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CHANGE-POINT DETECTION IN MULTINOMIAL DATA WITH
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We consider a sequence of multinomial data for which the probabili-
ties associated with the categories are subject to abrupt changes of unknown
magnitudes at unknown locations. When the number of categories is compa-
rable to or even larger than the number of subjects allocated to these cate-
gories, conventional methods such as the classical Pearson’s chi-squared test
and the deviance test may not work well. Motivated by high-dimensional ho-
mogeneity tests, we propose a novel change-point detection procedure that
allows the number of categories to tend to infinity. The null distribution of
our test statistic is asymptotically normal and the test performs well with fi-
nite samples. The number of change-points is determined by minimizing a
penalized objective function based on segmentation, and the locations of the
change-points are estimated by minimizing the objective function with the
dynamic programming algorithm. Under some mild conditions, the consis-
tency of the estimators of multiple change-points is established. Simulation
studies show that the proposed method performs satisfactorily for identifying
change-points in terms of power and estimation accuracy, and it is illustrated
with an analysis of a real data set.

1. Introduction. Change-point detection plays a critical role in data process-
ing, modeling, estimation and inference. Although most of the literature focuses
on continuous data, in many data generation and collection processes, the obser-
vations either are measured on a discrete scale or naturally have some categor-
ical structures. For such categorical data, there are rather limited approaches to
change-point detection [Braun, Braun and Miiller (2000)]. The standard procedure
is to apply binary segmentation and perform homogeneity tests on two contigu-
ous samples under multinomial assumptions [Horvath and Serbinowska (1995),
Srivastava and Worsley (1986)]. Classical methods, such as Pearson’s chi-squared
test and the deviance test, work well when each category contains sufficient amount
of data. However, in modern applications, it is possible that the number of cate-
gories is comparable to or even larger than the number of subjects. For example,
in the digitized text era, the word composition in different corpuses collected over
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time often experiences multiple abrupt changes. One may be interested in detecting
such change-points that split the text data into segments for gaining more insights.
The number of words can be very large, while the count for each word is often
small or even zero. As a result, classical test statistics are typically not welldefined
due to sparse contingency tables and the asymptotic theory developed for a fixed
number of categories is generally not applicable.

In a sequence of multinomial data with the number of categories tending to in-
finity, we are interested in detecting changes in the probabilities associated with
the categories over time. Specifically, we collect T independent observations with
p possible outcomes, X; = (X;1, ..., X,p)T, t=1,...,T. We assume that X, fol-
lows a multinomial distribution, X; ~ Multi(n;,, q(t )), where n;, trials are conducted
at time point ¢ and the probabilities of outcomes q*) = (qft), ey qf(f))T satisfy
Z?Z | qj(.t) = 1. Following the modern terminology of “large p, small n” problems
[Chen and Qin (2010)], we use p to denote the number of outcomes which can be
very large, that is, p — co. We consider the change-point model

0 Multi(n,, qo) fort=1,..., 7%
! Multi(n,, q1) fort=1t*+1,...,T,
where 7* > 0 is an unknown change-point and q; = (g1, ..., ql,,)T for/ =0,1.

Our goal is to test whether there exists a change-point, with Hp : t* = T versus
Hj :t* < T, and to further estimate t* if Hy is rejected.

This change-point detection problem is essentially related to a two- or multi-
sample comparison with categorical data, for which a homogeneity test is typi-
cally used to examine whether all the 7 (7" > 2) multinomial distributions are the
same. Toward this goal, Pearson’s chi-squared statistic [Agresti (2013)] can be
constructed,

Do ml Xig/N

where X;; is the jth component of X; and N = Z;T:1 n;. Under the null hypoth-
esis Hy:qp =--- =qr, K7 follows a X(2p—l)(T—l) distribution for a fixed p as
N — 00. When we allow p — o0, in the context of one-sample homogeneity
test, Holst (1972) and Morris (1975) developed asymptotic theory for Pearson’s
chi-squared test. Moderate and large deviation theorems for Pearson’s chi-squared
statistic and the likelihood ratio statistic in multinomial distributions are given in
Kallenberg (1985). When all p,ny,...,nt — oo, Kr is related to the class of
multi-dimensional decomposable statistics whose asymptotic normality after suit-
able normalization is also established; for example, see Iv€enko and Levin (1976)
and Bykov and Ivanov (1989). More recently, Baranov and Baranov (2005) con-
sidered the T-sample homogeneity problem. However, these existing methods are
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not readily applicable to our change-point problem in (1) as detailed in the fol-
lowing. First, the test statistic K7 is not well defined if some category does not
contain any observation when p is large but N is small. Further, it is difficult to
verify the imposed conditions, and the asymptotic result only allows p to grow
at a linear rate of n;. Second, it is required to estimate certain normalizing pa-
rameters which involve complicated asymptotic expansions of mixed moments of
Poisson distributed variables. The normality property with plugged-in estimators
is not guaranteed from asymptotic viewpoints. Third, the theory of decomposable
statistics is not directly applicable, when the number of observations 7 in (1) di-
verges to infinity.

To overcome these drawbacks, we develop a novel testing procedure that is ca-
pable of accommodating large p. Based on the martingale central limit theorem,
the proposed test statistic is shown to be asymptotically normal. Our method in-
cludes the two- and multi-sample homogeneity tests as special cases. Furthermore,
we form an objective function based on segmentation when searching for multiple
change-points, and determine the number of change-points by minimizing its pe-
nalized version. The locations of the change-points can be estimated via dynamic
programming in conjunction with utilization of the intrinsic order structure of the
objective function.

The remainder of this article is organized as follows. In Section 2, we present the
new test statistic and its theoretical properties. In Section 3, we develop the estima-
tion procedure for multiple change-points. Section 4 provides extensive simulation
studies and a real data example as an illustration. Section 5 concludes with some
remarks, and all technical proofs and additional numerical studies are delineated
in the Supplementary Material [Wang, Zou and Yin (2018)].

2. Change-point test and estimation.

2.1. Test statistic. We are interested in testing the null hypothesis Hy : X; ~
Multi(n,, qo), fort =1,..., T, against the alternative in (1) with t* < T. We al-
low p — oo and consider the triangular arrays q; = (qi1, - - - » qlp)—r for/ =0,1,
where we omit its dependence on p for simplicity. Let N = Zthl n; — 00 as
p — 00, while T can either be fixed or diverge to infinity.

