable throughput on more replicas.

We evaluated APUS on nine widely used or studied programs,
including 4 key-value stores Redis, Memcached, SSDB, MongoDB;
MySQL, a SQL server; ClamAV, an anti-virus server that scans files
and delete malicious ones; MediaTomb, a multimedia storage server
that stores and transcodes video and audio files; OpenLDAP, an
LDAP server; Calvin [78], a popular SMR system for databases.
We picked Calvin because: (1) it replicates inputs with a highly-
engineered consensus protocol ZooKeeper [10], a good comparison
target for APUS; and (2) it implements deterministic synchroniza-
tion, which can make a program run deterministically. Table 1
shows workloads. The rest of this section focuses on five questions:
§7.1: Is APUS much faster than traditional consensus?
§7.2: How easy is APUS to integrate into SMR systems?
§7.3: How faster is APUS compared to DARE?

Table 1: Benchmarks and workloads. “Self" in the Bench-
mark column means we used a program’s own benchmark.

Program Benchmark Workload/Input

ClamAV clamscan [3] Files in /lib from a replica
MediaTomb ApacheBench [11] Transcoding videos
Memcached mcperf [2] 50% set, 50% get operations
MongoDB YCSB [5] Insert operations
MySQL Sysbench [4] SQL transactions
OpenLDAP Self LDAP queries
Redis Self 50% set, 50% get operations
SSDB Self Eleven operation types
Calvin Self SQL transactions

§7.4: What is the performance overhead of running APUS with
server programs? How well does it scale?

§7.5: How stable is APUS’s performance in a congested network?
§7.6: How well does APUS handle replica failures?

7.1 Comparing w/ Traditional Consensus
We ran APUS and four traditional consensus protocols using their
own client programs or popular client programs with 100K requests
of similar sizes. For each protocol, we ran a client with 24 concurrent
connections on a 24-core machine located in LAN, and we used up
to nine replicas. Both the number of concurrent connections and
replicas are common high values [10, 29, 40, 73].

All four traditional protocols were run on IPoIB (§2.2). Figure 1
shows that the consensus latency of three traditional protocols
increased almost linearly to the number of replicas (except S-Paxos).
S-Paxos batches requests from replicas and invokes consensus when
the batch is full. More replicas can take shorter time to form a batch,
so S-Paxos incurred a slightly better consensus latency with more
replicas. Nevertheless, its latency was always over 600 µs. APUS’s
consensus latency outperforms these four protocols by at least
32.3X.

To find scalability bottlenecks in traditional protocols, we used
only one client connection and broke down their consensus latency
on leader (Table 2). From 3 to 9 replicas, the consensus latency
(the “Latency" column) of these protocols increased more gently
than that on 24 concurrent connections. For instance, when the
number of replicas increased from three to nine, ZooKeeper latency
increased by 30.3% with one connection; this latency increased by
168.3% with 24 connections (Figure 1). This indicates that concur-
rent consensus requests are the major scalability bottleneck for
these protocols.

Specifically, three protocols had scalable latency on the arrival
of their first consensus reply (the “First" column), which implies
that network is not saturated. libPaxos is an exception because its
two-round protocol consumed much bandwidth. However, on the
leader, there is a big gap between the arrival of the first consensus
reply and the “majority" reply (the “Major" column). Given that the
replies’ CPU processing time was small (the “Process" column), we
can see that various systems layers, including OS kernels, network
libraries, and language runtimes (e.g., JVM), are another major

101

APUS: Fast and Scalable Paxos on RDMA SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Table 2: Performance breakdown of traditional protocols on
leader with only one connection. The “Proto-#Rep" column is
the protocol name and replica group size; “Latency" is the
consensus latency; “First" is the latency of leader’s first re-
ceived consensus reply; “Major" is the latency of leader’s
consensus; “Process" is leader’s time spent in processing all
replies; and “Sys" is leader’s time spent in systems (OS ker-
nel, network stacks, and JVM) between the “First" and “Ma-
jor" reply. Times are in µs.

