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Abstract

For testing the independence of two vectors with respective dimensions p1

and p2, the existing literature in high-dimensional statistics all assume that

both dimensions p1 and p2 grow to infinity with the sample size. However,

as evidenced in RNA-sequencing data analysis, it happens frequently that

one of the dimension is quite small and the other quite large compared to the

sample size. In this paper, we address this new asymptotic framework for

the independence test. A new test procedure is introduced and its asymp-

totic normality is established when the vectors are normally distributed. A

Monte-Carlo study demonstrates the consistency of the procedure and ex-
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hibits its superiority over some existing high-dimensional procedures. It is

also shown that the procedure is robust against the normality assumption

on the population vectors. Applied to a set of RNA-sequencing data, we ob-

tain very convincing results on pairwise independence/dependence of gene

isoform expressions as attested by prior knowledge established in that field.

Keywords: Covariance matrix, Gene network, High-dimensional testing,

Independence test

1. Introduction

Modern scientific researches increasingly encounter high dimensional data

and then evoke corresponding statistical analyses. In genomics, next-generation

sequencing techniques such as RNA-Sequencing (Feng et al., 2013) are de-

signed to quantify gene expression, where typically a group of gene isoforms

are analyzed and their expression data at exon levels are recorded into mul-

tidimensional vectors. The dimensions of these vectors vary in a wide range

where the smallest dimension can be one or two and the largest one can

be comparable to the sample size. A fundamental issue in such analyses is

determining whether there is any interaction between two given gene iso-

forms. More formally, this problem involves testing the independence of two

possibly correlated vectors in a situation where one dimension is small but

the other is large compared to the sample size.

Generally, let X = (X1, . . . , Xp1), Y = (Y1, . . . , Yp2) and Z = (X,Y) be

the joint vector of dimension p := p1 + p2. The covariance matrix of Z is

partitioned as

Σ =

Σxx Σxy

Σyx Σyy


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so that Σxx = V ar(X), Σyy = V ar(Y) and Σxy = Cov(X,Y). Let

z1, . . . , zN be a sample of size N drawn from the population Z. The sample

covariance matrix is

Sn =
1

n

N∑
k=1

(zk − z̄)(zk − z̄)′

where z̄ = 1
N

∑N
k=1 zk and n = N − 1 represents the degree of freedom.

Accordingly, Sn can be partitioned as

Sn =

Sxx Sxy

Syx Syy

 .

Assume that the joint vector Z has a p-dimensional normal distribution with

mean µ and covariance matrix Σ, the independence hypotheses of X and Y

can be represented as

H0 : Σxy = 0 v.s. H1 : Σxy 6= 0. (1)

To test these hypotheses, the following three statistics are commonly used

(Anderson, 2003), which are the likelihood ratio test (LRT) and two trace

criteria:

Λ =
supH0

L(µ,Σ)

supL(µ,Σ)
=

|Sn|N/2

|Sxx|N/2|Syy|N/2
= |Ip1 − SxyS−1yy SyxS−1xx |

N
2 ,

C1 = tr(SxyS
−1
yy SyxS

−1
xx ) and C2 = tr(SxySyx)− 1

n
tr(Sxx)tr(Syy).(2)

The LRT statistic is the well-known Wilks’s Λ (Wilks, 1935). Both statistics

C1 and C2 are based on the idea that under the independence hypothesis,

Σxy = Σ′yx = 0 so that Sxy as well as Syx should be small. A noticeable

difference here is that the statistics Λ and C1 rely on the inverse matrices S−1xx

and S−1yy so that essentially the conditions pi < n are required. Conversely,
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the criterion C2 can be applied when the dimensions pi, i = 1, 2, are larger

than the sample size N .

The test procedures for the classical situation where the dimensions pi’s

are reasonably small compared with the the sample size are well studied (An-

derson, 2003). It is however well understood today that these asymptotical

approximations are no more valid when the dimensions are comparable to

the sample size, see e.g. Ledoit & Wolf (2002), Bai et al. (2009), Chen &

Qin (2010) and Wang & Yao (2013). New limiting distributions have to be

found in the large-dimensional context.