If 7 is the true change-point (r < T), it is equivalent to testing whether the
two groups, segmented by 7, come from the same multinomial distribution. Let
Zo = Zle X; ~ Multi(No;, qo) and Z, = ZzT:r-H X; ~ Multi(N1¢, q1), where
Nor = Y [_yn; and Ni; = ZIT:H] n;. Based on the L,-norm, an intuitive test
statistic can be constructed as

p 2
No: N Zori  Zigi

(2) L, = Z Ot iVlt ( ]\?U . l‘L'j) ’
0t N1t
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where Zy;; and Z;.; are the jth components of Zo, and Z;., respectively. This
statistic is similar to Pearson’s chi-squared statistic for testing the homogeneity of
two multinomial samples Zg, and Z;,, which is given by

P NoeNiz (Zooj  Zigj\2( i1 Xij\ ™!
3) Kyr=Y - :
j=1 N NOr Nl‘[ N

In contrast, L, in (2) removes the component-wise standardization terms ¢ =
Zszl X;j/N,j=1,..., p, to circumvent the cases with g; = 0 in the large p
but small N situation, such that L, is always well defined. Moreover, by remov-
ing such terms, it can further relax the dimensionality and allow p to grow at
a faster rate than the sample size. On the other hand, removing the g;’s is rea-
sonable when they are of similar order in magnitudes. In the literature, a com-
mon assumption is that all the proportions are spread out and diminishing, that is,
maxi<j<pqo; — 0as p — oo, where g;; is the jth component of q;; see, for ex-
ample, Holst (1972), Morris (1975) and Baranov and Baranov (2005). However, in
practice, there may be spikes at certain proportions if a large number of categories
are involved, say some of the g;’s are large relative to others. For example, in the
modern e-commerce, there are always best-sellers among similar products under
certain subcategories, whose sales (reflecting buyers’ tendency) are much more
outstanding than nonpopular ones. In the word composition in a writer’s work,
function words and certain content words, such as pronouns, could appear more
frequently than others in the writing.

To strike a balance between L. and K ., we replace the assumption that
maxj<;<pqo; — 0 by a more relaxed one.

(A1) Forl =0, 1, thereexistsaset %; C {1, ..., p} suchthat maxc q;ja, —
0 with a;l = O(1) as p — oo. Furtherlet o = {1, ..., p}\ %, be the complement
of %, and assume that min ¢ ; q;ja, > € for some &€ > 0 as p — oo.

Assumption (A1) divides p categories into two disjoint subsets <7 and %; accord-
ing to the magnitudes of their corresponding probabilities, either “significant” or
“diminishing”, while changes may occur in either subset (more precisely, on some
categories in either set). It requires that these two subsets can be separated by a,, at
the population level. When a, is bounded away from zero, there are finite elements
in .27 and max ez, q;; — 0.

Change-point detection using all the proportions in L; may cause diffi-
culty in the interpretation and degrade the performance due to the fact that

No: N1t ZOZ.' A JN\2 : No: N1t Zozj Zizj 2 .
> jedh %(WT’ — ﬁ)‘ may do.mlnat.e Zje%. S (N—Or]‘_ 7,-)" To im-
prove the detection power in high-dimensional settings, screening methods [Fan
and Lv (2008)] can be used to select potential interesting features for further anal-

ysis. We first separate out the proportions not less than the order O(a;I) from




2024 G. WANG, C. ZOU AND G. YIN

{1, ..., p}, possibly before and after the change, that is, &/ = .o U /], by us-
ing

(€)) @f:{j:(}jap>C€} for some C > 0.

We then construct two individual test statistics on both .27 and {1,..., p}\;zf = 9;”,

and finally combine these two parts together.
Let

No: N1t (ZOU‘ Zivj
L= -

N NOr Nlr

We propose to run over all possible change-points as

0
Q)= 2 X (Lej = L) +epl(maxmax Re; > )
4
TGTJGUZ J

2
) and R =L:j/q;.

)
= SP7Q/ + Ep’tQ{Aa

where I(-) is the indicator function, and

0) No: N1z ZOrj erj
Lr" = N N2 NZ
(04 1t

is a bias-correction term to make the expectation of Sp 7 negligible compared to
Var(Sp’L 7). In Ep’ 7> the second term of (5), e, is a large enough constant and r,

is chosen to be slightly larger than the maximum noise level such that Ep 7 1s zero
under Hy with hlgh probablhty but diverges quickly under H; with some j € 7.
Note that for .7 and % we use the max-norm and L>-norm based test statistics,
respectively. It is widely acknowledged that the max-norm test is more suitable
for sparse and strong signals, whereas the L»-norm test is for dense but faint
signals [Chen and Qin (2010), Fan, Liao and Yao (2015)]. Similar to the power-
enhancement test statistic proposed by Fan, Liao and Yao (2015), the advantage
of using pr 7 would be more transparent by examining its asymptotic behavior
in Section 2.2. We use the trimmed summation, say 7 = [[a(T — 1)1, [b(T — 1)]]
with fixed constants 0 <a < b < 1 (e.g.,a =0.1 and b = 0.9), to avoid some tech-
nical difficulties when 7T — oo, where [x] denotes the smallest integer not less
than x; for example, see Perron and Vogelsang (1992).

REMARK 1. Conventionally, Mp,, ;= MaX¢eT Zj. ey Lzj 1s used as the
change-point test statistic rather than Sp“ 7 [Csorgd and Horvith (1997)]. How-
ever, it is recognized that the rate of convergence of the maximum statistic is slow;
see Section 1.3 of Csorgd and Horvath (1997). Consequently, the asymptotic quan-
tiles do not work well with the typical values of n; and T in real applications. In
contrast, Sp,< 7 (also Qp’ 7) 18 asymptotically normal under some mild conditions,
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and thus can greatly facilitate the construction of the test. Our numerical analysis
demonstrates that the power of Sp ;18 at least comparable to thatof M -. In fact,
M w > and S 7 can be respectively viewed as the CUSUM and ShlryaeV—Roberts
procedures [Srlvastava and Wu (1993)].

When the null hypothesis is rejected, the change-point t* can be naturally esti-
mated by

argmax max R; if EpyﬂAzep,
6 - teT  jed
©) r= arg max Z L(O) otherwise.
TeT
je e

Under certain conditions, we can establish the consistency of this estimator.

2.2. Null distribution of the test statistic. We begin with the separation con-
sistency of our procedure (4).

THEOREM 1. Suppose that Assumption (A1) holds, and ifNa;z(log ap)_1 —
oo as (p, N) — oo, then:

(1) under Hy, Pr(;zf: ) — 1 forany 0 < C < 1;
(ii) under Hy, Pr(«/ = oy U &) — 1 for any 0 < C < min(xg, 1 — kg)/2,
where K is the limit of No+/ N, that is, Nor=/N — kg as N — 00.

