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Abstract. This paper studies optimal reinsurance and investment strategies
that maximize expected utility of the terminal wealth for an insurer in a sto-

chastic market. The insurer’s preference is represented by a two-piece utility

function which can be regarded as a generalization of traditional concave utility
functions. We employ martingale approach and convex optimization method

to transform the dynamic maximization problem into an equivalent static op-

timization problem. By solving the optimization problem, we derive explicit
expressions of the optimal reinsurance and investment strategy and the optimal

wealth process.

1. Introduction. Study on continuous-time optimal control problem related to
insurance risk management has predominantly centered around expected utility
maximization (EUM) for decades. Traditional assumption of EUM is that decision
makers are rational and risk averse when facing uncertainty. However, this assump-
tion has been challenged by many researchers, for example, the Allais paradox (see
Allais, 1953), the equity premium puzzle (see Mehra and Prescott, 1985) and so on.

A number of alternative preference measures have been proposed to overcome
the drawbacks of EUM, such as Lopes’ SP/A model, cumulative prospect theory
(CPT, see Kahneman and Tversky 1979, 1992) and disappointment theory (DT, see
Bell 1985, Loomes and Sugden 1986). CPT has three significant features: existence
of preference point, S-shaped utility function and probability distortion. More and
more researchers incorporate these new preference measures into optimization prob-
lems and pricing principles. The early publications are limited to the single period
setting, see, for example, Benarti and Thaler (1995), Lopes and Oden (1999), She-
frin and Statman (2000) and Bernard and Ghossoub (2010). Berkelaar et al. (2004)
considers the dynamic portfolio selection problem under a two-piece power utility
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function with loss aversion, where investor takes up a risk-seeking attitude towards
loss, and derive optimal investment strategy by employing a convex optimization
technique. Jin and Zhou (2008) considers a continuous time portfolio selection
model under CPT. They separate the optimization problem into gain part and loss
part, use a Choquet integral formulation to deal with the probability distortion and
develop a Choquet maximization and minimization technique to solve the problem.
Mi and Zhang (2012) investigates an optimal portfolio selection problem assuming
a two-piece utility function in an incomplete market.

The optimal reinsurance and investment strategy is an important research topic
in insurance and actuarial science. Under EUM setting, the optimal strategy has at-
tracted considerable interest recently. Browne (1995) uses a Brownian motion with
drift to model the risk process of the insurer and obtains the corresponding optimal
investment strategy. Yang and Zhang (2005) considers the portfolio selection prob-
lem under a jump diffusion risk process model. In order to deal with changes in the
market environment, Zhang and Siu (2012) investigates the optimal proportional
reinsurance and investment strategy under a Markovian regime switching economy.
Other related papers include Hipp and Plum (2000, 2003), Schmidli (2001), Liu and
Yang (2004), Xu and Yao (2008), Yao et al. (2010). There is also burgeoning re-
search interest in actuarial science under alternative preference measures mentioned
above. Tasnakas and Desli (2003) derives a premium principle called generalized
expected utility premium principle based on the rank dependent expected utility
(RDEU). Sung et al. (2012) studies the optimal insurance policy using a behavioral
principle. Chueng et al. (2015a, 2015b) investigate the premium principle and op-
timal insurance using disappointment theory. He et al. (2015) studies the optimal
insurance design using RDEU.

To the best of our knowledge, there has been limited publications incorporating
non-concave preferences into the optimal strategy selection for an insurer. Guo
(2014) considers the optimal investment problem for an insurer with loss aversion.
In this paper, we derive the optimal strategy with a general utility function, a
special case of our model can be reduced to that in Guo (2014), and we incorporate
the proportional reinsurance for an insurer in our model. The decision maker’s
preference is represented by a two-piece utility function with a reference point.
When the utility function is convex, we set a lower bound for the wealth. If the
utility takes a concave preference, the lower bound can be ignored. Comparing to
results in the relative literatures, the result in this paper is more general. We do not
assume a specified function form for the utility function in this paper, the specified
utility functions are given as examples for illustration. For some utility functions,
for example, a two-piece power utility or exponential utility, we are able to obtain
corresponding analogue results as those in Browne (1995) and Guo (2014). We give a
uniform expression for concave utility function where the result is always coincident.
But in some special two-piece concave utility case, the result is different and relies
on the corresponding parameters of the positive part and negative part of utility
function. In concave-convex utility function case, the result is seriously affected by
the lower bound. In this paper, we apply traditional martingale technique, which
is widely used in mathematical finance, to work out the closed form of the optimal
strategy and the optimal wealth process.

The rest of this paper is arranged as follows. Section 2 describes the economy for
the insurance company. The maximization problem of investment and reinsurance
is presented in Section 3. The explicit expression of the optimal strategy and the
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optimal wealth process are obtained in Section 4. In Section 5, we present some
examples for illustration purpose.

2. The market. In this section, We define a continuous-time financial market on a
finite-time horizon T := [0, T ], where T <∞ is the terminal time of decision making
process. The uncertainty of the economy is represented by a filtered probability
space (Ω,F ,F,P), where F := {F(t)|t ∈ T } is the collection of information until
time t and P is a real-world probability measure. All the processes defined below
are presumed to be adapted to F. We denote by E[·] the expectation under P.

The financial market consists of a risk-free asset and a risky asset which can be
traded continuously on the time horizon T . The price process of the risky-free asset
B := {B(t)}t≥0 evolves according to

dB(t) = B(t)r(t)dt, B(0) = 1,

where r(t) denotes the risk-free interest rate for borrowing and is assumed to be de-
terministic and uniformly bounded. The price process of risky asset S := {S(t)|t ∈
T } is governed by a geometric Brownian motion

dS(t) = S(t)
[
b(t)dt+ σ(t)dW (t)

]
, S(0) = s > 0,

where b(t) and σ(t) denote the appreciation rate and the volatility of the asset at
time t respectively and satisfy b(t) > r(t), σ(t) > 0; b(t) and σ(t) are assumed
to be deterministic and uniformly bounded; W := {W (t)|t ∈ T } is a standard
one-dimensional Brownian motion on (Ω,F ,F,P).