Specifically for the independence test, the existing literature in the large-

dimensional context includes

1. the large-dimensional limit of Λ proposed in Jiang et al. (2013) under

the asymptotic scheme min(p1, p2, n) → ∞, p1 + p2 < n and pi/n →

ci > 0;

2. the large-dimensional limit of C1 proposed in Jiang et al. (2013) un-

der the asymptotic scheme min(p1, p2, n) → ∞, max(p1, p2) < n and

pi/n→ ci > 0; and

3. the large-dimensional limit of C2 proposed in Srivastava & Reid (2012)

under the asymptotic scheme min(p1, p2, n) → ∞, pi/p → di > 0 and

n = O(pδ) for some constant δ > 0 as n→∞.

Most recently, the trace criterion C1 is generalized by Yang and Pan (2015)

based on regularized canonical correlation coefficients to accommodate sit-

uations where max{p1, p2} can be larger than n. These existing asymptotic

schemes are quite similar in that they all require that both dimensions p1

and p2 grow to infinity with the sample size N .

Motivated by RNA-sequencing analysis, our objective in this paper is
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to test the hypotheses in (1) with the criterion C2 assuming p1 fixed and

min(p2, n) → ∞. As far as we know, this scheme has not been addressed

in the literature. It will be proved that the asymptotic distribution of the

statistic exists under this asymptotic scenario and is consistent with the one

in Srivastava & Reid (2012). Note that our proof is different from theirs and

this new asymptotic scenario is not covered by their results.

The rest of this paper is organised as follows. In the next section, we

present the new test procedure and examine its size and power through

simulation experiments. Section 3 presents an analysis of a genomic data

set and Section 4 presents some conclusions and remarks. The main theorem

is proved in the last section.

2. Test for the independence in high dimensions

2.1. Test statistic and its asymptotic distribution

The null hypothesis in (1) is equivalent to tr(ΣxyΣyx) = 0. Thus we may

construct an unbiased estimator of this trace and reject the null hypothesis

when this statistic is too large. Let

γ2 = tr(Σ2), γxx = tr(Σ2
xx), γyy = tr(Σ2

yy), γxy = tr(ΣxyΣyx).

We have by definition 2γxy = γ2 − γxx − γyy. From Srivastava (2005),

an unbiased estimator of γ2 is given as kn[tr(S2
n) − tr2(Sn)/n] with kn =

n2/(n− 1)(n+ 2). Therefore an unbiased estimator of γxy is constructed as

γ̂xy =
kn
2

{
tr(S2

n)− tr(S2
xx)− tr(S2

yy)−
1

n

[
tr2(Sn)− tr2(Sxx)− tr2(Syy)

]}
,

= kn

[
tr(SxySyx)− 1

n
tr(Sxx)tr(Syy)

]
.
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We thus get the trace criterion C2 given in (2). Notice that the estimator

γ̂xy is a function of eigenvalues of the sample covariance matrices Sxx, Syy,

and Sn.

Theorem 1. Suppose that the dimension p1 is fixed, p2 and n both tend to

infinity, and

0 < lim
p→∞

1

p
tr(Σk) <∞, k = 1, 2, 4.

Then under the null hypothesis in (1),

Tn :=
n√
2kn

γ̂xy√
γ̂xxγ̂yy

d−→ N(0, 1), (3)

where γ̂xx = kn[tr(S2
xx) − tr2(Sxx)/n] and γ̂yy = kn[tr(S2

yy) − tr2(Syy)/n]

with kn = n2/(n− 1)(n+ 2).

This theorem establishes the asymptotic distribution of Tn for the sce-

nario that p1 is fixed and p2 approaches infinity. Notice that the convergence

in (3) coincides with the result in Srivastava & Reid (2012), which assumes

both p1 and p2 tend to infinity. This means that for practical applications,

the proposed test is robust against different asymptotic scenarios of dimen-

sions. Such robustness is especially welcomed since in a precise application

(such as the gene isoform data analyzed in this paper) the explicit values

of the dimensions p1 and p2 are known and it is somehow difficult to decide

what is the most convenient asymptotic scenario to use. Synthesizing the

two scenarios, we immediately get a more general one, i.e. p = p1+p2 →∞,

for the convergence in (3).

Theorem 2. Suppose that the dimensions p = p1 + p2 and n both tend to

infinity, and

(a) 0 < lim
p→∞

1

p
tr(Σk) <∞, k = 1, 2, 4;
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(b) for some δ ≥ 0, lim
p,n→∞

p1−δ

n
= 0 and 0 < lim

p→∞

1

pδ
tr(ΣxyΣyx).

