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Abstract

We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular
junctions for the Anderson—Holstein model in the polaronic regime. Using the two-time quantum
measurement scheme, the generating function (GF) for the energy transport is derived and expressed
as a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain.
Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic
regime. This formalism enables us to analyze the time evolution of energy transport dynamics after a
sudden switch-on of the coupling between the dot and the leads towards the stationary state. The
steady state energy current cumulant GF in the long time limit is obtained in the energy domain as
well. Universal relations for steady state energy current FCS are derived under a finite temperature
gradient with zero bias and this enabled us to express the equilibrium energy current cuamulant by a
linear combination of lower order cumulants. The behaviors of energy current cumulants in steady
state under temperature gradient and external bias are numerically studied and explained. The
transient dynamics of energy current cuamulants is numerically calculated and analyzed. Universal
scaling of normalized transient energy cumulants is found under both temperature gradient and
external bias.

1. Introduction

Rapid experimental development in the field of nanotechnology makes fabrication of single-molecule junctions
possible [1, 2], which could push the limit of Moore’s law further. In the electronic quantum transport though
nano-devices, the electron—phonon coupling plays an important role. One of the mechanisms that induces
electron—phonon coupling is due to the charging of the molecule leading to elastic mechanical deformations.
This in turn causes an interaction between the electronic and quantized mechanical degrees of freedom giving
rise to electron—phonon coupling. A variety of intriguing transport properties, such as phonon-assisted current
steps and Franck—Condon blockade [5], have been found in the polaronic regime [3, 4] when this kind of
electron—phonon coupling in molecular junctions is strong. Theoretically, these phenomena could be
understood using a quantum dot described by the Anderson—Holstein model [6, 7] coupled to two electrodes.
To understand quantum transport in the polaronic regime, many methods have been used, such as the
master equation method [8—11], diagrammatic quantum Monte Carlo method [12], numerical renormalization
group method [13], as well as the nonequilibrium Green’s function (NEGF) technique [20] that is particularly
useful in describing time dependent nonequilibrium processes. The perturbation method is applicable when the
electron—phonon coupling strength is weak [ 14—16] and it fails in the strong electron—phonon coupling system.
Other approximation has to be made in order to deal with the strong and intrinsically nonlinear electron—
phonon interaction in the Anderson—Holstein model. In order to decouple the phonon cloud operator in the
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polaronic regime, dressed tunneling approximation (DTA), in which the leads’ self-energies are dressed with the
polaronic cloud, has been proposed to eliminate the noticeable pathological features of the single particle
approximation (SPA) atlow frequencies and polaron tunneling approximation (PTA) at high frequencies
[17-20].

Itis known that quantum transport is determined in nature by stochastic process which can be characterized
by the corresponding distribution function [21]. The study of full-counting statistics (FCS) pioneered by Levitov
and Lesovik [22—-24] could provide us with a full view of the probability distribution of electron and energy
transport [18-20, 25-36]. The key in FCS is to obtain the generating function (GF) which is actually the Fourier
transform of the probability distribution of the related physical quantity. Using the NEGF technique [37—-40]
and the path integral method under the two-time quantum measurement scheme [27, 41-43], GF was
formulated as a Fredholm determinant in the time domain for both phonon [29-31] and electron [27, 32-35]
transport. This formalism enables one to study the transport properties in the transient regime providing more
information on the short time dynamics [32]. Recently the transient dynamics of particle current transport in
the molecular junctions was studied by Schmidt et al [44, 45] in the case of weak and strong electron—phonon
couplings and has been reported by Maier et al using PTA [46] and by Souto et al using DTA [20] in the polaronic
regime.