Proto-#Rep Latency First Major Process Sys

libPaxos-3 81.6 74.0 81.6 2.5 5.1
libPaxos-9 208.3 145.0 208.3 12.0 51.3
ZooKeeper-3 99.0 67.0 99.0 0.84 31.2
ZooKeeper-9 129.0 76.0 128.0 3.6 49.4
Crane-3 78.0 69.0 69.0 13.0 0
Crane-9 148.0 83.0 142.0 30.0 35.0
S-Paxos-3 865.1 846.0 846.0 20.0 0
S-Paxos-9 739.1 545.0 731.0 35.0 159.1

scalable bottleneck (the “Sys" column). This indicates that RDMA
is useful on bypassing systems layers.

Both Crane and S-Paxos’s leader handles consensus replies
rapidly, so they two had same “First" and “Major" arrival times (i.e.,
“Sys" times were 0 on three replicas).

7.2 Integrating APUS into Calvin
Calvin [78] is a SMR-like distributed database which leverages
ZooKeeper [10] for replicating client requests to achieve high avail-
ability. We replaced ZooKeeper with APUS in Calvin to replicate
inputs and compared the performance of Calvin-ZooKeeper and
Calvin-APUS.

The Calvin-APUS integration took 39 lines of code. Calvin
currently uses ZooKeeper to batch inputs and then replicate them.
To reduce response time, Calvin-APUS replicates each request
immediately on its arrival. Figure 6 shows that the consensus la-
tency of ZooKeeper was 7.6X higher than Calvin’s own request
processing time, which indicates that ZooKeeper added a high over-
head in Calvin’s response time. Calvin-APUS’s response timewas
8.2X faster than Calvin-ZooKeeper’s because APUS’s consensus
latency was 45.7X faster than ZooKeeper’s. Calvin’s unreplicated
execution throughput is 19825 requests/s, and Calvin-ZooKeeper
was 16241 requests/s. Calvin-APUS was 19039 requests/s, a 4.1%
overhead over Calvin’s unreplicated execution.

7.3 Comparing with DARE
Because DARE only supported a key-value server written by the
authors, we ran APUS with Redis, a popular key-value server for
comparison. Figure 7 shows APUS and DARE’s consensus latency
on variant concurrent connections. Both APUS and DARE ran
seven replicas with randomly arriving, update-heavy (50% SET
and 50% GET) and read-heavy (10% SET and 90% GET) workloads.
DARE performance on two workloads were different because it
handles GETs with only one consensus round [73]. APUS handles
all requests with the same protocol. When there was only one

 0

 100

 200

 300

 400

 500

Calvin-APUS Calvin-ZooKeeper

tim
e

(u
s)

server processing time
consensus time

Figure 6: Comparing Calvin-APUS and Calvin-ZooKeeper.

connection, DARE achieved the lowest consensus latency we have
seen in prior work because it is a sole-leader protocol (§6.1). On
variant connections, APUS’s average consensus latency was faster
than DARE by 4.9X for two main reasons.

First, APUS is a one-round protocol and DARE is a two-round
protocol (for SETs), so DARE’s “actual-consensus" time was 53.2%
higher than APUS. Even using read-heavy workloads (DARE uses
one-round for GETs) with APUS, APUS’s actual consensus time was
still slightly faster than DARE’s on over six connections, because
APUS avoids expensive ACK pollings (§2.2).

Second, DARE’s second consensus round updates a global vari-
able for each backup and serializes consensus requests (§6.1). Al-
though DARE mitigates this limitation by batching same SET or
GET types, randomly arriving requests often break batches, causing
a large “wait-consensus" time (a new batch can not start consen-
sus until prior batches reach consensus). DARE evaluation [73]
confirmed such a high wait duration: with three replicas and nine
concurrent connections, DARE’s throughput on real-world inspired
workloads (50% SET and 50% GET arriving randomly) was 43.5%

 0

 20

 40

 60

 80

 100

 120

1 6 12 18 24 1 6 12 18 24 1 6 12 18 24

C
on

se
ns

us
 la

te
nc

y
(u

s)

Number of concurrent connections

wait-consensus

actual-consensus

APUSDARE (read-heavy)DARE (update-heavy)

Figure 7: APUS and DARE consensus latency (divided into
two parts) on variant connections. “Wait-consensus" is the
time an input request spent on waiting consensus to start.
“Actual-consensus" is the time spent on running consensus.