The surplus process of an insurer, U := {U(t)|t ∈ T }, is assumed to be the
classical Cramér-Lunderberg model, namely

dU(t) = c(t)dt− dL(t),

where c(t) > 0 is the premium rate at time t; L := {L(t) =
∑N(t)
i=1 Yi|t ∈ T } is

a compound poisson process defined on (Ω,F ,F,P), {Yi}∞i=1 is an i.i.d. sequence
of non-negative random variables, N := {N(t)|t ∈ T } is a poisson process with
intensity λ(t) > 0 and represents the number of claims up to time t. Here N
is assumed to be independent of Yi and E(Yi) = µ1 < ∞, E(Y 2

i ) = µ2 < ∞.
According to the expected premium principle, we set∫ t

0

c(s)ds = µ1(1 + η)

∫ t

0

λ(s)ds,

where t ∈ [0, T ] and η > 0 represents the safety loading. Thus the surplus process
{U(t)|t ∈ T } is governed by the following equation

dU(t) = µ1(1 + η)λ(t)dt− d
[N(t)∑
i=1

Yi
]
.

It is well-known that the surplus process above can be approximated by following
Brownian motion with drifted (see Grandll (1991))

dU(t) =µ1(1 + η)λ(t)dt− µ1λ(t)dt+
√
µ2λ(t)dW0(t)

=µ1ηλ(t)dt+
√
µ2λ(t)dW0(t),

where W0 := {W0(t)|t ∈ T } is a standard one-dimensional Brownian motion on
(Ω,F ,F,P). Moreover, we assume that W0 and W are stochastically independent.
Thus the filtration {F(t)|t ∈ T } can be regarded as augmentation of the filtration

{FW (t),W0(t)
t |t ∈ T } that generated by (W,W0).
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The insurer is allowed to invest its surplus in the financial market and purchase
reinsurance to control its risk. In this paper, we restrict our attention to the pro-
portional reinsurance and let p(t) denote the reinsurance proportion, that is 1−p(t)
portion of the insurance risk is divided to the reinsurer business. Here p(t) is re-
stricted to be non-negative and p(t) > 1 means taking new reinsurance business
from insurance market.

The insurer’s objective is to choose an F−adapted process π(t), representing the
amount invested in the risky stock, and an F−adapted process p(t), the proportional
reinsurance process, so as to maximize the expected utility of terminal wealth at
time T . The reinsurance and investment strategy is a two-dimensional stochastic
process u := {u(t)|t ∈ T } = {(p(t), π(t))|t ∈ T }.

Definition 2.1. A proportional reinsurance and investment strategy u is said to
be admissible if (π(t), p(t)) is F−adapted process such that∫ T

0

π2(t)dt <∞, P− a.s.;∫ T

0

p2(t)dt <∞, P− a.s., p(t) ≥ 0.

The set of all admissible strategies is denoted by Π.

The wealth process X(t), associated with an admissible strategy u, takes the
following form

dX(t) =µ1ηλ(t)dt−
(
1− p(t)

)
µ1θλ(t)dt+

√
µ2λ(t)p(t)dW0(t)

+ π(t)
dS(t)

S(t)
+
(
X(t)− π(t)

)dB(t)

B(t)
, X(0) = x0,

where x0 denotes the initial wealth; θ represents the safety loading of the reinsurer
and, in general, θ ≥ η, otherwise there are arbitrage opportunities. For simplicity,
we restrict our analysis to the cheap reinsurance case: θ = η, that is, the reinsurance
company uses the same safety loading as the cedent. Thereafter, X(t) is of the
following form

dX(t) =θµ1λ(t)p(t)dt+
√
µ2λ(t)p(t)dW0(t) + π(t)

dS(t)

S(t)
+
(
X(t)− π(t)

)dB(t)

B(t)

=
[
θµ1λ(t)p(t) + π(t)b(t) + r(t)X(t)− r(t)π(t)

]
dt

+
√
µ2λ(t)p(t)dW0(t) + π(t)σ(t)dW (t),

(1.1)

where λ(t), b(t), r(t), σ(t) are assumed to be deterministic and uniformly bounded
on [0, T ].

3. The insurer’s maximization problem. In this section, we introduce the in-
surer’s utility function and propose the maximization problem. It is well known that
one of the conventional assumptions in the theory of optimal reinsurance-investment
strategy is that the utility function is a smooth, concave and increasing function
over terminal wealth X(T ). In this paper, we consider a two-piece utility function,
that is, the insurer is assumed to be an investor with following preference

U(x) =

{
U1(x), x > 0,

U2(x), x ≤ 0,
(1.2)
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where U1(·) : <+ 7→ <, is strictly increasing, concave and twice differentiable with

U
′

1(+∞) = 0; U2(·) : <− 7→ <, is strictly increasing, twice differentiable and U1(0) =
U2(0). We consider two cases in this paper: the first case is that U2(·) is a concave
function, the second case is that U2(·) is a convex function.

The utility in (1.2) can be viewed as a generalization of the common concave
utility and the utility with loss aversion. When U1(·) = U2(·) are both concave
functions, the two-piece utility U(·) reduces to the common concave utility, that
means, the insurer shows an invariable risk-averse attitude towards gain and loss.

In the case of convex preference for loss part and U
′

1(0+) = U
′

2(0−) =∞, origi-
nating from the classical CPT theory in Tversky and Kehneman (1992), the utility
U(·) is an S−shaped function, that is, the insurer is an investor with loss aversion.
Moreover, if U2(·) is always steeper than U1(·), that reflects that the investor is
more sensitive to losses than gains. Due to the convexity of U2(·), the agent is
risk-averse in the gain domain and risk-seeking in the loss domain. We will consider
this special case in Section 5.