The transport study of energy flow in the nonequilibrium system could reveal information on how energy is
dissipated and its correlation for electronic devices and can be investigated theoretically by the Landauer—
Biittiker type of formalism for noninteracting systems [47—49]. Energy transport in trapped ion chains has been
measured experimentally by Ramm et al [50]. The heat current I in the o lead is related to the energy current I°
by the expression I" = IF — 1, I, with the particle current I, and the chemical potential 1, in the v lead, and
this quantity is quite important in characterizing the efficiency of thermoelectric devices [51]. So far, the FCS of
energy transfer mostly focuses on phonon transport both in the transient regime and steady states [29-31] and
less attention has been paid to the FCS of energy transfer carried by electrons in electronic transport problems. In
our previous work, we investigated the transient FCS of energy transfer in the noninteracting system [34]. It
would be important and interesting to study the FCS of energy transport carried by electrons of molecular
junctions with electron—phonon coupling in the polaronic regime for both transient dynamics and steady states,
and this is the purpose of this work.

In this paper, the FCS of energy transport carried by electrons in molecular junctions for the Anderson—
Holstein model in the polaronic regime is investigated both in the steady states and transient regime. Within the
DTA, the GF for the energy current is derived from the equation of motion and can be expressed as a Fredholm
determinant in the time domain using NEGF. Numerical calculation is performed which allows us to analyze the
time evolution of the energy flow towards the steady state for a sudden switch-on of the coupling between the
quantum dot and the leads. The cumulant GF of energy current in the steady state is obtained analytically in the
energy domain. Universal relations for cuamulants of energy current under a finite temperature gradient with
zero voltage bias are established. In addition, we also calculate and analyze the steady state solution for various
orders of cumulants (from the first to the fourth order) under temperature gradient or external bias.

The remainder of the paper is organized as follows. In section 2, the model Hamiltonian of a molecular
junction is introduced and GF of energy flow in the transient regime is determined in terms of NEGF in the time
domain. Section 3 is devoted to the steady state investigation of the FCS of energy current, both theoretically and
numerically. In section 4, the transient dynamics of energy current is investigated under a sudden switching-on
of external bias. Finally, a brief conclusion is given in section 5.

2. Model and basic theoretical formalism

Considering only the lowest electronic orbital, the single-molecule is simplified as a single electronic level of a
quantum dot (QD) being coupled to localized vibrational mode, which is the simplest spinless Anderson—
Holstein model [52]. The QD then is coupled to the left and right electrode so that the system is driven to a
nonequilibrium state when the external bias or temperature gradient is applied (figure 1). The corresponding
Hamiltonian reads as

H = Hs + Hy + Hg + Hr )]
with the Hamiltonian of the central dot (in natural units, 2 = kg = e = m, = 1)
Hs = ed'd + woa'a + tep(a’ + a)d'd, )

where ¢ is the bare electronic energy level, and wy is the frequency of the localized vibron. d (a) denotes the
electron (phonon) creation operator in the QD. The localized vibron modulates the QD with the electron—
phonon coupling constant t,,. The Hamiltonians of the leads is given in a compact form
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Figure 1. Sketch of a QD coupled to the left and right lead under (a) temperature gradient 7;, > T with zero chemical potentials in
both leads and (b) external bias Ay with fuy ) = £Ap /2 under zero temperature.

Ha - Z fxc;jcx) (3)

x€ka

where the indices kaw = kL, kR are used to label the different states in the left and right leads. Hr is the
Hamiltonian describing the coupling between the dot and the leads with the tunneling amplitudes #,

Hrp = His 4+ Hrs = Y (ta 6, d + tihdca). 4)
ko
The tunneling rate (linewidth function) of lead «v is assumed to bear the Lorentzian form and can be expressed as
2 2
Fa(w) — Im Z |tkn,| _ Faw (5)

. b
© W — € — 10T wr+ W2

with the linewidth amplitude I}, and bandwidth W, and one can denote I = I} + Ix.
The electron—vibron coupling term can be eliminated by applying the Lang—Firsov unitary transformation

[53] given by
1 = SHST, § = esdid—a, ¢ [ (6)
wo
which leads to
Hs = ed'd + wya'a, @)
where the bare QD electron energy is changed to # = ¢y — g%wy. The tunneling Hamiltonian is transformed as
Hy = (tracl, Xd + t5d X cr) (8)
ka

with the phonon cloud operator X = exp[g(a — a')], while the Hamiltonians of the isolated leads remain
unchanged.