102

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 8 16

th
ro

ug
hp

ut
 (f

ile
/s

ec
)

number of threads
(a) ClamAV

Unreplicated
APUS

 2500

 5000

 7500

 10000

 12500

 15000

 1 2 4 8 16

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(b) MediaTomb

Unreplicated
APUS

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(c) Memcached

Unreplicated
APUS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(d) MongoDB

Unreplicated
APUS

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(e) MySQL

Unreplicated
APUS

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 1 2 4

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(f) OpenLDAP

Unreplicated
APUS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 4 8 16 32

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(g) Redis

Unreplicated
APUS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 4 8 16 32

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of threads
(h) SSDB

Unreplicated
APUS

 16000

 18000

 20000

 1 2 4 8 16

th
ro

ug
hp

ut
 (t

xn
s/

se
c)

number of threads
(i) Calvin

Unreplicated
APUS

Figure 8: APUS throughput compared to server programs’ unreplicated executions.

lower than that on 100% SET workloads. APUS’s “wait-consensus"
was almost 0 as it enables concurrent consensus requests (§4.1).

DARE evaluation also showed that, with 100% SET workloads,
its throughput decreased by 30.1% when the number of replicas in-
creased from three to seven.We reproduced a similar result: we used
the same workloads and 24 concurrent connections, and we varied
the number of replicas from three to nine. We found that APUS
consensus latency increased merely by 7.3% and DARE increased
by 67.3% (shown in Figure 1).

Overall, we found DARE better on smaller number of concurrent
connections and replicas (e.g., metadata [10, 23]), and APUS better
on larger number of connections or replicas (e.g., replicating server
programs [29, 40]).

7.4 Performance Overhead
To stress APUS, we used nine replicas to run all nine server pro-
grams without modifying them. We used up to 32 concurrent client
connections (most evaluated programs reached peak throughput at
16), and then we measured mean response time and throughput in
50 runs.

We turned on output checking (§5.3) and didn’t observe a perfor-
mance impact. Only two programs (MySQL and OpenLDAP) have
different output hashes caused by physical times (an approach [60]
can be leveraged to enforce same physical times across replicas).

Figure 8 shows APUS’s throughput. For Calvin, we only col-
lected the 8-thread result because Calvin uses this constant thread
count in their code to serve requests. Compared to these server
programs’ unreplicated executions, APUS merely incurred a mean

throughput overhead of 4.2% (note that in Figure 8, the Y-axises
of most programs start from a large number). As the number of
threads increases, all programs’ unreplicated executions got a per-
formance improvement except Memcached. Prior work [40] also
showed that Memcached itself scaled poorly. Overall, APUS scaled
as well as unreplicated executions on concurrent requests.

Table 3: Leader’s input consensus events per 10K requests, 8
threads. The “# Calls" column means the number of socket
calls that went through APUS input consensus; “Input"
means average bytes of a server’s inputs received in these
calls; “First" is the latency of leader’s first received consen-
sus reply; and “Quorum" means the average time leader has
spent on waiting for quorum replies.

Program # Calls Input First Quorum

ClamAV 30,000 37.0 10.4 µs 10.9 µs
MediaTomb 30,000 140.0 16.9 µs 17.4 µs
Memcached 10,016 38.0 6.5 µs 7.0 µs
MongoDB 10,376 490.6 8.3 µs 9.2 µs
MySQL 10,009 28.8 7.1 µs 7.8 µs
OpenLDAP 10,016 27.3 5.8 µs 6.4 µs
Redis 10,016 40.5 5.2 µs 6.0 µs
SSDB 10,016 47.0 5.7 µs 6.2 µs
Calvin 10,002 128.0 10.1 µs 10.8 µs