Given the terminal wealth X(T ) ∈ F(T ), the objective function for the insurer
is given by

V
(
X(T )

)
:=E

[
U
(
X(T )− k

)]
=E
[
U1

(
X(T )− k

)
IX(T )>k + U2

(
X(T )− k

)
IX(T )≤k

]
,

where k represents the reference point which divides the utility into two parts; I is
an indicator function.

Following the expected utility maximization criterion, the problem of choosing
an optimal reinsurance-investment strategy for an insurer is formulated as

max
u∈Π

E
[
U(Xu(T )− k)

]
s.t. X(t) satisfies (1.1),

X(t) ≥ L, L ∈ (−∞,+∞), ∀ t ∈ [0, T ],

(1.3)

where L denotes the lower bound of X(t). Usually the value of L is equal to zero,
indicating that the insurance company is not bankrupt throughout the investment
period [0, T ].

4. The optimal strategy choice. In this section we derive the optimal terminal
wealth and optimal proportional reinsurance and investment strategy. The steps to
achieve the goal can be listed as follows: we reduce the original problem (1.3) to a
static optimization problem which is subject to a linear constraint and then apply
martingale technique to solve the static problem and derive the optimal terminal
wealth. Finally, the optimal proportional reinsurance and investment strategy u∗

can be obtained.
Define

H(t) := exp

{∫ t

0

−
(
θ2µ2

1λ(s)σ2(s) + µ2

(
r(s)− b(s)

)2
+ 2r(s)µ2σ

2(s)

2µ2σ2(s)

)
ds

−
∫ t

0

θµ1

√
λ(s)

µ2
dW0(s) +

∫ t

0

(
r(s)− b(s)

σ(s)

)
dW (s)

}
.

(1.4)

We have two similar propositions as those in Guo (2014).

Proposition 1. If H(t) is defined by (1.4) on [0, T ] , H(t)X(t) is a martingale
under probability measure P.
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Proof. Differentiate H(t), we have

dH(t) = H(t)

[
− r(t)dt− θµ1

√
λ(t)

µ2
dW0(t) +

(
r(t)− b(t)

σ(t)

)
dW (t)

]
.

Applying Itô formula, we obtain

d
(
H(t)X(t)

)
=H(t)dX(t) +X(t)dH(t) + d

[
H(t), X(t)

]
=

[
H(t)

√
µ2λ(t)p(t)−X(t)H(t)θµ1

√
λ(t)

µ2

]
dW0(t)

+

[
H(t)π(t)σ(t) +X(t)H(t)

r(t)− b(t)
σ(t)

]
dW (t),

(1.5)

where
[
H(t), X(t)

]
is the quadratic covariation process of H(t) and X(t). This

shows that H(t)X(t) can be represented as an Itô integral with respect to two-
dimensional Brownian motion

(
W0(t),W (t)

)
. Therefore H(t)X(t) is a martingale

under P.

Proposition 2. Let the initial wealth x0 be given, then for any F(T ) random
variable ξ with a lower bound L satisfying

E
[
H(T )ξ

]
= x0,

there exists an admissible strategy u such that

Xu(T ) = ξ.

Proof. Let us define a martingale

M(t) = E
[
H(T )ξ

∣∣Ft].
From martingale representative theorem (Karatzas and Shreve 1991), there exist
two progressive measurable processes ϕ : Ω × [0, T ] 7−→ <; ψ : Ω × [0, T ] 7−→ <
satisfying ∫ T

0

| ϕ(s) |2 ds <∞,∫ T

0

| ψ(s) |2 ds <∞,

such that

M(t) =E
[
H(T )ξ

]
+

∫ t

0

ϕ(s)dW0(s) +

∫ t

0

ψ(s)dW (s)

=x0 +

∫ t

0

ϕ(s)dW0(s) +

∫ t

0

ψ(s)dW (s).

Compare dW0(t)−term and dW (t)−term with those in (1.5), let t = T , we have

ϕ(t) =H(t)
√
µ2λ(t)p(t)−X(t)H(t)θµ1

√
λ(t)

µ2
,

ψ(t) =H(t)π(t)σ(t) +X(t)H(t)
r(t)− b(t)

σ(t)
,
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which imply that

p(t) =
ϕ(t) +X(t)H(t)θµ1

√
λ(t)
µ2

H(t)
√
µ2λ(t)

,

π(t) =
ψ(t)−X(t)H(t) r(t)−b(t)σ(t)

H(t)σ(t)
.

The admissibility of u can be obtained from the corresponding results in Guo (2014).

According to the above propositions, any F(t) random variable ξ, satisfying
E
[
H(T )ξ

]
= x0, can be financed via trading an admissible strategy u. Thus the

dynamic maximization problem (1.3) can be transformed into following static opti-
mization problem  max

ξ≥L
E
[
U(ξ − k)

]
s.t. E

[
H(T )ξ

]
≤ x0, ξ ≥ L.

(1.6)

After a simple change, the above problem (1.6) turns to be max
ξ′≥L′

E
[
U(ξ

′
)
]

s.t. E
[
H(T )ξ

′]
≤ x

′

0, ξ
′
≥ L

′
,

(1.7)

where ξ
′

:= ξ − k, x
′

0 := x0 − kE
[
H(T )

]
and L

′
:= L − k. We only consider the

case k = 0 in the following. We apply a divide formulation to split problem (1.6)
into two parts

Positive Part Problem. A problem with parameters (A, x+): max
ξ+≥L

E
[
U1(ξ+)

]
s.t. E

[
H(T )ξ+

]
= x+, ξ+ ≥ 0, ξ+ = 0 on Ac.

(1.8)

Negative Part Problem. A problem with parameters (Ac, x0 − x+): max
ξ−≥L

E
[
U2(ξ−)

]
s.t. E

[
H(T )ξ−

]
= x0 − x+, ξ− ≤ 0, ξ− = 0 on A,

(1.9)

where x+ ≥ x0, x+ ≥ 0 and A ∈ F(T ) is given.
If the lower bound L > 0, problem (1.7) turns to be a single positive problem

(1.8) with additional constraint on the value of L. If the lower bound L ≤ 0, we
need to consider both problems (1.8) and (1.9), and make comparisons to obtain
the optimal wealth. We solve problem (1.8) and (1.9) respectively in the following.