In the present work we study the transient dynamics in which the interaction between the leads and the QD is
suddenly turned on at t = 0 and afterwards the system evolves to the steady states. The turning on process could
be facilitated by a quantum point contact which is controlled by a gate voltage. The initial density matrix of the
whole system at £ = 0 is the direct product of each subsystem and expressed by p(0) = p; ® ps ® pg. The
statistical behaviors of the energy current in a specific lead are all encoded in the probability distribution
P(Acg, t) ofthe transferred energy carried by electrons Ae = ¢ — € between an initial time = 0 and a later
time £. The GF Z (), ) with the counting field A is defined as,

ZO\ 1) = (ePMAe) = fP(Ae, £)eMdedAe. ©)

The kth cumulant of transferred energy ((A¢)*)) can be calculated by taking the kth derivative of cumulant
generating function (CGF) which is In Z (\) with respect to i\,

O*InZ(N)
Gi() = (((Ae)F)) = —22 . 10
0 = (B = o= | (10)
One can further define the energy current cumulants
OC(t)
TEYK) = k , 11
() = K an

which tend to the steady state energy current cumulants in the long time limit t — oo. The second energy
t t
cumulant can be expressed as C,(t) = fo dn fo dt, (6IF (1) 6IF (1)), so that the second energy current

cumulantis {((IF)?)) = %J: dn (STE (1) 61 (1)) + %fot dt, (6IF (t) 6% (t,)). One should note that the second
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Figure 2. Keldysh contour starting from = 0. v = £\ /2 depends on the branch of the contour in which it resides.

energy current cumulant {((I¥)?)) is not an average of a squared quantity. To investigate the statistical behaviors
of the energy current through the left lead, we could focus on the energy operator which is actually the free
Hamiltonian of the leftlead H; . Under the two-time measurement scheme, GF of transferred energy in the left
lead can be expressed over the Keldysh contour as [27, 31, 33],

ZO\ 1) = Tr{p(O)’TC exp[—é f Hv(t’)dt’]} = Tr {p(O)U,,(t, 0)U_r (¢, 0}, (12)
c
with the modified evolution operator (y = 4+ \/2 depending on the branch of the contour, see figure 2),
U, (1, 0) = Texp[—i ftH,(t’)dt’]. (13)
75 Zdy

Here the modified evolution operator is expressed by the modified Hamiltonian,

H, = Hs + Y lawc) (t)an(ty) + arcirar] + D (gl () Xd + tirel Xd) + Hel, (14)
k k

with ¢, = 77y, and ¢ (¢,) = ey (0)e D1

The GF for the transferred charges in the transient regime has been expressed by NEGF in the time domain
for the noninteracting case [33] and in the polaronic regime using the DTA [18, 20]. GF for the energy current
has expressed by NEGF and higher-order cumulants has been investigated by Yu et al for the noninteracting case
[34]. We now generalize the GF for the transferred energy to the interacting case in the polaronic regime
following the derivation of the GF for transferred charges [20]. Following the procedure outlined in [54], one can
get GF from the derivative of the logarithm of equation (12) with respect to the counting field,

6; 2 f At (Te(twel (' F 2N /D)X () d () — 5 d" ()X () e (¢ £ 2N/2))), (15)
C ok
where we take ¢ — ’in the first partand  + ’ in the second for the forward time contour, while inversely for the

backward contour (see figure 2). The average (7¢ --- ) denotes
Tr { p(0)7¢ --- exp[ —;7 fc H,(t") dt’] } /Z (), t). The equation of motion of the three point Green function
on the contour <TCc,:'L ("X (t)d (1)) is given by

(i% - ka)<TCC}:rL(t/)X(t)d(t2)> = 55 (Ted™ () XT ()X (1)d (1)) (16)
which can be written in the integral form [38]
(Tech (X (1d(ty) = j; dt (Ted' () XT (1) X (1)d (1)) 118y (1, 1. (17)

Under DTA, one has the following decoupling [20]
(Ted"()XT ()X (DA (1)) = (TeXT ()X (D)) (Ted () d (1)) = A, 0) Gt 1), (18)
with A(t, ) = (7cX" ()X (1)) being the phonon cloud propagator which will be discussed later. Then we have

tu (Tech, X (EHd(t)) = fc anG(t', ))A(t, 1) X(h, t'). (19)