Then the asymptotic power of the proposed test tends to 1 as N →∞.

Theorem 2 presents a set of sufficient conditions for the consistency of

the test Tn. Condition (a) is the same as used in Theorem 1, which claims

the existence of the fourth moments of the population spectral distribution.

Condition (b) describes the range of the asymptotic frameworks that one can

use. Condition (c) clarifies the requirement of the amount of tr(ΣxyΣyx)

for the consistency in a specified framework. For instance, in the most

commonly used content p/n → c ∈ (0,∞), we need tr(ΣxyΣyx) → ∞ to

guarantee the consistency.

2.2. Monte-Carlo study

We numerically evaluate the finite-sample performance of the test Tn

and report the empirical size and power under different dimension settings.

For the purpose of comparison, we also consider two tests discussed in Jiang

et al. (2013): one is the corrected LRT, referred as T1, and the other is

based on the trace criterion C1, referred as T2. Since the test T1 is limited

to p1 + p2 < n and T2 is limited to max{p1, p2} < n, we only consider the

former case when comparing the three tests. The nominal significance level

is fixed at α = 0.05, and the number of independent replications is 100, 000.

We first report the empirical sizes of the three tests. Samples are drawn

from standard normal population, and thus Σ is an identity matrix. The

dimensions are p1 = 2, 6, 10, p2 = 10, 30, 100, 200, 500, and n = 50. The

results are collected in Table 1, where the first six columns compare the sizes

of the three tests when p1 + p2 < n and the last three columns illustrate the
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size of the proposed Tn when p2 > n. The results show that all the empirical

sizes are close to the nominal significance level.

Table 1: Empirical sizes in percents for the three tests with the significant level α = 0.05.

p1 p2 = 10 p2 = 30 Tn&p2

Tn T1 T2 Tn T1 T2 100 200 500

2 6.32 6.56 5.86 5.72 6.17 4.48 5.52 5.34 5.30

6 5.89 6.11 5.37 5.66 5.88 4.69 5.46 5.21 5.29

10 5.74 6.03 5.27 5.46 5.90 4.70 5.36 5.09 5.16

To examine the powers of the three tests, we employ a model studied in

Jiang et al. (2013), where the populations X and Y are defined as

X = U1 + γUp1
2 , Y = U2 + γU2, Ui ∼ N(0, Ipi), i = 1, 2,

respectively, where U1 and U2 are independent, Up1
2 is a subset of U2

consisting of its first p1 variables, and the factor γ represents the degree of

mixture. Therefore, the covariance matrices are respectively

Σxx = (1 + γ2)Ip1 , Σyy = (1 + γ)2Ip2 , Σxy = γ(1 + γ)(Ip1 , Op1,p2−p1),

where Om,n represents an m× n zero matrix.

Figure 1 illustrates the powers of the three tests for this model. In

the left panel, the parameters are (p1, p2, n) = (4, 30, 50) and the factor γ

increases from 0 to 0.9; while on the right, (p1, n, γ) = (4, 50, 0.5) and p2

increases from 5 to 45. The curves in the figure show that the powers of the

tests T1 and T2 are similar, and are dominated by the proposed test Tn in

all the settings. Particularly, the curves in the right panel show that all the

powers of the tests decrease as p2 increases, which reflects the fact that in
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Figure 1: Empirical powers of the three tests. The parameter settings are (p1, p2, n) =

(4, 30, 50), 0 ≤ γ ≤ 0.9 in the left panel, and (p1, n, γ) = (4, 50, 0.5), 5 ≤ p2 ≤ 45 in the

right panel.

this process the increasing number of zero entries of Σxy makes it closer to

the zero matrix of the null hypothesis. However, the power of Tn declines

much slower than T1 and T2, which demonstrates a greater robustness of Tn

against the inflating p2.