103

APUS: Fast and Scalable Paxos on RDMA SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16

re
sp

on
se

 ti
m

e
(s

)

number of threads
(a) ClamAV

Unreplicated
APUS

 250

 500

 750

 1000

 1250

 1 2 4 8 16

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(b) MediaTomb

Unreplicated
APUS

 260

 280

 300

 320

 340

 360

 1 2 4 8 16

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(c) Memcached

Unreplicated
APUS

 1000

 1500

 2000

 2500

 1 2 4 8 16

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(d) MongoDB

Unreplicated
APUS

 0

 1000

 2000

 3000

 4000

 5000

 1 2 4 8 16

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(e) MySQL

Unreplicated
APUS

 0

 100

 200

 300

 400

 1 2 4

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(f) OpenLDAP

Unreplicated
APUS

 300

 400

 500

 600

 700

 800

 1 2 4 8 16 32

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(g) Redis

Unreplicated
APUS

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 8 16 32

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(h) SSDB

Unreplicated
APUS

 40

 45

 50

 55

 60

 1 2 4 8 16

re
sp

on
se

 ti
m

e
(u

s)

number of threads
(i) Calvin

Unreplicated
APUS

Figure 9: APUS response time compared to server programs’ unreplicated executions.

To understand APUS’s performance overhead, we broke down
its consensus latency on the leader replica. Table 3 shows these sta-
tistics per 10K requests, 8 or max (if less than 8) threads. According
to the consensus algorithm in Figure 4, for each socket call, APUS’s
leader does an “L2": SSD write, and an “L4": quorum waiting phase
(the “quorum time" column). L4 implies backups’ performance be-
cause each backup stores consensus requests in local SSD and then
WRITEs a reply to the leader.

The small consensus latency shown in Table 3 makes APUS
achieve a low overhead of 4.3% on response time in Figure 9. Figure 7
and Table 3 also indicate that APUS had a low overhead of on
programs’ response time.

7.5 APUS Performance in a Congested Network
In a production datacenter, network bandwidth is often shared by
many services. This raises a performance concern of APUS because
RoCE-based network may perform poorly in a congested network
due to packet retransmission or congestion control [38, 84].

To evaluate the performance of APUS in a congested network,
we generated traffic to consume the network bandwidth between
Paxos leader and a randomly chosen backup replica and varied
this consumption from 0 to 30Gbps. We ran APUS with SSDB with
seven replicas and measured the performance. Figure 10 shows the
throughput of APUS and the unreplicated executions with an in-
creasing bandwidth consumption. Even when the traffic consumes
30 Gbps bandwidth, APUS’s throughput does not drop significantly.

To understand APUS’s performance overhead in the congested
network, we collected the consensus latency on the leader replica.

As shown in Figure 11, the consensus latency has increased only
4.5µs when the traffic bandwidth consumption increases from 0 to
30Gbps. Because the request processing time of the server program
and the TCP network latency between the client and leader replica
are much longer than the increased consensus latency, the incurred
overhead is negligible.

 0

 10000

 20000

 30000

 40000

 0 5 10 15 20 25 30

th
ro

ug
hp

ut
 [r

eq
ue

st
s

/ s
ec

]

bandwidth of generated traffic (Gbps)

Unreplicated
APUS

Figure 10: SSDB throughput on APUS with network traffic
congestion.

7.6 Checkpoint and Recovery
We ran same performance benchmark as in §7.4 and measured pro-
grams’ checkpoint timecost. Each program checkpoint operation

104

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

co
ns

en
su

s
la

te
nc

y
(u

s)

bandwidth of generated traffic (Gbps)

Figure 11: APUS consensus latency running SSDB with net-
work traffic congestion.

(§5.2) costs 0.12s to 11.6s depending on the amount of modified
memory and files since a program’s last checkpoint. ClamAV in-
curred the largest checkpoint time (11.6s) because it loaded and
scanned files in the /lib directory. Checkpoints did not affect
APUS performance in normal case because they were done on only
one backup. Leader and other backups still formed majority and
reached consensus rapidly.

To evaluate APUS’s Paxos robustness, we ran APUS with Redis
with three replicas. We manually killed one backup and then modi-
fied another backup’s code to drop all its consensus reply messages.
We did not observe a performance change, as other seven replicas
still reach consensus. We then manually killed the APUS leader and
measured Redis throughput on the leader election approach (§4.4).
APUS’s default heartbeat period was 100 ms, and its three-round
leader election took only 10.7 µs. Redis throughput is shown in
Figure 12. After a new leader was elected, Redis throughput went
up slightly because there were only two replicas left.