The self-energies due to the coupling to the leads under the DTA can be expressed as,
St 1) = T8 (1, )AL (6, 1) = T2 )AL (5, 1), (20)
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where a, b = +,— denote different Keldysh components and
S, 1) = abo(toe(tz)z 158 (4, ) tra. (1)

Note that the counting field enters the self-energy in the absence of the phonon cloud operator and the modified
self-energy can be expressed by [34] f’zb(tl, t) = ‘L‘b(tl — t, — (a — b)2A). One can rewrite equation (15) as

8an = *f dt1f dn, Tr {8ZL g(tb tZ)G(tb 1‘1)}> (22)

where T1g indicates that the trace is over the Keldysh space. Using the fact that Z (A = 0, ) = 1,the GFcanbe
expressed in the Fredholm determinant by the Keldysh NEGF in the time domain as [19, 20],

Z(\ t) = det (GG (23)
with
G'=Gy' = Sip— Zrpy G =Gyl = Eip — Seps (24)

where G, denotes the Green’s function of the uncoupled QD, and the tilde indicates the inclusion of the counting
field in the self-energy >, p. Note that the Green’s functions and self-energies without counting field possess the
Keldysh structure,

Attt At—
A= . 25
) .
The phonon cloud operator Agb (t, tp) thatis coupledtolead 6 = L, Ris givenby[7],
A7, ) = [A5 T, DTF = ) aypse’™0imh), (26)
with
Qs = €8t Dembhnl2] (22 [ngs (1 + ngs)), (27)

and I,,, being the modified Bessel function of the first kind, and Bose factor ngs = 1/(e®“0 — 1), 35 = 1/kgT;.
We should mention that the temperature of the phonon cloud operator is dependent on which self-energy it
multiplies with, and in the next section we will see that this will ensure the important fluctuation symmetry
relation. In the work by Utsumi et al, a third thermal probe electrode due to the thermal bath was added to
determine the temperature of the vibrations [55]. In our work, we only consider the energy flow carried by
electrons, and the fluctuation symmetry relation is already satisfied for the two-terminal system in equation (43).
At zero temperature o, = oy = Quyr can be simplified as,

- {egzgm/m! ifm>0 28)
0 ifm<0
The remaining components of As can be calculated by the relations,
A, ) =000 — )A; (4, 1) + 0(h — DA (4, 1),
A5 (0, 1) = 0(t, — A (1, 1) + O(t — AT (8, 1), (29)
The Dyson equation bearing a Keldysh structure under DTA is
G = Gy + GoXpG, (30)

where ZD = EL,D + ZR,D-
Utilizing the Dyson equation, equation (23) can be written as,

Z(\ 1) = det[I — G(ELp — Zpp)], (31)
so that CGF has the form,
InZ(\ t) = Trin[l — GELp — SLp)ls (32)
by using the relation det B = exp[Tr In B]. Taking the first derivative of GF and noting that
iff(tl, L) = —Zkt,:kLngi_(tl — t; — A)t, energy current in the transient regime is found to be,
@) = j; LG ST B — G ST D, (33)




10P Publishing

NewJ. Phys. 19 (2017) 083007 GTangetal

where

ST, ) = N - DY ewtingl (' — Dt (34)
k

and we have a similar definition for ¥~ (¢, t). The transient current expression formally agrees with the one
which was obtained directly by NEGF method [56].

3. Steady state energy transport FCS

In the long time limit, the system goes to steady state, and the Dyson equation equation (30) bearing the Keldysh
structure in the energy domain can be expressed by

G = Gy + GyXpG, (35)
sothat[18]
-1 |[—-(w—8 — 35" bIf N
= R 36
D(w)[ S5t (w-2 - h (9
with
D(w) = [w — & = XpW)][w — & — Zh(w)]. (37)

The dressed retarded self-energy in frequency domain was obtained by the Fourier transformation of the time
domain counterpart with the form X5, (8, ;) = 0(t — £)[X5 (4, t,) — X5 (4, )], so that in wide band limit
(WBL) W — o0, [18]

AE Ll + £ (B) = £, (B)]
27 w—E+i0t '

o) =" o f (38)
m

The real and imaginary part was obtained using Plemelj formula 1/(E + i0%) = P(1/E) F iw6 (E) which will

be used in the numerical calculation. One can verify that the real part and imaginary part satisfies

Im 3, p(it, + W) = Im[X], p(py, — )],  Re[X] p(p, + w)] = —Re[X], p(, — w)l, (39)

respectively [18].