Next we examine the robustness of the three test procedures when the

assumed normal distribution of the vectors is contaminated by gamma-

distributed errors. The studied model is the same as the previous except

that the vector Ui’s are replaced by

Ui + θVi, Vi = (vi1, . . . , vipi)
′, i = 1, 2,

where {vij}, independent of {Ui}, are i.i.d. standardized random variables

derived from Gamma(a, b) distributed variables and the parameter θ repre-

sents the level of contamination. The new parameters are set to be a = b = 3

(positive skew, heavy-tailed) and θ = 1/2, 2 in this experiment. Thus the
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Table 2: Empirical sizes in percents for the three tests with the significant level α = 0.05.

p1 p2 = 10 p2 = 30 Tn&p2

Tn T1 T2 Tn T1 T2 100 200 500

2 6.38 6.56 5.90 5.86 6.19 4.45 5.55 5.32 5.22

θ = 1
2 6 5.91 6.17 5.44 5.47 5.84 4.60 5.34 5.24 5.16

10 5.71 5.94 5.18 5.55 5.80 4.80 5.33 5.12 5.22

2 6.38 6.52 5.80 6.00 6.38 4.62 5.59 5.59 5.33

θ = 2 6 6.02 6.15 5.49 5.65 5.79 4.67 5.42 5.42 5.22

10 5.85 6.03 5.27 5.68 5.82 4.84 5.35 5.33 5.06

covariance matrices become

Σxx = (1 + γ2)(1 + θ2)Ip1 , Σyy = (1 + γ)2(1 + θ2)Ip2 ,

Σxy = γ(1 + γ)(1 + θ2)(Ip1 , Op1,p2−p1).

Results about the empirical sizes and powers of the tests are collected

in Table 2 and Figure 2, respectively. It shows that all the sizes are close to

the nominal one and the power curves are quite similar to those in Figure 1,

which demonstrate that the additional gamma-distributed errors have little

impact on the three tests. It is however worth noticing that the theoretic

proof of Theorem 1 in this paper as well as the proofs for asymptotic normal-

ity of the test criteria T1 and T2 established in Jiang et al. (2013) all heavily

rely on the assumed normality of the vectors, and to our best knowledge, it

seems unclear how these proofs can be extended to cover non-normal data

as the ones tested in the Monte-Carlo experiments reported here.
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Figure 2: Empirical powers of the three tests for the non-normal distribution with θ =

1/2, 2. The parameter settings are (p1, p2, n) = (4, 30, 50), 0 ≤ γ ≤ 0.9 in the left panel,

and (p1, n, γ) = (4, 50, 0.5), 5 ≤ p2 ≤ 45 in the right panel.
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3. Real data analysis

Genomes play a central role in the control of cellular processes (Barabasi

& Oltvai, 2004). The dynamic interplay between various genes can be

mapped as gene co-expression networks, which is an important and widely

used method to understand the cause and prognosis of various diseases.

To recover pairwise dependencies in a gene co-expression network, each co-

expression edge has to be inferred by accepting or rejecting the independence

hypothesis from the sample covariance matrix of respective isoform expres-

sions.

We analyze a data set of liver cancer, which is downloaded from TCGA

data portal: https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm, and

filtered by data types RNASeqV2 and Level 3. The data set consists of 38

genes with their dimensions ranging from 1 to 31 (see Table 3) and their

sample size is N = 50. Obviously the dimensions are not on the same order

of magnitude as their sample size. For these genes, the relationship of de-

pendency are totally known based on established knowledge from historical

experiments: 29 pairs of them are dependent and the remaining 674 pairs

are independent.

We test the pairwise gene dependencies using Tn and compare the results

with those from two other methods: one is from Hong et al. (2013), which

is a variant of traditional canonical correlation analysis (CCA); the other is

the large-dimensional trace criterion T2, which is recently applied in Yala-

manchili et al. (2014) and is demonstrated better than CCA. The corrected

LRT T1 is excluded from this comparison since its dimensional requirement

is not met for the data set. The significance level is set to be α = 0.05. To

evaluate the accuracy of the test results, we employ the so called F-score
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Table 3: Lung cancer data: 38 genes with different dimensions

Name NM000222 NM000321 NM000636 NM000791 NM001126116 NM001140

Dimension 20 27 4 6 7 13

Name NM001145102 NM001204191 NM001237 NM001429 NM001759 NM001760

Dimension 9 7 8 31 5 4

Name NM001786 NM001880 NM001950 NM002198 NM002228 NM002421

Dimension 4 13 10 9 1 10

Name NM002467 NM002505 NM002539 NM002985 NM003109 NM003153

Dimension 3 10 11 3 6 22

Name NM003221 NM003998 NM004379 NM004417 NM005194 NM005238

Dimension 7 23 8 2 1 8

Name NM005239 NM005252 NM005438 NM007122 NM022457 NM033285

Dimension 10 2 4 11 20 4

Name NM053056 NM198253

Dimension 5 15

(Powers, 2007) which actually measures the trade-off between precision P

and recall R:

F = 2× P ×R
P +R

, (4)

where

P =
true positives

true positives+ false positives
, R =

true positives

true positives+ false negatives
.