0

35K

40K

45K

50K

 0 2 4 6 8 10 12

th
ro

ug
hp

ut
 [r

eq
ue

st
s

/ s
ec

]

time axis [sec]

Figure 12: Redis throughput on APUS leader election.

8 RELATEDWORK
Software-based consensus. Various Paxos algorithms [53, 54, 60,
66, 79] and implementations [23, 25, 29, 60] exist. Paxos is noto-
riously difficult to be fast and scalable [37, 48, 63], so server pro-
grams carry a weaker asynchronous replication approach (e.g.,
Redis [76]). Consensus is essential in datacenters [6, 41, 83] and
worldwide distributed systems [27, 57], so much work is done
to improve Paxos’s input commutativity [58, 66], understandabil-
ity [53, 68], and verification [39, 82]. Paxos is extended to tolerate
byzantine faults [15, 17, 22, 24, 51, 59, 61] and hardware faults [18].

Three SMR systems, Eve [49], Rex [40], and Crane [29], use
traditional Paxos protocols to improve the availability of programs.
None of these systems has evaluated their response time overhead
on key-value servers, which are extremely sensitive on latency.
APUS is the first SMR system that achieves low overhead on both
response time and throughput on real-world key-value servers.
Hardware- orNetwork- assisted consensus.Recent systems [33,
43, 44, 55, 74] leverage augmented network hardware or topology
to improve Paxos consensus latency. Three systems [33, 43, 44]
implement consensus protocols in hardware devices (e.g., switches).
“Consensus in a Box" [44] implemented ZooKeeper’s protocol in
FPGA. These systems reported similar performance as DARE and
they are suitable to maintain compact metadata (e.g., leader elec-
tion). Prior work [55] pointed out that these systems’ programmable
hardware are not suitable to store large amount of replicated states
(e.g., server programs’ continuously arriving inputs).

Speculative Paxos [74] and NOPaxos [55] use the datacenter
topology to order requests, so they can eliminate consensus rounds
if packets are not reordered or lost. These systems require rewriting
a server program to use their new libraries for checking the order
of packets, so they are not designed to run legacy server programs.
Moreover, these two systems’ consensus modules are TCP/UDP-
based and incur high consensus latency, which APUS can help.
RDMA-based systems.RDMA techniques have been implemented
in various architectures, including Infiniband [1], RoCE [8], and
iWRAP [9]. RDMA is used to speed up high performance com-
puting [36], key-value stores [34, 45, 46, 64], transactional sys-
tems [35, 47, 80], distributed programming languages [19], and
file systems [81]. For instance, FaRM [34] runs on RDMA and it
provides in a primary-backup replication [31, 69]. Paxos provides
better availability than primary-backup. These systems use RDMA
to speed up different aspects, so they are complementary to APUS.

9 CONCLUSION
We have presented APUS, the first RDMA-based Paxos protocol
and its runtime system. Evaluation on five consensus protocols and
nine widely used programs shows that APUS is fast, scalable, and
deployable. It has the potential to greatly promote the deployments
of SMR and improve the reliability of many real-world programs.

ACKNOWLEDGMENTS
We thank Dan R. K. Ports (our shepherd) and anonymous review-
ers for their many helpful comments. This paper is funded in part
by a research grant from the Huawei Innovation Research Pro-
gram (HIRP) 2017, HK RGC ECS (No. 27200916), HK RGC GRF (No.
17207117), and a Croucher innovation award.