In the long time limit, the Green’s function and self-energy in equation (32) become time translation
invariant so that scaled cumulant generating function (SCGF) F(\) = lim;_,InZ(\) /t could be expressed in
the energy domain as

FN) = f;i—;} ln{l 2 T fiy (U= fr D€ =D+ firy, (L= fi )™ — 1)]}- (40)

mn

In this expression T, (w) is the transmission coefficient involving m and » vibrational quanta in the left and
rightlead, respectively, with the form,

Ty (w) = M_ (41)
D(w)
Taking the first order derivative of SCGF with respect to A, we obtained the expression of energy current,
dw
(1) = [S2m Y Ty 1 = fo ) = feon = ) “2)

Now we consider the universal relations for energy current cumulants under finite temperature gradient
with zero bias which is similar to the universal relation for particle current cumulants [57, 58]. Using the relation

Q_y = e Pmang, o, = e P, and A = f) = exp(ABw)f; (1 — f)with AG = B — [y for
Ap = 01in equation (40), we obtain the fluctuation symmetry relation

F&) = F (=& + Ap) (43)

with i\ being replaced by & for convenience. One can verify that the fluctuation symmetry can only be satisfied
by considering the dependency of phonon temperature with respect to the specific lead. In the linear response
regime A — 0, we can expand both sides as Taylor series around A = 0 and & = 0, which leads to,

dF(—E+ ABAB) | _ i(k) IF(E, AB)
NG 1) ang-logt |,

where we have written the dependence of A3 of SCGF explicitly out in both sides. Since F(§ = 0, AgZ) = 0,
equation (43) gives F(AB, AB) = 0, from which we find that the LHS of equation (44) vanishes. The last term

, (44)

0 1=0
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Figure 3. First to fourth energy current cumulants for increasing g (0 (blue), 0.5 (green), 1.0 (black) and 1.5 (red)) versus temperature
gradient AT = T;, — Ty with the leftlead warmer and temperature of right lead fixed at kz Ty = 0.2wy. The renormalized energy level
oftheQDise = 0.

in the summation of equation (44) is the kth derivative of the SCGF with respect to the counting field &, which is
actually (((I¥))) at equilibrium. Then we have the relation

. k—1 k Hk-1 (IE)I
(U5 ))eq = —E(Z)W’ (45)

in which the energy current cumulant at equilibrium is expressed by a linear combination of lower order energy
current cumulants. This is similar to the case where the particle current cumulant could be expressed by a linear
combination of lower order particle current cumulants in the presence of small voltage bias [57, 58].

We now show the numerical calculations regarding steady state energy current cumulants under
temperature gradient and external bias of molecular junctions in the polaronic regime. The energies are
measured in the unit of vibron frequency wy, and the linewidth amplitude is chosen tobe I" = 0.05w, which
indicates weak coupling. In addition, WBL is taken in our steady state calculation.

The first to fourth energy current cumulants for increasing g versus temperature gradient AT = T, — Ty
with the left lead warmer and temperature of right lead fixed at ks Ty = 0.2wj are shown in figure 3. The
chemical potentials in both leads are set to be zero and the renormalized energy level of the QD is € = 0. The
energy current cuamulants become smaller with the increasing of gbecause of the suppression of transport due to
electron—phonon interaction. The second energy current cuamulant with zero temperature gradient is finite due
to the thermal noise in the leads, and it is reduced with increasing g.