By Theorem 1, we conclude that Pr(Qp 7 <x)=Pr(Qp & < x)+o(l) for any
x, and hence it suffices to study the asymptotic behavior of Q, .. The following
assumptions are needed for further theoretical development:

(A2) There exist 0 < p, p < 0o, such that p < No;/Nj; <p foranyt €7T.

(A3) For | = 0,1, NX(Tjepq})™ — 0 and N7'(Z;cpq}) x
(X jexqi) > — 0,as (p, N) = o0.

(A4) Assume (Z,-qug‘j)(zje@qgj)*z —0,as p — 0.

(A5) Assume Na,*{log(Tap)}~" — 00, as (p, N) — oc.

REMARK 2. Assumption (A2) is a technical condition that requires the pre-
and post-t sample sizes to be comparable. Assumptions (A3) and (A4) are mild.
For example, if g;; < -1 for] =1,...,p;1=0,1, thatis, there exist 0 < C,C <
oo such that C < pg;j < < C, then Z] 1‘111 = p~"t! for r =2, 3, 4. Consequently,
(A3)—(A4) are satisfied if p/N? — 0 which is faster than the linear rate, p/N =

O (1), as in Baranov and Baranov (2005). Assumption (A5) imposes a condition
on ap, which holds trivially when a,, is bounded away from zero.
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THEOREM 2. Suppose that Hy and Assumptions (A1)—(A2) hold.

(i) The expectation and variance of Sy s are given by

E(Sp,o) = o{\/Var(Sp, )},

Nor Niy
VarSp) = (230 3 A )2 X ad 1+ o),
<t/ Noz'Niz je#

respectively, as (p, N) — oo, where At = [b(T — 1)] — [a(T — 1)1+ 1.
(i1) Suppose further Assumptions (A3)—(A4) hold, then as (p, N) — o0,
Sp,a

/Var(Sp, o)

(iii) Suppose further Assumption (AS) holds, and if r,,{log(Tap)}_1 — 00,
then as (p, N) — oo,

BN, 1.

Qp,;zf

JVar(Sy, )

Theorem 2(ii) establishes the asymptotic normality of S, ., under the null hy-
pothesis and Theorem 2(iii) reveals that S, ;s and Q) s would have the same
asymptotic null behavior given an appropriate sequence of r,. The proof is out-
lined in the Supplementary Material [Wang, Zou and Yin (2018)] with key steps
described as follows. In fact, the observations can be decomposed into X;; =

E N, D).

Zz]'V:OtNo,_ﬁl Yijforj=1,...,p,t=1,..., T, with the convention of Nyy = 0 and
Nor = N, where {(Y;1,...,7Y; p)T}lN: | are independent and follow the multinomial
distribution, Multi(1, (go1, - . ., qop)T). It can be shown that S, s — E(Sp ) is

asymptotically equivalent to a martingale difference sequence, and consequently
the assertion is proved by applying the martingale central limit theorem; for exam-
ple, see Corollary 3.1 of Hall and Heyde (1980). Note that }_ ;5 L+; essentially
shares a form similar to the high-dimensional two-sample test statistic [Bai and
Saranadasa (1996), Chen and Qin (2010)]. However, their results are not directly
applicable to S, . because the unobservable variables Y;;’s do not satisfy the data
structure that the validity of asymptotic normality relies upon. In addition, the
treatment on the summation of dependent statistics L.; for t € 7 is nontrivial.
The variance of Sp v depends on the unknown quantities )~ qgj. There-

fore, we need to find a ratio-consistent estimator of ;¢ qg f in order to use the
asymptotic normality result in practice. Given 7, we propose to use

N 1
7 Uy = —— 3 (2= 4 >
(7 N.of N—lZ(q] N
jeA
for which the ratio-consistency property holds as shown in the following proposi-
tion.
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PROPOSITION 1. Suppose that Hy and Assumption (A3) hold, then as
(p,N) — o0,
Uno P
72 9 1-
2jez40 )i
By Slutsky’s theorem, we obtain that as (p, N) — oo,

Op,a
V2eNTUN o
where ey 7 =2, o Nort N1/ (N1:Nor) + A7. As aresult, we reject Hy at an
a level of significance if Qp’ 1 J2entUy exceeds zy, where z,, is the upper

B N, 1),

ath quantile of the standard normal distribution.

2.3. Consistency of the test and estimator. We investigate the asymptotic be-
havior of our test under the alternative hypothesis, that is, the one change-point
model in (1). We consider a local alternative hypothesis with §; = go; — q1; for
j=1,..., p, and assume that the true change-point is not at the boundary, that is,
* = [y(T — 1)] for 0 < y < 1. It is well recognized that change-point tests do
not usually work well when the change-point is at the boundary [Chen and Gupta
(2000)].

THEOREM 3. Suppose that Assumptions (Al), (A2) and (AS) hold,
Nor+/N — ko, rp{log(Tap)}_1 — 00 and epT_1 — 00, as (p, N) — oo. If the
shift sizes §’s satisfy either of the following two conditions:

® NZje,% SJZ'(maXl:O,l Zje@qlzj)_l/z — 00;
(ii) NSJZ./rljl — 00 for some j' € o,

then

Qp,;zf P
—(————— —> OQ.
/2CN,TUN’Q;

This theorem entails the rationale for the combination of Sp’ 7 and Ep7 7 Sup-
pose that a, is bounded away from zero, and r, is chosen as logT loglog T
When the signal under the alternative is dense, say the changes occur mainly in
2 such that condition (i) is satisfied, Qp’( s 18 as powerful as Sp,_ - For exam-

ple, if g;; < p~lfor1=0,1and j € %, this result demonstrates our test has
nontrivial power under the contiguous alternatives of O (N~ p~1/?) in terms of
Yjen 8?. On the other hand, in sparse alternatives where most of the propor-
tions do not change over time but some of §;’s are particularly large so that
Nég,/(longoglog T) — oo for some j' € o7, ij would also be powerful
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due to the dominance of Ep 7 In such situations, our proposed test is consistent

against the contiguous alternative of order larger than N~!/?(log T loglog T')'/?
which is a nearly optimal rate for the change detection with a fixed p. The statistic
Qp’ s gains strength by borrowing information from the pre-separation, and thus
it is able to balance the detection between the sparse and dense signals.

A by-product of the proof of this theorem is the consistency of our change-point
estimator defined in (6).