105

APUS: Fast and Scalable Paxos on RDMA SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

REFERENCES
[1] 2001. An Introduction to the InfiniBand Architecture. http://buyya.com/

superstorage/chap42.pdf. (2001).
[2] 2004. A tool for measuring memcached server performance. https://github.com/

twitter/twemperf. (2004).
[3] 2004. clamscan - scan files and directories for viruses. http://linux.die.net/man/

1/clamscan. (2004).
[4] 2004. SysBench: a system performance benchmark. http://sysbench.sourceforge.

net. (2004).
[5] 2004. Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/

YCSB. (2004).
[6] 2011. Why the data center needs an operating system. https://cs.stanford.edu/

~matei/papers/2011/hotcloud_datacenter_os.pdf. (2011).
[7] 2012. Data Plane Development Kit (DPDK). http://dpdk.org/. (2012).
[8] 2012. Mellanox Products: RDMA over Converged Ethernet (RoCE). http://www.

mellanox.com/page/products_dyn?product_family=79. (2012).
[9] 2012. RDMA - iWARP. http://www.chelsio.com/nic/rdma-iwarp/. (2012).
[10] 2012. ZooKeeper. https://zookeeper.apache.org/. (2012).
[11] 2014. ab - Apache HTTP server benchmarking tool. http://httpd.apache.org/

docs/2.2/programs/ab.html. (2014).
[12] 2017. MediaTomb - Free UPnP MediaServer. http://mediatomb.cc/. (2017).
[13] 2017. MySQL Database. http://www.mysql.com/. (2017).
[14] Gautam Altekar and Ion Stoica. 2009. ODR: output-deterministic replay for

multicore debugging. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP ’09). 193–206.

[15] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina
Nita-Rotaru, Josh Olsen, and David Zage. 2010. Steward: Scaling Byzantine fault-
tolerant replication to wide area networks. IEEE Transactions on Dependable and
Secure Computing 7, 1 (2010), 80–93.

[16] Amittai Aviram, Shu-ChunWeng, Sen Hu, and Bryan Ford. 2010. Efficient System-
Enforced Deterministic Parallelism. In Proceedings of the Ninth Symposium on
Operating Systems Design and Implementation (OSDI ’10).

[17] Bharath Balasubramanian and Vijay K. Garg. 2014. Fault Tolerance in Distributed
Systems Using Fused State Machines. Distrib. Comput. (2014).

[18] Diogo Behrens, Dmitrii Kuvaiskii, and Christof Fetzer. 2014. HardPaxos: Replica-
tion Hardened against Hardware Errors. In Reliable Distributed Systems (SRDS),
2014 IEEE 33rd International Symposium on.

[19] Jonathan Behrens, Ken Birman, Sagar Jha, Matthew Milano, Edward Tremel,
Eugene Bagdasaryan, Theo Gkountouvas, Weijia Song, and Robbert van Renesse.
2016. Derecho: Group Communication at the Speed of Light. (2016).

[20] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. 2014. Scal-
able State-Machine Replication. In Proceedings of the 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN ’14).

[21] Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. 2012. S-Paxos:
Offloading the Leader for High Throughput State Machine Replication. In Pro-
ceedings of the 2012 IEEE 31st Symposium on Reliable Distributed Systems (SRDS
’12).

[22] Yuriy Brun, George Edwards, Jae Young Bang, and Nenad Medvidovic. 2011.
Smart Redundancy for Distributed Computation. In Proceedings of the 2011 31st
International Conference on Distributed Computing Systems (ICDCS ’11).

[23] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the Seventh Symposium on Operating Systems Design
and Implementation (OSDI ’06). 335–350.

[24] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (OSDI ’99).

[25] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos Made
Live: An Engineering Perspective. In Proceedings of the Twenty-sixth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’07).

[26] Clam AntiVirus 2017. http://www.clamav.net/. (2017).
[27] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-distributed
Database. In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI ’16).

[28] criu 2015. CRIU. http://criu.org. (2015).
[29] Heming Cui, Rui Gu, Cheng Liu, and Junfeng Yang. 2015. PaxosMade Transparent.

In Proceedings of the 25th ACM Symposium on Operating Systems Principles (SOSP
’15).

[30] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng
Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot: a Practical Runtime
for Deterministic, Stable, and Reliable Threads. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP ’13).

[31] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation. San Francisco, 161–174.

[32] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
made switch-y. ACM SIGCOMM Computer Communication Review 46, 1 (2016),
18–24.

[33] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15).

[34] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation (NSDI’14).

[35] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th ACM Symposium on Operating Systems Principles (SOSP
’15).

[36] Message Passing Interface Forum. 2009. Open MPI: Open Source High Perfor-
mance Computing. (Sept. 2009).