In figure 4, energy current cumulants with different renormalized energy levels of the QD with g=1 are
plotted. We can see that the first to fourth cumulants and SCGF as well are even functions of €. This can be
understood as follows. Since the chemical potentials of both leads are zero, one can set

Xon(@) = fi o @I = fo_ (@)]e™ + fo o (@)1 = fi_, (w)]e ™, (46)
and verify that,

an(w) = an(_w)) (47)

using therelation f; , (w) =1 — f; _, (—w).Inthe WBL, from equation (39), the real and imaginary part of
the dressed retarded self-energy are the odd and even function of w, respectively, so that we obtain the following
symmetry with respect to the transmission coefficient in the polaronic regime

Tiun(w, €) = Tyn(—w, —¢€), (48)

where the dependency of € has been written explicitly. Then, we have the following symmetry of SCGF with
respectto €,
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Figure 4. First to fourth energy current cumulants for different renormalized energy levels of the QD & (—2wy (magenta), —wy (red), 0
(black) wy (green) and 2wy (blue)) versus temperature gradient AT = Tj, — T with kg Tx = 0.2wj. = 1.0. First to fourth cumulants
are even functions of . The lines of € = —2wy coincide with the lines of # = 2wy, and the lines of ¢ = —wj coincide with the lines of
€ = wy.

F(\ &) =F(\ —#), (49)

with y1; = p = 01inthe WBL. One can also see from figure 4 that (1) (¢ = 2wy) is smaller than (IF) (2 = wy)
under small temperature gradient, and this is also true for the second energy current cumulant. Since the
linewidth amplitude I" = 0.05wy is small, the transmission coefficient which is centered around  is narrow. As
aresult, the main contribution to the transport process is coming from energy near . When the temperature
gradient across the junction is small, the difference of Fermi distribution functions between the left and right
leads f; (w) — f (w)issmaller near & = 2w, thannear ¢ = wy. When Ty increases, the difference of Fermi
distribution functions between left and rightlead f; (w) — f; (W) near w = 2wy can exceed the difference near
w = wy, so that the first and second cumulants with larger  are larger than the ones with smaller €.

The first to fourth energy current cumulants for increasing g versus external bias Ay with 1, = Ap/2 and
pg = —Ap/2 are shownin figure 5. The temperatures of both leads are chosen to be very small with
kg Ti, = kgTr = 0.04w, which is almost in the regime of zero temperature. The renormalized energy level of the
QD is & = 2wy. For the noninteracting case, the energy current and second cumulant are almost zero when the
biasisbelow Ay = 4wy = 2 and display plateau structures when the external bias exceeds 2. The width of
transmission coefficient is small due to the small linewidth amplitude I' = 0.05wy. When Ay = 2€, the
chemical potential of the left lead is equal to the renormalized energy of QD, 11, = &, in which energy the
transmission coefficient experiences a sharp increase and reaches its largest value as indicated in figure 1(b).
From figure 5, we observe that electron—phonon coupling enables the plateau height to become smaller,
however, it creates smaller stepsat Ay = 2€ + 2nwywithn = 1, 2, 3---. This is due to the presence of
sidebands in the leads and can be understood as follows. In the presence of the polaronic regime, from
equation (42), we can approximately write the energy current in the presence of bias voltage at zero temperature
as, (ignore the terms with product of Fermi distribution function)

Ap/2
(IE)zfd—wﬁwZ @) fom — i = [ & oty

2T m=0 —Ap/2 2w
Ap/2—wy dw Ap/2—2wg dw
+f St [ = Ty 4o (50)
—Ap/2—wy 2T —Ap/2—2wy 2T

IR,

with T, = Do)
from a different sideband in the leads. The first plateau of the energy current in the polaronic regime is mainly
due to the first term in equation (50), and the second plateau due to the contribution from the second term in
equation (50) with one polaron involved in the transport process, etc. We find that T,,, / T, _; = g*/m is
responsible for the ratios between plateau heights. One can see that when g = 0.5, T; /Ty = 0.25, the height of
the second plateau is a quarter of that of the first plateau at zero temperature, which explains what we see in

o2 . . . . .
X a,, = e € g¢*"/m!. The energy current is written as a sum of a series, with each term coming
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Figure 5. First to fourth energy current cumulants for increasing g (0 (blue), 0.5 (green), 1.0 (black) and 1.5 (red)) versus external bias
Apwith p; = Ap/2and py = —Ap/2. The temperatures of both leads are kg T, = kg Ty = 0.04wj. The renormalized energy level
ofthe QD is chosentobe € = 2wy.

figure 5. This is also applicable to the case of g= 1.0 with T; /T = 1.0 and the case of g= 1.5with T, /T = 2.25.
One should note that the temperature of the system in figure 5 is very small.