Proposition 3. Suppose P(A) < 1, E
[
H(T )L

]
≤ x+ and U1(·) satisfy condition

U
′

1(+∞) = 0, then the optimal wealth of the insurer for positive part problem (1.8)
is given by

ξ∗+ =
(
U
′

1

)−1(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(L∨0)IA + (L ∨ 0)Iy∗H(T )>(U

′
1)+(L∨0)IA,

where L ∨ 0 := max{L, 0} and y∗ is the unique solution of

E
[
H(T )ξ∗+

]
= x+.
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Proof. We first solve the point-wise maximization problem

Ũ1

(
H(T )

)
= max
ξ+≥L∨0

[
U1(ξ+)− yH(T )ξ+

]
, y > 0. (1.10)

where L ∨ 0 := max{L, 0}. Due to the concavity of utility function U1(·) and the
restriction that ξ+ ≥ L ∨ 0 , the maximizer ξ∗+ to problem (1.10) is given by

ξ∗+ =


(U
′

1)−1
(
yH(T )

)
, on A ∩ {yH(T ) ≤ (U

′

1)+(L ∨ 0)},

L ∨ 0, on A ∩ {yH(T ) > (U
′

1)+(L ∨ 0)},
0, on Ac,

where U
′

1(·) denotes the derivative of U1(·); (U
′

1)−1(·) denotes the inverse of U
′

1(·)
and (U

′

1)+(L ∨ 0) denotes the right-hand derivative of U1(·) at point L ∨ 0.
We then show that ξ∗+ is the candidate optimal wealth for problem (1.8). Suppose

ξ
′

+ represents any possible optimal solution satisfying the static budget equation in
(1.8), then we have

E
[
U1(ξ∗+)

]
− E

[
U1(ξ

′

+)
]

=E
[
U1(ξ∗+)

]
− yx+ −

{
E
[
U1(ξ

′

+)
]
− yx+

}
=E
[
U1(ξ∗+)

]
− yE

[
H(T )ξ∗+

]
−
{
E
[
U1(ξ

′

+)
]
− yE

[
H(T )ξ

′

+

]}
=E
[(
U1(ξ∗+)− yH(T )ξ∗+

)
−
(
U1(ξ

′

+)− yH(T )ξ
′

+

)]
≥0,

which manifests the optimality of ξ∗+.
Finally we verify that, for any x+ ≥ x0 and x+ > 0, there exists a unique y > 0

satisfying the budget constraint in (1.8). Since U1(·) is strictly increasing, concave,
twice differentiable, and defined on <+, its derivative has a strictly decreasing,
continuous inverse (U

′

1)−1(·) : <+ 7−→ <+. Hence, for any y1 > y2 > 0, and due to
the non-negative of H(T ), we have

0 ≤ H(T )(U
′

1)−1
(
y1H(T )

)
<H(T )(U

′

1)−1
(
y2H(T )

)
on A ∩

{
yH(T ) ≤ (U

′

1)+(L ∨ 0)
}
.

Therefore

ϕ(y) := H(T )(U
′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(L∨0)IA+H(T )(L∨0)IyH(T )>(U

′
1)+(L∨0)IA

is decreasing with respect to y.
By the dominated convergence theorem and monotone convergence theorem, it

is easy to see that E
[
ϕ(y)

]
is continuous with limit

lim
y→+∞

E
[
ϕ(y)

]
≤ x+,

lim
y→0

E
[
ϕ(y)

]
= +∞.

Thus there exists a unique y such that

E
[
ϕ(y)

]
= x+,

and we denote it by y∗. In conclusion we have

ξ∗+ = (U
′

1)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(L∨0)IA + (L ∨ 0)Iy∗H(T )>(U

′
1)+(L∨0)IA.
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Proposition 4. Suppose x0 − x+ < 0 and P(Ac) > 0.
(1) If U2(·) is a strictly convex utility function, L ∈ (−∞, 0) and

E
[
H(T )LIAc

]
≤ x0 − x+,

then the optimal wealth of the insurer in negative part problem (1.9) is given by

ξ∗− = LIy∗H(T )L>U2(L)−U2(0)IAc ,

where y∗ is the unique solution of

E
[
H(T )ξ∗−

]
= x0 − x+.

(2) If U2(·) is a strictly concave utility function, L ∈ (−∞, 0) and

E
[
H(T )LIAc

]
≤ x0 − x+,

then the optimal wealth of the insurer in negative part problem (1.9) is given by

ξ∗− = (U
′

2)−1
(
y∗H(T )

)
I(U

′
2)−(0)≤y∗H(T )≤U ′2)+(L)IAc + LIy∗H(T )>(U

′
2)+(L)IAc ,

where y∗ is the unique solution of

E
[
H(T )ξ∗−

]
= x0 − x+.

Proof. (1) Consider the point-wise maximization problem

Ũ2

(
H(T )

)
= max
L≤ξ−≤0

[
U2(ξ−)− yH(T )ξ−

]
, y > 0, (1.11)

and define

φ(x) := U2(x)− yH(T )x.

It is easy to see that φ
′
(x) is increasing with respect to x, thus the optimal maximizer

ξ∗− for problem (1.11) is located at one of the boundaries

ξ∗− = 0, ξ∗− = L.

Comparing the value of φ(x) at ξ∗− = 0 and ξ∗− = L, we obtain when

yH(T )L ≤ U2(L)− U2(0),

the optimal value is ξ∗− = L and when

yH(T )L > U2(L)− U2(0),

the optimal value is ξ∗− = 0. Therefore, the optimal terminal wealth is given by

ξ∗− = LIy∗H(T )L≤U2(L)−U2(0)IAc ,

where y∗ > 0 is the unique solution of

E
[
H(T )LIy∗H(T )L≤U2(L)−U2(0)IAc

]
= x0 − x+.