[37] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-
derson. 2011. Scalable Consistency in Scatter. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP ’11).

[38] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM,
202–215.

[39] Huayang Guo, MingWu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang.
2011. Practical Software Model Checking via Dynamic Interface Reduction. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP
’11). 265–278.

[40] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang.
2014. Rex: Replication at the Speed of Multi-core. In Proceedings of the 2014 ACM
European Conference on Computer Systems (EUROSYS ’14). ACM, 11.

[41] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX conference on Networked Systems Design and Implementation (NSDI’11).
USENIX Association, Berkeley, CA, USA.

[42] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference (USENIX-
ATC’10).

[43] Dang Huynh Tu, Bressana Pietro, Wang Han, Lee Ki Shu, Weatherspoon Hakim,
Canini Marco, Pedone Fernando, and Soule Robert. 2016. Network Hardware-
Accelerated Consensus. Technical Report. USI Technical Report Series in Infor-
matics.

[44] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus
in a Box: Inexpensive Coordination in Hardware. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation (NSDI’16).

[45] Jithin Jose, Hari Subramoni, Krishna Kandalla, Md. Wasi-ur Rahman, Hao Wang,
Sundeep Narravula, and Dhabaleswar K. Panda. 2012. Scalable Memcached
Design for InfiniBand Clusters Using Hybrid Transports. In Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(Ccgrid 2012) (CCGRID ’12).

[46] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
Efficiently for Key-value Services. (Aug. 2014).

[47] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scal-
able and Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs. In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI ’16).

[48] Manos Kapritsos and Flavio P. Junqueira. 2010. Scalable Agreement: Toward
Ordering As a Service. In Proceedings of the Sixth International Conference on Hot
Topics in System Dependability (HotDep’10).

[49] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, et al. 2012. All about Eve: Execute-Verify Replication for Multi-Core
Servers.. In Proceedings of the Tenth Symposium on Operating Systems Design and
Implementation (OSDI ’12), Vol. 12. 237–250.

[50] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George
Candea. 2015. Failure Sketching: A Technique for Automated Root Cause Diag-
nosis of In-production Failures. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP ’15).

[51] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceedings of
the 21st ACM Symposium on Operating Systems Principles (SOSP ’07).

[52] Sriram Krishnan. 2010. Programming Windows Azure: Programming the Microsoft
Cloud.

106

http://buyya.com/superstorage/chap42.pdf
http://buyya.com/superstorage/chap42.pdf
https://github.com/twitter/twemperf
https://github.com/twitter/twemperf
http://linux.die.net/man/1/clamscan
http://linux.die.net/man/1/clamscan
http://sysbench.sourceforge.net
http://sysbench.sourceforge.net
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
http://dpdk.org/
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.chelsio.com/nic/rdma-iwarp/
https://zookeeper.apache.org/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://mediatomb.cc/
http://www.mysql.com/
http://www.clamav.net/
http://criu.org

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA C. Wang et al.

[53] Leslie Lamport. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 2
(1998), 133–169.

[54] Leslie Lamport. 2001. Paxos made simple. http://research.microsoft.com/en-us/
um/people/lamport/pubs/paxos-simple.pdf. (2001).

[55] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Fast Replication with NOPaxos: Replacing Consensus with Network
Ordering. In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI ’16).

[56] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. DTHREADS:
efficient deterministic multithreading. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11). 327–336.

[57] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. 2008. Mencius: building
efficient replicated state machines for WANs. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation, Vol. 8. 369–384.

[58] Parisa Jalili Marandi, Carlos Eduardo Bezerra, and Fernando Pedone. 2014. Re-
thinking State-Machine Replication for Parallelism. In Proceedings of the 2014
IEEE 34th International Conference on Distributed Computing Systems (ICDCS ’14).

[59] Rolando Martins, Rajeev Gandhi, Priya Narasimhan, Soila Pertet, António
Casimiro, Diego Kreutz, and Paulo Veríssimo. 2013. Experiences with fault-
injection in a Byzantine fault-tolerant protocol. In ACM/IFIP/USENIX Interna-
tional Conference on Distributed Systems Platforms and Open Distributed Processing.
Springer, 41–61.