COROLLARY 1. Suppose that Assumptions (A1)—(A3) and (AS) hold, and
Norx/N — kg as N — o0:

(i) If there exists some j' € </ such that N 812.,1’;1 — 00, then
Pr(|t* — | < Cw.1) = 1,

where oy 7 > 0 satisfies that (No,t++¢,, ; — NO‘[*)S?/ — 0.
(i) If all 5] =0for je o but NZje%’S?(maxlzo,lZje@qlzj)il/Z — 00,
then

Pr(}f* — ‘L'*| < ;%,T) — 1,

where {1 > 0 satisfies that

(NO,T*i§@ r— NOT*) E 8J2/ max E q12/ — OQ.
’ : [=0,1 ? -
JEX V JEZ

2.4. A special case: Two-sample homogeneity test. The proposed Qp 7 1n-
cludes the two-sample homogeneity test as a special case,

Hyo:qo=qi versus Hj:qo#qi,

where the two groups Xg ~ Multi(ng, qo) and X ~ Multi(n1, q;) are independent.
The test statistic can be formulated as

L .
Qp,gcj = Z (Lj — LEO)) + epl(ma)g A—] > I’p>,
je? jed 4j
where L; =non1/N(Xoj/no—X1;/n1)%, L;-O) = Xo;/n3+X1/n3, N =no+ni,
and Xo;, X1;, g, are the jth component of X, X; and (Xo 4 X1)/N, respectively.
A direct application of Theorem 2 yields the following corollary.

COROLLARY 2. Suppose that Hy and Assumptions (A1), (A3)—(A4) and (AS)

with T =1 hold, and no/N — kg € (0,1) as N — oo, then Qp J7‘;/ ZUN & 2)

N, 1) as (p, N) — oo, where Uy ;=N/(N = 1) Y ;c5(3; — N7'g)).
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Chen and Zhang (2013) proposed a graph-based test for two-sample compari-
son with categorical data when the contingency table is sparsely populated. Their
method utilizes similarity information on the sample space, and thus may im-
prove power in certain cases. Compared with our proposal, the graph-based test
is more computationally intensive, and it requires permutation procedures because
the asymptotic null distribution of the test statistic depends on some nuisance pa-
rameters that cannot be estimated easily.

3. Multiple change-point estimation. To extend the proposed method to
multiple change-points, we assume

XINMulti(nt,ql), Tl*<t§T1>:-1’l:O’1""’L*’

where L* is the true number of change-points (L* > 1), 7;*’s are the locations of
these change-points with the convention of 75 =0 and 7., ; =T, and q; is the
vector of probabilities of outcomes for segment [ + 1 satisfying q; £ q;1.

Intuitively, the binary segmentation for a single change-point discussed earlier
can be applied recursively to detect multiple change-points. Although binary seg-
mentation is computationally efficient and roughly linear with sample size, it only
provides an approximate solution and may lead to poor estimation of the number
and locations of multiple change-points; see Fryzlewicz (2014) and the references
therein for variants of binary segmentation. In contrast, we define an objective
function based on segmentation and minimize its penalized version, which can be
viewed as a global procedure [Killick, Fearnhead and Eckley (2012)].

We first generalize Assumption (A1) to the multiple change-points setting:

(B1) Forany!/=0,1,..., L*, there exists a nonempty set %; C {1, ..., p} such
that max je, gq;; — 0 as p — oo, where ¢y; is the jth component of q;. Further
let @ ={1,..., p}\%, be the complement of %, and assume that min;c.; q;; > €
for some ¢ > 0 as p — o0.

For ease of discussion, Assumption (B1) simply considers a, bounded away from

zero which may be the case of the most interest. We introduce r_;; [reees t; A%
as all possible change-points at which changes could occur only in set /. Within
each range (1}, ,, ), ar1l@a=0,1,..., A*, with the convention of 7}, ; =0 and

* _ * * . . .
Ty axy1 = I, we then let 75, T By be the remaining possible change-

al> -
points at which changes could occur only in set Z. Note that A* + Z;io By =L*
and we allow that A* and B)’s could be 0. In line with the argument in Section 2,
the penalized objective functions for &7 and 4 should not be the same. Define

szfz{j:qu>C8forsomeC>0} and @:{1,2,...,1)}\&?,

as (4) in Section 2. We propose a two-step detection procedure as follows.
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Step I: For a candidate set of A change-points, 71 < --- < T4, we define the
objective function,

o {(Xij — X j(Ta, Tas1) )

Sﬂ/(l’],.. ‘L'A)—Z Z Z '/A s

a=0t= tatl jeo n:q;

where 79 = 0, rA+1 =T and X; i (Tas Tat1) = Zt By +1XZJ/Z[ MASSR 7 The A
change-points 7,’s can then be estlmated by

(TA1s---5Ta,4) = argmin S (11, ..., Ta).
T <-<TQ
To determine A, we observe that S @;(fA,l, ..., TA.A) is a nonincreasing function

in A. Hence we can add a penalty for large A to strike a balance between the value
of the objective function and the number of change-points. We determine A by
minimizing

(8) S =S ,(Fa1, ... Tan) + AEp N,

with respect to A > 0, where &, y is chosen to be slightly larger than the maximum
variation level (no change) so that S ;(7.1,...,7a,4) would be dominated by
A&, n under overfitting models with high probability. We denote the resulting
estimators as A and (fA,l’ e, fA,A) if A> 0.

Step 2: The whole sampling range can then be divided into A + 1 subintervals,
(f,«i 2 Ta a1l @ =0,1,...,A withtheconventionoffA o=0and fA i1 =T.In

the (a + 1)th subinterval, we introduce B, candidate change-points r(a) s <

( ) and consider the following objective function:

(a)
Bg Th+1

Sy ) =2 2 YKy =X (5 n )

b= OZZTIEG)-FIJEQ

(a)

where 7, =17; and 7 +1—IA as1- Similarly, we let
(fg:),l fg;) a): argmin ng(‘fl(a),. ‘L’g:))
Tl(a)< <‘L’gl)

and then minimize

€) SPen S5 ( 1(9a)1’ e fz(;i),Ba) + Ba{Qg?(fA,a’ fA,a—H) +np.n}
with respect to B, > 0, where

rA,a+l tA,a+l

0;CGiwtha)= 2 Zer/ dom

t:ffi_a-i-l je® t:f/&ya-i-l
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together with 1, n serve the purpose of penalization. We denote the final estima-

tors as B, and (t(a)l A(a) )1fB >0fora=0,1,.