The optimality of ξ∗− and uniqueness of y∗ can be obtained by a similar proof as
that in Proposition 3.

(2) Similar to Proposition 3, the result can be obtained.
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It is worthy noting that when U2(·) is a strictly convex function, the existence
of lower bound L is essential otherwise the problem will be ill-posed, because the
prospect value will be unbounded. The condition

E
[
H(T )LIAc

]
≤ x0 − x+

is to ensure the existence of optimal strategy, otherwise there is no strategy satis-
fying the static budget equation in (1.9).

The following theorem presents the optimal solution to (1.6).

Theorem 4.1. (1) Suppose U2(·) is strictly convex and L ∈ (−∞, 0) with

E
[
H(T )L

]
≤ x0.

The optimal terminal wealth is given by

X∗(T ) = (U
′

1)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(0)IH(T )≤HT (y∗) + LIH(T )>HT (y∗),

where y∗, HT (y∗) is the unique solution of E
[
H(T )X∗(T )

]
= x0 and{

U1

[
(U
′

1)−1
(
y∗HT (y∗)

)]
− y∗HT (y∗)(U

′

1)−1
(
y∗HT (y∗)

)
+ y∗HT (y∗)L

}
Iy∗HT (y∗)≤(U

′
1)+(0) − U2(L) +

[
U1(0) + y∗HT (y∗)L

]
Iy∗HT (y∗)>(U

′
1)+(0) = 0.

(1.12)

(2) Suppose U2(·) is strictly concave and L ∈ (−∞, 0) with

E
[
H(T )L

]
≤ x0.

1©. If (U
′

2)−(0) ≥ (U
′

1)+(0), The optimal terminal wealth is given by

X∗(T ) =(U
′

1)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(0)

+ (U
′

2)−1
(
y∗H(T )

)
I(U

′
2)−(0)≤y∗H(T )≤(U

′
2)+(L) + LIy∗H(T )>(U

′
2)+(L),

where y∗ is the unique solution of E
[
H(T )X∗(T )

]
= x0.

2©. If (U
′

2)−(0) < (U
′

1)+(0), The optimal terminal wealth is given by

X∗(T ) =(U
′

1)−1
(
y∗H(T )

)
IH(T )≤HT (y∗) + LIy∗H(T )>(U

′
2)+(L)IH(T )>HT (y∗)

+ (U
′

2)−1
(
y∗H(T )

)
I(U

′
2)−(0)≤y∗H(T )≤(U

′
2)+(L)IH(T )>HT (y∗),

where y∗, HT (y∗) ∈
[

(U
′
1)+(0)
y∗ ,

(U
′
2)−(0)
y∗

]
is the unique solution of

E
[
H(T )X∗(T )

]
= x0

and

U1

[
(U
′

1)−1
(
y∗HT (y∗)

)
Iy∗HT (y∗)≤(U

′
1)+(0)

]
− y∗HT (y∗)(U

′

1)−1
(
y∗HT (y∗)

)
Iy∗HT (y∗)≤(U

′
1)+(0) − U2

[
(U
′

2)−1
(
y∗HT (y∗)

)
I(U

′
2)−(0)≤y∗HT (y∗)≤(U

′
2)+(L)

+ LIy∗HT (y∗)>(U
′
2)+(L)

]
+ y∗HT (y∗)

[
(U
′

2)−1
(
y∗HT (y∗)

)
I(U

′
2)−(0)≤y∗HT (y∗)≤(U

′
2)+(L) + LIy∗HT (y∗)>(U

′
2)+(L)

]
= 0.
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Proof. (1) Compare

X1(T ) := (U
′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(0)

with

X2(T ) := L

and observe that

g
(
H(T ), y

)
:=U1

(
X1(T )

)
− yH(T )X1(T )−

[
U2

(
X2(T )

)
− yH(T )X2(T )

]
=

{
U1

[
(U
′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(0)

]
− yH(T )[

(U
′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(0)

]}
−
[
U2(L)− yH(T )L

]
=

{
U1

[
(U
′

1)−1
(
yH(T )

)]
− yH(T )(U

′

1)−1
(
yH(T )

)
+ yH(T )L

}
IyH(T )≤(U

′
1)+(0) − U2(L) +

[
U1(0) + yH(T )L

]
IyH(T )>(U

′
1)+(0).

Define

g1(x) := U1

[
(U
′

1)−1
(
yx
)]
− yx(U

′

1)−1
(
yx
)

+ yxL

and on {yx ≤ (U
′

1)+(0)} we obtain that

g
′

1

(
x
)

=yx
y

(U
′′
1 )
(
yx
) − y(U

′

1)−1
(
yx
)
− yx y

(U
′′
1 )
(
yx
) + yL

=− y(U
′

1)−1
(
yx
)

+ yL

<0,

meanwhile, ψ(x) := U1(0) + yxL is decreasing with respect to x. Therefore, for a
fixed y, g

(
H(T ), y

)
is decreasing with respect to H(T ).

Similarly, for a fixed H(T ), g
(
H(T ), y

)
is also decreasing with respect to y. Thus,

for a fixed y, there exists a H(T ), denoted by HT (y), such that when H(T ) ≤ HT (y),

U1

(
X1(T )

)
− yH(T )X1(T ) ≥ U2

(
X2(T )

)
− yH(T )X2(T ),

and when H(T ) > HT (y),

U1

(
X1(T )

)
− yH(T )X1(T ) < U2

(
X2(T )

)
− yH(T )X2(T ).

Thus, the candidate optimal terminal wealth is given by

X∗(T ) = (U
′

1)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(0)IH(T )≤HT (y∗) + LIH(T )>HT (y∗),

where y∗ is the unique solution of

E
[
H(T )X∗(T )

]
= x0.

Similar to Proposition 3, the optimality of X∗(T ) and uniqueness of y∗ can be
obtained .