[60] David Mazieres. 2007. Paxos made practical. Technical Report. Technical report,
2007. http://www. scs. stanford. edu/dm/home/papers.

[61] Hein Meling, Keith Marzullo, and Alessandro Mei. 2012. When You Don’T Trust
Clients: Byzantine Proposer Fast Paxos. In Proceedings of the 2012 IEEE 32Nd
International Conference on Distributed Computing Systems (ICDCS ’12).

[62] Memcached 2017. https://memcached.org/. (2017).
[63] Ellis Michael. 2015. Scaling Leader-Based Protocols for State Machine Replication.

Ph.D. Dissertation. University of Texas at Austin.
[64] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-sided RDMA

Reads to Build a Fast, CPU-efficient Key-value Store. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’14).

[65] mongodb 2017. MongoDB. http://www.mongodb.org. (2017).
[66] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More

Consensus in Egalitarian Parliaments. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles (SOSP ’91).

[67] Nginx 2012. Nginx Web Server. https://nginx.org/. (2012).
[68] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable

Consensus Algorithm. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’14).

[69] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. 2011. Fast Crash Recovery in RAMCloud. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP ’11).

[70] OpenLDAP 2017. OpenLDAP. (2017). https://www.openldap.org/
[71] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H.

Lee, and Shan Lu. 2009. PRES: probabilistic replay with execution sketching
on multiprocessors. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP ’09). 177–192.

[72] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating
System is the Control Plane. In Proceedings of the Eleventh Symposium on Operat-
ing Systems Design and Implementation (OSDI ’14).

[73] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Ma-
chine Replication on RDMA Networks. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’15).

[74] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation (NSDI’15).

[75] Marco Primi. 2016. LibPaxos. http://libpaxos.sourceforge.net/. (2016).
[76] Redis 2017. http://redis.io/. (2017).
[77] SSDB 2017. ssdb.io/. (2017).
[78] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,

and Daniel J. Abadi. 2014. Fast Distributed Transactions and Strongly Consistent
Replication for OLTP Database Systems. (May 2014).

[79] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately
Complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 42:1–42:36.

[80] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
In-memory Transaction Processing Using RDMA and HTM. In Proceedings of the
25th ACM Symposium on Operating Systems Principles (SOSP ’15) (SOSP ’15).

[81] Garth Gibson Wittawat Tantisiriroj. 2008. Network File System (NFS) in High
Performance Networks. Technical Report CMU-PDLSVD08-02. Carnegie Mellon
University.

[82] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent Model Checking of Unmodified Distributed Systems. In Proceedings
of the Sixth Symposium on Networked Systems Design and Implementation (NSDI

’09). 213–228.
[83] Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi, Anthony D.

Joesph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. The Datacenter Needs
an Operating System. In Proceedings of the 3rd USENIX Conference on Hot Topics
in Cloud Computing.

[84] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
ACM SIGCOMM Computer Communication Review, Vol. 45. ACM, 523–536.

107

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
https://memcached.org/
http://www.mongodb.org
https://nginx.org/
https://www.openldap.org/
http://libpaxos.sourceforge.net/
http://redis.io/
ssdb.io/

	Abstract
	1 Introduction
	2 Background
	2.1 Paxos
	2.2 RDMA

	3 Overview
	3.1 APUS Architecture
	3.2 Motivating Applications of APUS

	4 The RDMA-based Paxos Protocol
	4.1 Normal Case
	4.2 Atomic Message Delivery
	4.3 Handling Concurrent Connections
	4.4 Leader Election
	4.5 Correctness
	4.6 Analytical Analysis on Performance

	5 Implementation Details
	5.1 Replicating an unmodified server program
	5.2 Checkpoint and Restore
	5.3 Network Output Checking Tool

	6 Discussions
	6.1 Comparing APUS with DARE
	6.2 APUS Limitations

	7 Evaluation
	7.1 Comparing w/ Traditional Consensus
	7.2 Integrating APUS into Calvin
	7.3 Comparing with DARE
	7.4 Performance Overhead
	7.5 APUS Performance in a Congested Network
	7.6 Checkpoint and Recovery

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