REMARK 3. In the low-dimensional situation such as S Q{(‘L'A 1y---»TA.A), the
total variation reduced due to adding a redundant change-point is of the same order
of the maximum noise level, and thus can be dominated by &, y in Sien. However,
this is not directly applicable in the high-dimensional setting. The reduction of the
objective function S %(r(“), e, rg:)) caused by adding a new point includes two
terms, the expectation and the variation, while the latter in fact vanishes compared
to the former. In SPe“ Q@(f A T A.ay1) 1S an approximation to the expectation
term and 7, y is chosen to be slightly larger than the maximum variation level.
However, 84(71(3“)1’ .. fl(ga)B )+ By Q@(ffi,a’ anH) is no longer a nonincreas-
ing function in B,, so that standard techniques in establishing consistency [e.g.,
Yao (1988) and Bai and Perron (1998)], become invalid. In fact, our theoretical

derivations are almost completely different and highly nontrivial.

The minimization problems in (8) and (9) can be solved via the dynamic
programming (DP) algorithm [Hawkins (2001)] or the pruned exact linear time
(PELT) algorithm [Killick, Fearnhead and Eckley (2012)]. Finding the exact solu-
tions is straightforward and fast; the computational cost is linear in p and could
possibly be close to linear in 7 when using the PELT. In the worst scenario that the
“pruned” part is negligible, the total complexity is O (pT?), which is equivalent to
using the standard DP algorithm.

To study the consistency of our two-step detection procedure, we first extend
Theorem 1 to the case of L* > 1.

COROLLARY 3. Suppose that Assumption (B1) holds and, as (N, T) — oo,
NOTI*/N — Ky for 1 =0,1,...,L* with kg < k1 < -+- < k. Then we have

Pr(,ngA =) — 1 for any 0 < C < minj_«{k;+1 — K1}/ L* with the convention
of kpx1=T.

Let Aoy, 7 =ming<a<a* (T, o1 — Ty o) A, r = mino<i< 1+ (T — ), Ay =
. () ] :
mini<azas Y jea(Ges, = G, D4 Dp = miniz<re Y jep(qy —

qi—1 j) and n = minj<;<7 1, Where q(K) ZIL:*O(K[_H — k1)q1;. Two additional

assumptions are required for the theoretlcal development.
(B2) If A*>0,as (p, N, T) - o0,
A2, nPN"IA,
max{log T,n"1(log T)Z}
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(B3) If B >0,as (p, N, T) — oo,
Ay n*N7 Ay

— Q0
max{(max; Y- ;e 4i) /2 log T, n=1/2(log T) /2, n~ 1 (log T)?)

Assumptions (B2) and (B3) impose theoretical requirements for the smallest signal
strength and distance between two change-points so that the change-points are
asymptotically distinguishable. It is intuitive that if two successive distributions
are very different, then we do not need a large A7 to locate the change-point.
Theorem 4 first establishes the consistency of the estimated change-points for set
o7, and Theorem 5 then does for set A.

THEOREM 4. Suppose that Assumptions (B1) and (B2) hold, the upper bound
on L* is bounded, and Norl*/N — kjas (N, T) — oo. If &, N is chosen such that

£, n/max{logT,n~'(log T)?} — oo, then

Pr(A =A*:

‘I?A’a — T,:/,a| SSM,T,G =0,1, ...,A*) — 1,

as (p, N, T) — oo, provided that BQ’TQZN_IAM/&,,N — 00.

THEOREM 5. Suppose the conditions in Theorem 4 and Assumption (B3) hold.
If np, N is chosen such that

12
max{(max Z qi) log T,Q_l/z(log T)l/z,il_l(log T)z}n;lN — 0,
b ojen
then

~(a)

Pr(éa = B}; T,

— T;é’,a,h| <8z71,b=0,1,...,B}) > 1,

a
as (p, N, T) — oo, provided that (S%é’TQzN_IAgg/np’N — 00 and

A/ max{log T, n" ' (log T)?}
A/ max{(max; Y- ;e q75) "/ log T, n=1/2(log T)/2, n= 1 (log T)?}

(10)

—> OQ.

The condition in (10) requires that the signal strength in set .2/ dominates that
in set 4. This ensures that the difference between the estimated change-point 7 Aa
and the true one, r;‘,,«’ 4> would not affect the detection performance in %. Intu-
itively speaking, this condition can be easily satisfied because the changes in a
low-dimensional environment are always more detectable than those in a high-
dimensional setting.

Theorems 4 and 5 can be shown using a concentration inequality for degenerate
U -statistics on the basis of an independent vector-valued sample; see Section 3.4.3
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of Giné and Nickl (2016). As the concentration inequality is sharp, the rate of §. 7
given in the theorems is “near-optimal” and cannot be improved beyond the degree
of (log T)* for some ¢ > 0.

Choices of &, y and 1, y depend on n and max; qqul. To guarantee a reason-
able detection precision, n cannot be too small, and of course the larger the bet-
ter. For practical use, we suggest to choose &, y and 7, y so that the conditions
§p,n/logT — oo and n, n/{(max; qquz)l/2 logT} — oo are roughly satisfied.

Empirically, we recommend &, y = c¢(log 7)1 and Np,N = cnl_Jtl/z(log T,
where U, = T~! Zthl U; and

1 2
U= E X5 — Xij).
t ne(ng — 1) ( Y tj)

je@
Note that U, can be regarded as an approximation to the lower bound of max; qqul.
A slightly conservative choice helps to prevent underfitting, as one is often reluc-
tant to miss any important change-point. Our simulation results indicate that ce =2
and ¢, = 1.2 provide reasonably good performance in most cases.

4. Numerical studies.

4.1. Two-sample homogeneity test. To evaluate the performance of our pro-
posed test and the change-point detection procedure, we first consider the two-
sample homogeneity problem and compare it with some “off-the-shelf” proce-
dures. A natural benchmark is the classical Pearson’s chi-squared test which is
modified by removing all the terms with §; = 0 to accommodate large p,

p 2
nony Xo;  Xij A
=" (5221 fan

j=tg;z0 10

2

w1’ the upper ath quantile of the x2-

The critical value is approximated by x

distribution with degrees of freedom p — 1, where p = Zle I(g; # 0). Another
alternative is the well-known Hellinger test,

H _4n0n1 i( Xo; le)z
P— N e no ni ’

which rejects the null hypothesis if H, > Xiﬁ—l‘ All simulation results are based
on 5000 replications.