(2) Compare

X1(T ) := (U
′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(0)

with

X2(T ) := (U
′

2)−1
(
yH(T )

)
I(U

′
2)−(0)≤yH(T )≤(U

′
2)+(L) + LIyH(T )>(U

′
2)+(L)
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and observe that

h
(
H(T ), y

)
:=U1

(
X1(T )

)
− yH(T )X1(T )−

[
U2

(
X2(T )

)
− yH(T )X2(T )

]
=U1

[
(U
′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(0)

]
− yH(T )(U

′

1)−1
(
yH(T )

)
IyH(T )≤(U

′
1)+(0) − U2

[
(U
′

2)−1
(
yH(T )

)
I(U

′
2)−(0)≤yH(T )≤(U

′
2)+(L)

+ LIyH(T )>(U
′
2)+(L)

]
+ yH(T )

[
(U
′

2)−1
(
yH(T )

)
I(U

′
2)−(0)≤yH(T )≤(U

′
2)+(L) + LIyH(T )>(U

′
2)+(L)

]
=

{
U1

[
(U
′

1)−1
(
yH(T )

)]
− yH(T )(U

′

1)−1
(
y∗H(T )

)}
IyH(T )≤(U

′
1)+(0)

−
{
U2

[
(U
′

2)−1
(
yH(T )

)]
− yH(T )(U

′

2)−1
(
yH(T )

)}
I(U

′
2)−(0)≤yH(T )≤(U

′
2)+(L) −

[
U2(L)− yH(T )L

]
IyH(T )>(U

′
2)+(L)

− U2(0)IyH(T )<(U
′
2)−(0) + U1(0)IyH(T )>(U

′
1)+(0).

Define

νi(x) := Ui
[
(U
′

i )
−1(yx)

]
− yx(U

′

i )
−1(yx),

and observe that

ν
′

i(x) = −y(U
′

i )
−1(yx).

Thus

ν
′

1

(
H(T )

)
< 0, on {yH(T ) ≤ (U

′

1)+(0)},

ν
′

2

(
H(T )

)
> 0, on {(U

′

2)−(0) ≤ yH(T ) ≤ (U
′

2)+(L)},

and h
(
H(T ), y

)
is decreasing with respect to H(T ).

Similarly, for a fixed H(T ), h
(
H(T ), y

)
is also decreasing with respect to y.

1©. Assume (U
′

2)−(0) ≥ (U
′

1)+(0) and letHT (y) be any value on

[
(U
′
1)+(0)
y ,

(U
′
2)−(0)
y

]
.

Thus

h
(
HT (y), y

)
= 0,

and the candidate optimal terminal wealth is given by

X∗(T ) =(U
′

1)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(0)

+ (U
′

2)−1
(
y∗H(T )

)
I(U

′
2)−(0)≤y∗H(T )≤(U

′
2)+(L) + LIy∗H(T )>(U

′
2)+(L).

Consider a special case U1(·) = U2(·) = U(·), we obtain the candidate optimal
terminal wealth

X∗(T ) = (U
′
)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
2)+(L) + LIy∗H(T )>(U

′
2)+(L),

where y∗ is the unique solution of

E
[
H(T )X∗(T )

]
= x0.
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2©. Assume (U
′

2)−(0) < (U
′

1)+(0). There exists a unique HT (y) on

[
(U
′
2)−(0)
y ,

(U
′
1)+(0)
y

]
such that

h
[
HT (y), y

]
= 0.

The candidate optimal terminal wealth is given by

X∗(T ) =(U
′

1)−1
(
y∗H(T )

)
IH(T )≤HT (y∗) + LIy∗H(T )>(U

′
2)+(L)IH(T )>HT (y∗)

+ (U
′

2)−1
(
y∗H(T )

)
I(U

′
2)−(0)≤y∗H(T )≤(U

′
2)+(L)IH(T )>HT (y∗),

where y∗ is the unique solution of

E
[
H(T )X∗(T )

]
= x0.

Similar to Proposition 3, the optimality of X∗(T ) and uniqueness of y∗ can be
obtained.

We derive the optimal proportional reinsurance and investment strategy for an
insurer under two-piece utility (1.2).

Theorem 4.2. For an insurer with two-piece utility (1.2), the optimal proportional
reinsurance and investment strategy u is given by

p(t) = −
∂C
(
t,H(t)

)
∂H(t)

· H(t)θµ1

µ2
,

π(t) =
∂C
(
t,H(t)

)
∂H(t)

·
H(t)

(
r(t)− b(t)

)
σ2(t)

.

(1) Suppose U2(·) is a convex function and L ∈ (−∞, 0). C
(
t,H(t)

)
is given by

C
(
t,H(t)

)
=Et

[
ρt(U

′

1)−1
(
y∗H(t)ρt

)
Iy∗H(t)ρt≤(U

′
1)+(0)IH(t)ρt≤HT (y∗)

+ ρtLIH(t)ρt>HT (y∗)

]
.

(2) Suppose U2(·) is a concave function, L ∈ (−∞, 0) and (U
′

2)(0−) ≥ (U
′

1)(0+).
C
(
t,H(t)

)
is given by

C
(
t,H(t)

)
=Et

[
ρt(U

′

1)−1
(
y∗H(t)ρt

)
Iy∗H(t)ρt≤(U

′
1)+(0) + ρt(U

′

2)−1
(
y∗H(t)ρt

)
I(U

′
2)−(0)≤y∗H(t)ρt≤(U

′
2)+(L) + ρtLIy∗H(t)ρt>(U

′
2)+(L)

]
.

(3) Suppose U2(·) is a concave function, L ∈ (−∞, 0) and (U
′

2)(0−) < (U
′

1)(0+).
C
(
t,H(t)

)
is given by

C
(
t,H(t)

)
=Et

[
ρt(U

′

1)−1
(
y∗H(T )

)
IH(T )≤HT (y∗) + ρtLIy∗H(T )>(U

′
2)+(L)IH(T )>HT (y∗)

+ ρt(U
′

2)−1
(
y∗H(T )

)
I(U

′
2)−(0)≤y∗H(T )≤(U

′
2)+(L)IH(T )>HT (y∗)

]
.