The plateau structures disappear in the third and fourth energy current cumulants. Instead a dip occurs at
Ay = 2€ for both the third and fourth energy current cumulants with the fourth cumulant larger for both the
noninteracting and interacting cases. The polaronic regime creates smaller dips at Ay = 2 + 2nw, with
n =1, 2, 3--- which can also be identified in figure 7. Increasing g reduces the amplitude of the dipat Ay = 2&
but increases the amplitude at Ay = 2 + 2nwy. The explanation is as follows. For the noninteracting case
under zero temperature, we have

)= [ Lot (@) = [ Eeren - e

() = [ Lot - rwin - 2re),
27

(anh) = [ Eorn - Tin - 67 + 672w, Q)
27

with the ranges of integration from —A/2 to Aju/2. We can further take derivative of { {(I¥)¥)) with respect to

external bias Ay, O(IF) /0Ap and O(((IF)?)) /DA as always being positive definite since the transmission
I2/4

(w— E)Z/-s- 12/4

and fourth cumulants with respect to the external bias change sign around Ay = 2€ and also the transmission

coefficient experiences an abrupt change because of small linewidth amplitude. This leads to the the dips of the

third and forth cumulants of energy current as shown in figure 5.

The influence of temperature on cumulants under external bias is depicted in figure 6, and one can see that
both the plateaus and dips get smoothed or even disappear when temperature increases. In figure 7, energy
current cumulants with different € with g = 1 are plotted. We can see that the first and third cumulants are odd
functions of , while the second and fourth cumulants are even functions of €. The reason is as follows. Under
zero temperature, the transport is unidirectional and the Fermi-Dirac distribution function f; p, has a step-wise
form, since the transmission coefficient is peaked around the resonant level € with a very small linewidth
amplitude (say ¢ ), the energies carried by electrons which mainly contribute to energy transport are very close
to &. So if we change the sign of  from positive to negative, then most of the electron energies will reverse their
signsif e < €. Since the energy current is proportional to the energies carried by electrons, this will lead to the
reversal of the energy current.

coefficient for the noninteracting case has the form T (w) = . However the derivative of the third
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Figure 6. First to fourth energy current cumulants for increasing temperatures kgr (0.04wy (blue), 0.1w, (green) and 0.2wy (red))
versus external bias Ay with puy o) = £Ap/2.g=1.0and & = 2wy.

(I%)
(@)

-2t

_3\\\\\\\
01 2 3 4 5 6 7 8
1072

35—

2,

«a»)

ROCDE

Figure 7. First to fourth energy current cumulants for different € (—2w (magenta), —1.5wj (red), 0 (black) 1.5wy (green) and 2wy
(blue)) versus external bias Ay with yo; = Ap/2and py = —Ap/2.g= 1.0 and the temperatures of both leads are

ks T, = kpTyr = 0.04wy. The lines of the second and fourth cumulants of € = —2wj coincide with the lines of # = 2w, and the lines
of the second and fourth cumulants of € = —wy coincide with the lines of € = wy.

4. Transient dynamics of energy transport

We first investigate the behaviors of energy current at a very short time limit. To do that, we expand the GF to the
lowest order in time,

10
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t t e
Zovn1+ [y [ dnlSpm o) — Soi, 016G (@ 0
0 0
+ [0 12) = S50, )Gy (6 ). (52)

The expressions of the Green’s function for isolated QD and self-energy are given in the appendix. Under the
wide band limit W — oo, we can obtain the GF in the short time limit in a compact form as,

ZA )~ 1+ Ag(ng — 1) + Aping, (53)
where
A= i an [do(@ — DM@, ., @),
A= Sy fdoe = DM@, ) — 1 (54)
with
M(w) = 1 — cos[(w — &)t] (55)

(w—€)?