Table 1 presents the empirical sizes at a 5% significance level under the
null hypothesis Ho : qo = {@/d1;, (1 —)/(p —d)1]_;}" and different (p, N)-
settings, where 0 < w < 1, d is an integer and 1, stands for the d-dimensional
vector with all components being 1. We set ng =n; = N/2. If d < p, this null
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TABLE 1
Comparison of empirical sizes (%) at a 5% significance level for the two-sample homogeneity test
under Hy : qo = {w/dl;,r, 1-w)/(p— d)l;_d}T and different (p, N)-settings, with w = 0.5 and

d=6
p
N Test 10 20 50 100 200 500 1000 2000 5000
500 Q0 -~ 536 5.40 5.44 5.12 6.02 5.72 5.34 5.42 5.76

Hy 520 6.84 4750 99.12 100.00 100.00 100.00 100.00 100.00
Wp 444 442 3.28 1.18 0.12 0.00 0.00 0.00 0.00

1000 Qp 7 5.84 6.50 5.24 5.88 5.78 5.66 5.50 5.10 5.02
H) 524 586 1548 76.36 100.00 100.00 100.00 100.00 100.00
Wp 498 4.70 4.02 3.16 1.24 0.04 0.00 0.00 0.00
model means that &/ ~ {1, ..., d}. To obtain a reasonable estimator o in prac-

tice, we consider the curve of the cumulative sum of the decreasingly ordered g, ’s,
with an expectation that there would be a relatively slow growth after d. Thus, we
can maximize the angle between the two contiguous slopes of the piecewise linear
curve,

—1 —4@da+n)
N R AR
where g(1) > - -+ > q(p) are the ordered values of ¢;’s. We observe that the sizes of

the proposed Qp 7 test are generally close to the nominal level under all the sce-

narios. In contrast, both W, and H, work well under relatively small p settings as
expected, but encounter serious size distortion under “small N, large p” scenarios.
To evaluate power of the three tests, we consider two alternative hypotheses:

(i) dense but faint signals,
Qi = {w/dl;. (1+5)(1 —0)/(p — D1 ,_q -

(1=) 1 =)/ (p =1, g}

where | x| denotes the largest integer not greater than x;
(ii) sparse but strong signals,

qi = {1+ 9)o/d1ly ;. (1 —)w/d1},,. (1 —w)/(p - d)l,f_d}T.

We choose p = 500, 1000, and for each p, let N = 500, 1000. Figure 1 shows
the relationship between empirical power and s. Our Qp’ 7 test is clearly more
powerful than W),. The empirical sizes of H), deviate far from the nominal level
as shown in Table 1, which renders unnecessarily high power for H),. Overall, our
Qp’ . testis demonstrated to maintain the test size as well as attaining high power.
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Alternative (i) Alternative (ii)
1.00 - 1.00 1.00 - 1.00
N [ e I

500 7 / /
5  075{ -- 1000 7 075 / 075 / 075
H / ¥ [ /
] o /i =3
a3 tests P g 5] 8
Slﬁ 0504 - / ~ 0.50 9 050 — 0.50
Sa - Hp / J 4 fle 4
2 - » / /
w025 // 7 0.25 / 0.25 / 0.25 /

. , / -' / ’1'
e . / I A

—e v —a—r< A -t . -~
0.00{ #--m--n--#-=1 0.00] m--n--a--u-u--n--n==8 0.00 =--m--u--u-- 0.00{ #--#--m-- g8

000102030403505070809‘0 0.00.10.20.30.40.50.60.70.80.91.0 0.00.10.20.30.40.50.60.70.80.91.0 0.00.10.20.30.40.50.60.70.80.91.0
s s s

Fi1G. 1. Comparison of empirical power at a 5% significance level for the two-sample homogeneity
test under different (p, N)-settings and the alternative hypothesis (i) with o = 0.3 and the alternative
hypothesis (i) with @ = 0.7, where d = 6. Here, Q p is short for Qp 7

4.2. Change-point problem. When the number of categories, p, is fixed,
Srivastava and Worsley (1986) and Horvath and Serbinowska (1995) studied
change-point tests with multinomial data based on Pearson’s chi-squared statistic.
In particular, Srivastava and Worsley (1986) proposed to use Wl(,sw) =max; K ¢
and gave a conservative approximation of the null distribution based on an
improved Bonferroni inequality. Horvath and Serbinowska (1995) developed a
weighted version, W,(,HS) = max; Nor N1 /N ZKZJ, and showed under some con-

ditions W™ B supq_, -, 25’;} B3(t), where {Bj(1),0<t<1},1<j<p—1,

are independent Brownian bridges. To accommodate large p, we replace K> ; and
p by

% — Zp: Noz N1z (ZOrj Z1rj)2/6}0
T = - J
j=tagzo N A Nor o Nir
and p = Z;’:ll(éo j # 0), respectively. As pointed out by Aue et al. (2009),

(W[gHS) —p/M/Vp/8 Z N, 1) when p is large. For fairness, we use the same
trimmed summation or maximization in these competitors as our Qp” 7 that is,
T =1[la(T — DT, 16(T — DII.

We again consider Hp : qo = {w/d 1}, 1-w)/(p— d)llT,_ d}T. For simplicity,
wefixn;=n=N/T fort=1,...,T,andseta = 0.1 and b = 0.9 in the proposed
test. Table 2 presents the empirical sizes at a 5% significance level under various
scenarios with 7' = 100. The results with 7 = 10 and significance levels of 1%
and 10% are reported in the Supplementary Material [Wang, Zou and Yin (2018)].
We observe that the empirical sizes of our test are close to the nominal level, while
both WI(;SW) and W encounter serious size distortion in most cases. Note that
it is unnecessary for n to be sufficiently large compared to p.

For power comparison of the three tests, we consider 7 = 100, n = 20 and the
locations of change-points at 7* = 20, 50. We examine the previous two alterna-
tives (i) and (ii) for q;. Figure 2 depicts the power curves of the three tests, Q) o,
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TABLE 2

Comparison of empirical sizes (%) at a 5% significance level for the change-point test under
Hy:qp={w/d1],(1-w)/(p— 611)1;_0,}T and different (p, N)-settings when T = 100

»=0.3 0=0.5 »=0.7
. (SW) (HS) (SW) (HS) (SW) (HS)
p n Qp,sz% Wﬁ WI7 Qp,ﬂi Wﬁ Wﬁ Qp,@{ Wﬁ Wﬁ