Here ρt := H(T )
H(t) ; y∗, HT (y∗) is given by theorem 4.1 and Et[·] := E[· | Ft] represents

the conditional expectation with respect to F(t).
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Proof. (1). From Proposition 1, H(t)X(t) is a martingale under P. Therefore

X(t) =
1

H(t)
Et
{
H(T )

[
(U
′

1)−1
(
y∗H(T )

)
Iy∗H(T )≤(U

′
1)+(0)IH(T )≤HT (y∗)

+ LIH(T )>HT (y∗)

]}
where Et[·] = E[· | Ft] represents the conditional expectation with respect to F(t)
and y∗, HT (y∗) is determined by (1.12).

Due to the form of H(T ) and Markov structure of the processes, H(t) is inde-

pendent of H(T )
H(t) . We denote H(T )

H(t) by ρt, which takes the following form

ρt = exp

{∫ T

t

−
(
θ2µ2

1λ(s)σ2(s) + µ2

(
r(s)− b(s)

)2
+ 2r(s)µ2σ

2(s)

2µ2σ2(s)

)
ds

−
∫ T

t

θµ1

√
λ(s)

µ2
dW0(s) +

∫ T

t

(
r(s)− b(s)

σ(s)

)
dW (s)

}
and follows a log-normal distribution. Thus

X(t) = Et
[
ρt(U

′
1)

−1(y∗H(t)ρt
)
I
y∗H(t)ρt≤(U

′
1)+(0)

IH(t)ρt≤HT (y∗) + ρtLIH(t)ρt>HT (y∗)

]
.

X(t) can be viewed as a function of t and H(t): C
(
t,H(t)

)
. Hence

dX(t) =

(
∂C
(
t,H(t)

)
∂t

)
dt+

(
∂C
(
t,H(t)

)
∂H(t)

)
dH(t) +

1

2

(
∂2C

(
t,H(t)

)
∂H2(t)

)(
dH(t)

)2
=

{
− r(t)H(t)

∂C
(
t,H(t)

)
∂H(t)

+
∂2C

(
t,H(t)

)
2∂H2(t)

[
H2(t)θ2µ2

1λ(t)

µ2

+
H2(t)

(
r(t)− b(t)

)2
σ2(t)

]
+
∂C
(
t,H(t)

)
∂t

}
dt−

∂C
(
t,H(t)

)
∂H(t)

H(t)

θµ1

√
λ(t)

µ2
dW0(t) +

∂C
(
t,H(t)

)
∂H(t)

H(t)
r(t)− b(t)

σ(t)
dW (t).

(1.13)

Compare (1.1) with (1.13), we obtain that
−
∂C
(
t,H(t))

∂H(t)
H(t)θµ1

√
λ(t)

µ2
=
√
µ2λ(t)p(t),

∂C
(
t,H(t)

)
∂H(t)

H(t)
r(t)− b(t)

σ(t)
= π(t)σ(t).

Therefore the optimal reinsurance-investment strategy is given by
p(t) = −

∂C
(
t,H(t)

)
∂H(t)

· H(t)θµ1

µ2
,

π(t) =
∂C
(
t,H(t)

)
∂H(t)

·
H(t)

(
r(t)− b(t)

)
σ2(t)

.

The proof of (2), (3) is similar to that of (1).
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It is easy to see that, for all cases in Theorem 4.1, C(t,H(t)) is always non-
increasing with respect to H(t). Thus we have that for an insurer whose wealth
process evolves according to (1.1), with any two-piece utility function defined by
(1.2) and under the expected value premium principle, the optimal proportional
reinsurance strategy p(t) is non-negative.

5. Some examples. In this section, we consider some common utility functions.

Example 5.1. A particular case of utility (1.2) is the two-piece power utility func-
tion, see Tversky and Kehneman (1992), which is represented by:

U(x) =

{
αxγ1 , x > k,

− β(−x)γ2 , x ≤ k,

where 0 < γ1, γ2 ≤ 1 are curvature parameters, α, β > 0 and β stands for the loss
aversion coefficients of the investor. This utility is widely used models that consider
the loss aversion, for example, in Berkelaar (2004) and Guo (2014).

Let L be the lower bound of X(T ), satisfying L < k and E
[
H(T )L

]
≤ x0, where

x0 represents the initial wealth. The utility function of the insurer is given by

Ũ
(
X(T )

)
:= U1

(
X(T )− k

)
IX(T )>k + U2

(
X(T )− k

)
IX(T )≤k,

where U1(x) := αxγ1 and U2(x) := −β(−x)γ2 . The maximization problem in this
case can be reduced to{

max E
[
Ũ
(
X̃(T )

)]
s.t. E

[
H(T )X̃(T )

]
= x̃0, X̃(T ) ≥ L̃,

where

X̃(T ) :=X(T )− k,
x̃0 :=x0 − kE

[
H(T )

]
,

L̃ :=L− k.

The optimal terminal wealth is given by

X̃∗(T ) =

(
αγ1

y∗H(T )

) 1
1−γ1

IH(T )≤HT (y∗) + L̃IH(T )>HT (y∗),

X∗(T ) =

[(
αγ1

y∗H(T )

) 1
1−γ1

+ k

]
IH(T )≤HT (y∗) + LIH(T )>HT (y∗),

where y∗, HT (y∗) is the unique solution of
E
{
H(T )

[(
αγ1

y∗H(T )

) 1
1−γ1

+ k

]
IH(T )≤HT (y∗) +H(T )LIH(T )>HT (y∗)

}
= x0,

α

(
αγ1

y∗HT (y∗)

) γ1
1−γ1

− y∗HT (y∗)

(
αγ1

y∗HT (y∗)

) 1
1−γ1

+ y∗HT (y∗)L̃+ β(−L̃)γ2 = 0.