With the prior information of dependency, the true positives stands for the

number of correctly identified correlated pairs of genes, the false positive is

the number of misidentified correlated pairs of genes, and the false negatives

is the number of misidentified uncorrelated pairs of genes.

The F-scores reported in Table 4 show that Tn outperforms T2 signifi-

cantly. CCA fails to detect the relationship between gene NM002228 and
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other genes due to the dimension of this gene is 1. The same phenomenon

happens to gene NM005195. Therefore, we cannot get F-score for CCA.

Table 4: F-scores for the data set including 38 genes.

Method Tn T2 CCA

F-score 0.64 0.40 NA

Next, we remove the 1-dimensional genes from the data set in order to

incorporate CCA for comparison. The remaining 36 genes include 25 de-

pendent pairs and 605 independent pairs. The F-scores collected in Table

5 demonstrate that Tn again outperforms the others. Notice that such re-

sults on pairwise dependence of gene isoform expressions are further used to

construct gene co-expression networks, see Yalamanchili et al. (2014).

Table 5: F-scores for the data set including 36 genes.

Method Tn T2 CCA

F-score 0.6465 0.4238 0.4187

4. Concluding remarks

This paper investigates the independence test of two vectors in a high-

dimensional situation where one of the dimensions p1 is quite small while the

other dimension p2 is large compared to the sample size. The asymptotic

scheme is novel and practically useful. A new procedure is introduced and

the test statistic under the null is proved to be asymptotically normal dis-

tributed assuming that p1+p2 →∞ and the vectors are normal distributed.

The power of the proposed test is studied through Monte-Carlo simulations

and a real data analysis, which demonstrates the superiority of the new test
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over the existing ones. Another interesting feature found in the Monte-Carlo

study is that the proposed procedure is robust against deviations from the

normality assumption on the vectors although a theoretic proof of this fact

is still missing.

5. Proofs

5.1. Lemma

Lemma 1. Let u, v, and w be independent vectors of n-dimensional stan-

dard normal distribution N(0, In), and define

ψ(x,y) =
1

n
(x′y)2 − 1

n2
(x′x)(y′y), (5)

then

E[ψ(u,v)|u] = 0, E[ψ(u,v)ψ(w,v)|u,w] =
2

n
ψ(u,w),

E[ψ(v,v)] = (n− 1)(n+ 2)/n, E[ψ2(u,v)] = 2(n− 1)(n+ 2)/n2,

E[ψ2(v,v)] = O(n2), Var[ψ2(v,v)] = O(n), E[ψ4(u,v)] = O(1),

as n→∞.

Proof. The distribution of v′v is χ2(n) and the conditional distribution of

u′v|u is N(0,u′u), thus E[ψ(u,v)|u] = 0. Write

ψ(u,v)ψ(w,v) =
1

n2
(u′v)2(w′v)2 − 1

n3
(u′v)2(w′w)(v′v)

− 1

n3
(w′v)2(u′u)(v′v) +

1

n4
(u′u)(w′w)(v′v)2

:=
1

n2
S1 −

1

n3
S2 −

1

n3
S3 +

1

n4
S4.
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Then E(S4|u,w) = n(n+ 2)(u′u)(w′w), and

E(S1|u,w) =
∑
i,j,k,l

uiujwkwlE(vivjvkvl)

=
∑

i=j,k=l

uiujwkwl +
∑

i=k,j=l

uiujwkwl +
∑

i=l,j=k

uiujwkwl

= (u′u)(w′w) + 2(u′w)2,

E(S2|u,w) = (w′w)
∑
i,k

u2i · E(v2i v
2
k) = (n+ 2)(u′u)(w′w),

and thus E(S3|u,w) = E(S2|u,w), where (xi) denote the elements of x.