500 10 548 1.50 0.54 5.96 3.58 0.12 5.62 6.46 0.02

20 544 1.90 3.46 542 3.52 1.70 5.98 6.40 0.44

50 534 2.70 8.84 5.64 2.60 7.34 5.96 4.24 4.44

1000 10  5.80 1.02 0.02 5.76 3.36 0.00 6.14 6.88 0.00

20 5.12 1.74 0.42 552 3.44 0.14 5.76 6.68 0.04

50 5.34 2.16 4.42 5.40 3.08 2.42 5.68 6.14 0.56

(SW) (HS) :

w F and Wp‘ , versus s. As s increases, the power curve of the proposed pro-

cedure increases much more sharply than the other two, especially in the sparse
signal scenario. We also observe that the power becomes larger when t* moves
closer to 7'/2, which coincides with Corollary 1. Overall, Qp” s performs better
than the other two competitors in terms of attaining high power while maintain-

p=500, t*=20 p=500, t*=50 p=1000, t*=20
1.004 = 1.00 P 1.004 A
=2 075- ; 075+ : 0751
gs] " ! A
2o : A :
® 8§ 050 ! 0.50- ! 0.50
£ = R :
gc ; ; A
<5 oo2s- A 0.25- A 0.25 ;
; ; s
& i A
1 A 4 A
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0.00.20.40.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
s s s
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1.00 <A 1.00 3 1.00 4
- : L
[} i / B
=2 075- : 0.75- ; 0.75 ;
=3 K A H
2 ‘_ml A ; {
§ § 001 ; 0.50- 0.504 i
c= ; ; :
32 ; ; :
<5 o02s- A 0.25+ ks 0.251 A
A A &
o8- A AA ywe e 2 6-4-ACA-AX
0.00+ 0.00- 0.001
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Comparison of empirical power for the proposed Qp o7
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0.0 0.2 0.4 0.6 0.8 1.0
s
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4
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s
p=1000, T*=50
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0.0 0.2 0.4 0.6 0.8 1.0
s

test, WI(;SW) by Srivastava and

Worsley (1986) and W[(;HS) by Horvdth and Serbinowska (1995) under the alternative hypothesis (i)
with w = 0.3, and the alternative hypothesis (ii) with v = 0.7, where d = 6.
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F1G. 3. Comparison of size-corrected empirical power under the alternative hypotheses (i) and (ii).

ing the test size, and the advantage becomes more pronounced for larger p. Such
findings are consistent with our theoretical analysis that Pearson’s chi-squared test
may not work well because the contamination bias in estimating the marginal pro-
portions grows rapidly with p. When p and N are comparable, the inverse of the
estimated proportions in the test statistic would no longer bring in benefit.

In Figure 3, we make comparisons with three other approaches: one is the max-
imum of L., that is, M), = max, Zle L+j; and the other two correspond to the

summation and maximum of the Hellinger test statistics, H, ;,S“m) =) . H; and

H ](,max) = max, H,, where

4No:N1¢ u < ZOrj Zl‘rj)2
PAERAUALS of (YR B LA
N j=1 Nor Niz

However, it is difficult to obtain approximate threshold values for these tests. For
fairness, we perform a size-corrected power comparison in the sense that the actual
threshold values are found through simulations so that these tests approximately
maintain a type I error rate of 0.05. Both the M, and Qp’ 7 tests outperform H, I(,S”m)
in most cases, because ) ; Lrj possesses certain advantage over Hy as conveyed
by Figure 1. The performances of the two }_; Lj-based methods are comparable
in the dense signal setting, while the M, test appears to be slightly more powerful
when 7* is small. In the sparse signal setting, the M), test breaks down even when
¥ = | T /2], which demonstrates the benefit of the power-enhancement term E oo
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TABLE 3
Simulation study on the consistency of our change-point detection procedure with the mean and
standard deviation (in parentheses) of |T* — t*|’s under alternatives (i) and (ii). Note that New, SW,
HS and Hel refer to the estimators by our method, argmax, K ; [Srivastava and Worsley (1986)],
argmax; Nor N1¢ Ko ¢ [Horvdth and Serbinowska (1995)] and Hellinger’s argmax; Hr,
respectively

Alternative (i) Alternative (ii)

=20 t*=50 *=20 *=50 *=20 r*=50 <*=20 <1*=50
New 1.706.14y 0.7502.23) 541127y 1.67339) 1.70330) 0.93(1.79) 1.88(3.92) 0.97(185)
SW  2.68332) 2.68(722) 424371y 13.2(149) 2.297.67) 2.206.14) 3-81(12.1) 2.92(3.37)
Hel 1.01¢162) 0.64¢131) 12.6557) 1470202 267635 1.340.90) 27-94.07) 0.89(1.21)

in our test statistic Qp, /- Besides, the advantages of using Qp“ .7 are obvious: its
null distribution is asymptotically normal and the asymptotic test has excellent
finite-sample performance as shown by Table 2.

Once the null hypothesis is rejected, we estimate the change-point under the
alternatives (i) and (ii). As shown in Table 3, the biases appear to be negligible
for all the change-points, and as expected the standard deviations increase as p
becomes large and decrease as N becomes large. Overall, the proposed estimators
are consistent and work well in most cases.

4.3. Multiple change-point detection. To assess our approach for detecting
multiple change-points, we consider two different data generation processes. The
first one assumes that changes only occur on & and the change-points are gen-
erated as {7}, ..., 7/4}/T ={0.25,0.5,0.75}. Foreach [ =0, 1,..., L*, let &/ =
{1,...,d},#={d+1,..., p}and

w 1—w)s l—w—({1—w)s —d
ql={—1},( sy (- @)spo/(p—d) .7
d p—d ! p—d—po

where % is a randomly chosen subset of 48 with a cardinality of pg = 0.01(p —d)
and 1,_4 %, is a (p — d)-dimensional vector with elements taking a value of 1 if
belonging to %, and 0 otherwise. The second data generation allows changes to
occur on both &7 and %, and the change-points are designed as {t{, ..., 7/+}/T =
{0.2,0.4, 0.6, 0.8}. Further let

T
1, d%%}’
p—d, B\%

1— T
ql:<d1T dlp d) for/=0,1,4,

_{ 2,7 (1+s@)(1—a)2)1 (1 =—s52)(1 —w2) +
i I B - 154 T p—d

-
IL” dJ} and
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(IT+so)w3 1+ (I—sx)w3 1+ (I+sz)(—ws) T
q3 = 1,, 1, 1
d L5] d L5)° p— d J
(1—s)(1 = w3)1T }T
p—d Sal i

where w; = wy = w3. It covers both cases of sparse signals on .7 and dense signals
on %. We take p = 1000 and T = 100 for illustration.

To evaluate the finite-sample performance, we introduce the distance between
the estimated change-point set and the true one, representing the over- and under-
segmentation error respectively [Zou et al. (2014)],

OE= sup inf |—7f| and UE= sup inf |[g
r=l,o, Lt =1L Iop pr=leeL?

for which a desirable estimator should be able to strike a balance. In addition, the
estimation error on the number of change-points, #E = |L — L*|, is also exam-
ined. Table 4 presents the mean and standard deviation of #E, OE and UE, based
on 2000 replications. It can be seen that all the three error values are small, and
the performances are generally stable. This demonstrates that the proposed global
estimator in conjunction with the use of the empirical &, v = c¢(log T)! and
Np,N =Cy 0,1/2(log 7)1 (with ce =2.0 and ¢, = 1.2) can deliver satisfactory de-
tection performance in the presence of multiple change-points.