The optimal wealth process is given by

X(t) =C
(
t,H(t)

)
=Et

{
ρt

[(
αγ1

y∗H(t)ρt

) 1
1−γ1

+ k

]
IH(t)ρt≤HT (y∗) + ρtLIH(t)ρt>HT (y∗)

}
,
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where ρ(t) := H(T )
H(t) . Thus

∂C
(
t,H(t)

)
∂H(t)

=
−1

1− γ1

(
H(t)

) γ1−2
1−γ1 · Et

[
ρt

(
αγ1

y∗ρt

) 1
1−γ1

IH(t)ρt≤HT (y∗)

]
.

The optimal reinsurance-investment strategy is given by
p(t) =

1

1− γ1

(
H(t)

) −1
1−γ1 · Et

[
ρt

(
αγ1

y∗ρt

) 1
1−γ1

IH(t)ρt≤HT (y∗)

]
· θµ1

µ2
,

π(t) =
−1

1− γ1

(
H(t)

) −1
1−γ1 · Et

[
ρt

(
αγ1

y∗ρt

) 1
1−γ1

IH(t)ρt≤HT (y∗)

]
· r(t)− b(t)

σ2(t)
.

Example 5.2. Consider a logarithmic utility

U(x) =

{
c+ γ ln(x+ δ), x+ δ > 0,

−∞, x+ δ ≤ 0,

where γ > 0. Let L be the lower bound of X(T ), satisfying L ≥ −δ and E
[
H(T )L

]
≤

x0, where x0 represents the initial wealth. The maximization problem in this case
can be reduced to {

max E
[
Ũ
(
X̃(T )

)]
s.t. E

[
H(T )X̃(T )

]
= x̃0, X̃(T ) ≥ L̃,

where

Ũ(x) :=U1(x) = c+ γ lnx,

X̃(T ) :=X(T ) + δ,

x̃0 :=x0 + δE
[
H(T )

]
,

L̃ :=L+ δ.

The optimal terminal wealth should be

X̃∗(T ) =
γ

y∗H(T )
Iy∗H(T )≤(U

′
1)+(L̃) + L̃Iy∗H(T )>(U

′
1)+(L̃),

X∗(T ) =

[
γ

y∗H(T )
− δ
]
Iy∗H(T )≤(U

′
1)+(L̃) + LIy∗H(T )>(U

′
1)+(L̃),

where y∗ is the unique solution of

E
[(

γ

y∗
−H(T )δ

)
Iy∗H(T )≤(U

′
1)+(L̃) +H(T )LIy∗H(T )>(U

′
1)+(L̃)

]
= x0.

The optimal wealth process is given by

X(t) =C
(
t,H(t)

)
=

1

H(t)
Et
[(

γ

y∗
−H(T )δ

)
Iy∗H(T )≤(U

′
1)+(L̃) +H(T )LIy∗H(T )>(U

′
1)+(L̃)

]
,

where Et[·] := E[· | Ft] represents the conditional expectation with respect to F(t).
Thus

∂C
(
t,H(t)

)
∂H(t)

= − 1

H2(t)
Et
[
γ

y∗
Iy∗H(t)ρ(t)≤(U

′
1)+(L̃)

]
,
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where ρ(t) := H(T )
H(t) . The optimal reinsurance-investment strategy is given by
p(t) =

1

H(t)
Et
[
γ

y∗
Iy∗H(t)ρ(t)≤(U

′
1)+(L̃)

]
θµ1

µ2
,

π(t) = − 1

H(t)
Et
[
γ

y∗
Iy∗H(t)ρ(t)≤(U

′
1)+(L̃)

]
r(t)− b(t)
σ2(t)

.

Example 5.3. Consider an exponential utility

U(x) = c− δ

γ
e−γx,

where δ > 0, γ > 0. Let L be the lower bound of X(T ), satisfying E
[
H(T )L

]
≤ x0,

where x0 represents the initial wealth. The case can be viewed as

U(x) = U1(x) = U2(x).

The maximization problem in this case can be reduced to{
max E

[
U
(
X(T )

)]
s.t. E

[
H(T )X(T )

]
= x0, X(T ) ≥ L.

The optimal terminal wealth should be

X(T ) = − 1

γ
ln

(
y∗H(T )

δ

)
Iy∗H(T )≤(U ′ )+(L) + LIy∗H(T )>(U ′ )+(L),

where y∗ is the unique solution of

E
[
− H(T )

γ
ln

(
y∗H(T )

δ

)
Iy∗H(T )≤(U ′ )+(L) +H(T )LIy∗H(T )>(U ′ )+(L)

]
= x0.

The optimal wealth process is given by

X(t) =C
(
t,H(t)

)
=

1

H(t)
Et
[
− H(T )

γ
ln

(
y∗H(T )

δ

)
Iy∗H(T )≤(U ′ )+(L) +H(T )LIy∗H(T )>(U ′ )+(L)

]
=Et

{
− ρ(t)

γ

[
ln
(
H(t)

)
+ ln

(
y∗ρ(t)

δ

)]
Iy∗H(T )≤(U ′ )+(L)

+ ρ(t)LIy∗H(T )>(U ′ )+(L)

}
,

where Et[·] := E[· | Ft] represents the conditional expectation with respect to F(t).
Thus

∂C
(
t,H(t)

)
∂H(t)

= − 1

γH(t)
Et
[
ρ(t)Iy∗H(t)ρ(t)≤(U ′ )+(L)

]
,

where ρ(t) := H(T )
H(t) . The optimal reinsurance-investment strategy is given by

p(t) =
θµ1

γµ2
E
[
ρ(t)Iy∗H(t)ρ(t)≤(U ′ )+(L)

]
,

π(t) = −r(t)− b(t)
γσ2(t)

E
[
ρ(t)Iy∗H(t)ρ(t)≤(U ′ )+(L)

]
.
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