Collecting these results, we get E[ψ(u,v)ψ(w,v)|u,w] = (2/n)ψ(u,w).

Notice that ψ(v,v) = (n− 1)(v′v)2/n2, and E(v′v)k = n(n+ 2) · · · (n+

2k − 2), k ∈ N+. We have then,

E[ψ(v,v)] = (n− 1)(n+ 2)/n,

E[ψ2(u,v)] = (2/n)E[ψ(u,u)] = 2(n− 1)(n+ 2)/n2,

E[ψ2(v,v)] = E(v′v)4(n− 1)2/n4 = O(n2),

Var[ψ2(v,v)] =
[
E(v′v)4 − E2(v′v)2

]
(n− 1)2/n4 = O(n).

Finally, from Minkowski inequality,

E[ψ4(u,v)] =
1

n4
E[(u′v)2 − (u′u)(v′v)/n]4

≤ 1

n4

{[
E(u′v)8

] 1
4 +

[
E(u′u)4E(v′v)4

] 1
4 /n

}4

=
1

n4

{[
E(v′v)4

] 1
4 +

[
E(v′v)4

] 1
2 /n

}4

,

which is O(1) as n→∞.

5.2. Proof of Theorem 1

The sample covariance Sn has the Wishart distribution Wn(Σ) with n

degrees of freedom. It can be expressed as
∑n

i=1 z̃kz̃
′
k/n where (z̃i) are i.i.d.
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N(0,Σ). Write z̃i = (x̃′i, ỹ
′
i)
′ = (x̃i1, . . . , x̃ip1 , ỹi1, . . . , ỹip2)′, i = 1, . . . n, and

denote X = (x̃1, . . . , x̃n) and Y = (ỹ1, . . . , ỹn). Note that the matrices

X and Y contain normal vectors which are independent under H0. The

matrices X′X and Y′Y can be standardized as

X′X =

p1∑
i=1

αiuiu
′
i, Y′Y =

p2∑
j=1

βjvjv
′
j ,

where (αi) and (βj) are the eigenvalues of Σxx and Σyy, respectively, and

(ui), (vj) are i.i.d. N(0, In). Therefore, we have

n

kn
γ̂xy = ntr(SxySyx)− tr(Sxx)tr(Syy)

=
1

n
tr(X′XY′Y)− 1

n2
tr(X′X)tr(Y′Y)

=

p1∑
i=1

p2∑
j=1

αiβj

[
1

n
(u′ivj)

2 − 1

n2
(u′iui)(v

′
jvj)

]

:=

p1∑
i=1

p2∑
j=1

aijψ(ui,vj),

where aij = αiβj and ψ is defined in (5) with the dimension n, i = 1, . . . , p1, j =

1, . . . , p2.

We use the martingale CLT to establish the limiting distribution of

Tn. Without loss of generality suppose that p1 ≤ p2, and define φ
(n)
j =

(1/
√
p1p2)

∑p1
i=1 aijψ(ui,vj), j = 1, . . . , p2. Let F (n)

j be the σ-algebra gen-

erated by the random variables {u1, . . . ,up1 ,v1, . . . ,vj}, then {∅,Ω} = F0 ⊂

F (n)
1 ⊂ · · · ⊂ F (n)

p2 ⊂ F with (Ω,F , P ) the probability space. From Lemma

17



1 and the law of iterated expectations,

E

[
φ
(n)
j

∣∣∣∣F (n)
j−1

]
=

1
√
p1p2

p1∑
i=1

aijE(ψ(ui,vj)|ui) = 0,

E
[
φ
(n)
j

]2
=

1

p1p2

p1∑
i=1

p1∑
k=1

aijakjE[ψ(ui,vj)ψ(uk,vj)]

=
2(n− 1)(n+ 2)

n2p1p2

p1∑
i=1

a2ij ,

which is O(1/p2) as (p, n) → ∞. Thus {ψ(n)
j ,F (n)

j } forms a sequence of

integrable martingale differences. On the other hand,

p2∑
j=1

E

[(
φ
(n)
j

)2 ∣∣∣∣F (n)
j−1

]
=

1

p1p2

p2∑
j=1

p1∑
i=1

p1∑
k=1

aijakjE (ψ(ui,vj)ψ(uk,vj)|ui,uk)