4.4. Real data application. We illustrate the proposed method with the En-
tree Chicago Recommendation Data from the University of California at Irvine
Machine Learning Repository. This data set contains user interactions with the en-
tree Chicago restaurant recommendation system, which recommended restaurants
based on cuisine, price, style, atmosphere, etc. to users, from September 1996 to
April 1999. We focus on the end point of each user interaction, which is repre-
sented by the numeric ID of the Chicago restaurant that the user last visited. There

TABLE 4
Performance evaluation on detection of multiple change-points with the standard deviations given
in parentheses. We set w = 0.3 and s = 10 in data generation 1 and wg = 0.3, w1 = wr = w3 =0.7,
w4 =0.5and sy =55 =0.9 in data generation 2, and d = 6 in both settings. Note that
= |f, — L*|, and OE and UE represent over- and under-segmentation errors, respectively

Data generation 1 Data generation 2

n #E OE UE #E OE UE

50 0-29(0.61) 0.77(1.22) 2.53(5_29) 1.51(1.36) 15~7(6.40) 6.86(7.05)
100 0. 13(0_40) 0.09(0.34) 1.21(4.14) O~82(O.64) 16~4(6.62) 3~34(5.48)
200 0.10(0.35) 0.00(0.05) 1.08(4.29) 0.37(0.63) 0.49(1.93) 2.23(4.42)
500 0.08(0.30) 0.00(0.00) 1.00¢4.07) 0.290.59) 0.03(0.25) 1.46(3 38)
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FIG. 4. Description of the raw data over time. (a) Sample size over time; (b) Scatter plot of the
proportions of two randomly chosen restaurants over 134 weeks; (c) Heatmap of user interactions
of 617 restaurants with brightness representing the frequency of users’ final choices; (d) Heatmap of
the proportions allotted in all the restaurants with time.

are T = 134 weekly records, a total of N = 43,573 user interactions and p = 617
restaurants. We are interested in testing whether the proportions allotted to all the
restaurants based on users’ final choices changed over time. Figure 4(a) depicts the
sample size n; by weeks, and Figure 4(b) shows the scatter plot of the proportions
of two randomly chosen restaurants over time. The heatmaps of the frequencies
and proportions of the user interactions in all the restaurants for 134 weeks are
given in Figures 4(c)—(d), respectively.

Figure 5 gives an empirical way to quantify the sparsity pattern <7. In par-
ticular, Figure 5(a) shows the estimated proportions ¢;’s, j =1,..., p, for all
samples, and Figure 5(b) exhibits the sorted g;’s. The top-ranked g;’s are much
larger than the average level, 1/p & 1.62 x 1073, Further, the zoom-in plot (c)
suggests that we may simply select restaurants with the largest 10 g;’s as o be-
cause those ten proportions are all larger than 0.01 and they occupy 12.63% of
the market by users’ tendency among all 617 restaurants. As a result, Assump-
tion (A1) or (B1) appears to be satisfied for this example. Based on our testing
procedure, (Sp,,o/ —A71)//2cn 17UN, o = 9.21, which is highly significant com-
pared with the standard normal null distribution. Subsequently, we perform the
multiple change-point detection. Lavielle (2005) suggested an intuitive method
by first plotting the segmentation cost function versus the number of change-
points and then finding an “elbow” in the plot, which would suggest the most
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FIG. 5. Estimation of the sparsity pattern. (a) Scatter plot of the estimated proportions G;’s for
j=1,...,p; (b)—(c) Plots of the estimated proportions in a decreasing order, i.e., z}(j) s, for
j=1,....pand j=1,...,20, respectively.

suitable segmentation. The intuition is that as more true change-points are de-
tected the cost function would continue to decrease, while at the same time it
is likely to be detecting more false positives, and thus the cost function may
start to decrease slowly or level off. Figures 6(a)-(b) present the plots of the
penalized objective function based on segmentation, corresponding to equations
(8)—(9), versus the number of change-points L. Figure 6(a) clearly suggests that
the model with three change-points fit the data best on o/, and the identified
change-points are weeks 53, 54 and 90. Figure 6(b) reveals that the model with
two change-points fits the data best on % in the sampling range [55, 90), and
the identified change-points are weeks 62 and 63. Figure 6(c) presents the plot of
S’@(fg)l, e fiz’)L) + LQ@ (55, 90) versus the number of change-points L, which
verifies the segmentation result in Figure 6(b) as the rate of decline changes more
sharply at the point L = 2. No change-points are found on 2 in other sampling
ranges, and thus in total five change-points are detected, that is, weeks 53, 54, 62,
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(a)—(b) Plots of the penalized objective function based on segmentation, correspond-

ing to equations (8)—(9), versus the number of change-points L, respectively. (c) Plot of
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s T )L Q @(55, 90) versus the number of change-points L.
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63 and 90. Our result delivers piecewise “stable” segmentations, that is, within
each segmentation users’ tendency towards different types of restaurants can be
regarded as unchanged. By identifying which restaurants become more preferable
or less preferable at a change-point, we could explore potential factors, such as the
food flavor, restaurant atmosphere and service quality, that may affect customers’
choices, which would in turn help to promote the development of catering indus-
try.

5. Concluding remarks. A new approach to change-point detection is devel-
oped based on the estimated sparsity patterns, which gives a general yet tractable
high-dimensional analogue to the classical Pearson’s chi-squared statistic. The
modified Pearson’s chi-squared statistic in conjunction with the summation pro-
cedure is demonstrated to work well when the number of categories is large and
the contingency table is sparse. A limitation of our method is the separation as-
sumption that the estimators need to satisfy, which is a rather general issue in
sparse estimation [Fan and Lv (2008)]. In practice, it remains difficult to be as-
sured that all significant proportions are distinguishable from the whole set. Nev-
ertheless, our empirical studies suggest that asymptotic p-values behave reason-
ably well even when the assumption may be possibly violated. In the analysis
following change-point detection, it is important to incorporate knowledge on
the discovered change-points to improve variable selection, inference and predic-
tion.

Acknowledgements. The authors are grateful to the referees, Associate Edi-
tor and Editor for their insightful comments that have significantly improved the
article.

SUPPLEMENTARY MATERIAL

Supplement to ‘“Change-point detection in multinomial data with a large
number of categories” (DOI: 10.1214/17-AOS1610SUPP; .pdf). The Supple-
mentary Material contains all theoretical proofs of Theorems 1-5, Proposition 1
and Corollary 1 and additional simulation results.
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