=
2

np1p2

p1∑
i=1

p1∑
k=1

bijψ(ui,uk)

=
2

np1p2

p1∑
i=1

biiψ(ui,ui) +
2

np1p2

∑
i 6=k

bikψ(ui,uk)

:= A1n +A2n,

where bik =
∑p2

j=1 aijakj , i, k = 1, . . . , p1. Considering the variances of A1n

and A2n, Var(A1n) = O(1/n) and

Var(A2n) =
4

n2p21p
2
2

∑
i 6=k

∑
l 6=s

bikblsE[ψ(ui,uk)ψ(ul,us)]

=
8

n2p21p
2
2

∑
i 6=k

b2ikE[ψ2(ui,uk)],

which is O(1/n2). Therefore, from the Chebyshev inequality,

p2∑
j=1

E

[(
φ
(n)
j

)2 ∣∣∣∣F (n)
j−1

]
−

p2∑
j=1

E
(
φ
(n)
j

)2 p−→ 0, as (p, n)→∞,

where the second expectation has expression s2n := 2(1−1/n)(1+2/n)
∑p1

i=1

∑p2
j=1 a

2
ij/(p1p2).
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Next we verify Lyapunov condition by showing thatBn =
∑p2

j=1 E(φ
(n)
j )4 →

0. From Lemma 1 and the law of iterated expectations,

Bn =
1

p21p
2
2

p2∑
j=1

p1∑
i=1

p1∑
l=1

p1∑
s=1

p1∑
t=1

aijaljasjatjE[ψ(ui,vj)ψ(ul,vj)ψ(us,vj)ψ(ut,vj)]

=
1

p21p
2
2

p2∑
j=1

p1∑
i=1

a4ijE[ψ4(ui,vj)] +
3

p21p
2
2

p2∑
j=1

∑
i 6=s

a2ija
2
sjE[ψ2(ui,vj)ψ

2(us,vj)]

=
1

p21p
2
2

p2∑
j=1

p1∑
i=1

a4ijE[ψ4(ui,vj)] +
12

n2p21p
2
2

p2∑
j=1

∑
i 6=s

a2ija
2
sjE[ψ2(vj ,vj)],

which is O(1/p2) as (p, n)→∞.

Notice that γ̂xx and γ̂yy are unbiased and consistent estimators of γxx

and γyy, respectively. The statistic ŝ2n := 2(1− 1/n)(1 + 2/n)γ̂xxγ̂yy/(p1p2)

is also an unbiased and consistent estimator of s2n under the null hypothesis,

therefore

n√
2kn

γ̂xy√
γ̂xxγ̂yy

=
1

ŝn

p2∑
j=1

φ
(n)
j

d−→ N(0, 1), as (p, n)→∞.

5.3. Proof of Theorem 2

Denote γ̂2 = kn[tr(S2
n)− 1

ntr2(Sn)]. Under the assumptions of the theo-

rem, from Lemma 6.4 in Srivastava (2005), we have E (γ̂2) = tr(Σ2) and

V ar (γ̂2) =
8(n+ 3)

n(n+ 2)
tr(Σ4) +

4

(n+ 2)(n− 1)

(
tr2(Σ2)− tr(Σ4)

)
.

From Chebyshev inequality, (γ̂2 − tr(Σ2))/p converges in probability to 0,

as n, p tend to infinity. Similarly, we can get

1

p1
(γ̂xx − γxx)

p−→ 0,
1

p2
(γ̂yy − γyy)

p−→ 0. (6)
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For the statistic γ̂xy, it’s easy to see that γ̂xy = (γ̂2− γ̂xx− γ̂yy)/2, and thus

we get E(γ̂xy) = γxy and

V ar(γ̂xy/p
δ) =

1

4pδ2
V ar(γ̂2 − γ̂xx − γ̂yy)

≤ 3

4pδ2
(V ar(γ̂2) + V ar(γ̂xx) + V ar(γ̂yy))→ 0.

Therefore, (γ̂xy − γxy) /pδ
p−→ 0, as n, p tend to infinity. From this, the results

in (6), and again the assumptions of the theorem, we conclude that

Tn =
n

p1−δ
· p√

2knp1p2
· γ̂xy/p

δ√
γ̂xxγ̂yy/p1p2

p−→∞, n, p→∞,

which implies the result of the theorem.
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