From hereonwe use f, ., todenote f (w =+ nwg). We can see from the expression of the short time limit of the
GF that the transport process is unidirectional in the short time limit. We obtain the current expressions in the
short time limit as

d 9z 1)
e 9N

_ L5

S an fdww{an(w)(nd - = [f_ , — 1lna}.
w — €

A=0 ™ n=—00

IF(t) =

(56)

We apply the formalism to perform numerical calculation with respect to the transient dynamics of energy
current under temperature gradient and external bias, respectively. The energies are measured in the unit of I'
and 1 /T is the unit of time. We only consider the case where the QD is initially unoccupied ;= 0 and the
linewidth amplitude in equation (5) is set to be I} = Iy = I' /2 and the bandwidth is also set to be the same for
bothleads with W = 10I.

The first to fourth transient energy current camulants, { {(I¥)¥)) for k = 1, 2, 3, 4, in the left lead for
increasing g under temperature gradient and external bias are shown, respectively, in figure 8 and in figure 9.
Increasing g corresponds to the increasing of the electron—phonon coupling strength. The frequency of the
localized vibron is wy = 6I'. The renormalized energy level of the QD is € = 2I" for case under temperature
gradientand € = 1.5I for the case with external bias. The left lead is assumed to be warmer with the
temperatures of the two leads at k3 T;, = 1.51" and kg T = 1.2I" while the chemical potentials in both leads are
set to zero in the case under temperature gradient. The temperature parameter in the phonon cloud operator
equation (26) should be the temperature of the lead where the phonon cloud operator acts. For the case under
external bias, the chemical potential of the left and right leads are chosen tobe 1, = 2I"and pup = —2I'. The
temperatures of both leads is zero, while a small temperature kg T = 0.1I" in the phonon cloud operator is taken
in order to stabilize the numerical calculations.

As a general feature for both the noninteracting (¢ = 0) and interacting cases, the transient amplitudes of
{{(IF)*)) increase with cumulants order. This behavior is universal and will be investigated in detail in figure 10.
The second and fourth energy current cumulants may even oscillate to negative values at short time limits. The
negativity of the second energy current cumulants can be explained as follows. The energy cumulant C, (¢) must
be positive at all times from a statistical view, however it can oscillate at short time limits so that the second
energy current cumulant which is the derivative of C,(¢) may not be positive at short time limits. ( ((I¥)?)) at
steady state (long time limit) is positive and can be identified from the figures. The amplitudes of oscillation in
the evolution and the asymptotic values of the cumulants are suppressed with the increasing of g. The firstand
third energy current cumulants in the stationary limit are positive under temperature and external bias, since we
put the normalized energy level of QD above the Fermi energy of the both leads so that the electrons with positive
energy contribute to the transport process. However, at short time limits, the energy current and third cumulant
oscillate to negative values with a minimum. This can be understood as follows. Since the QD is prepared
initially empty, once the system is connected, the contribution to the transport process mainly comes from
electron of the left lead which can be seen from equation (53). The contribution of energy current cumulants
from the energy window [0, ;] cancels with the contribution from [—;, 0], so that energy below — i, in the
left lead will contribute to the energy transport process which leads to the negativity of the first and third energy
current cumulants in the short time limit. The cumulants of transient energy current approach to their steady
state values in the long time limit.

11
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the frequency of the localized vibron wy = 61I".

We also plot the logarithm of the maximum amplitude of the normalized transient energy cumulants
M, = max|Cy. /G| under temperature gradient (figure 10(a)) and external bias (figure 10(b)). Different lines
with respect to different bandwidths Ware plotted, while the other parameters are same as in figures 8 and 9. The
maximum amplitudes M for different interaction parameter ¢ = 0, 1.0 and 1.5 coincide. We can see from the
figure that both In(M,;) and In(M,y1) are linear with cumulants order k with the slope close to 3 but they have
different intercepts. This universal scaling of normalized transient energy cumulants is found under both the
temperature gradient and external bias, and it is the result of the universality of the GF in the short time limit
which has also been reported in charge cumulants [20, 59]. A theoretical understanding of this behavior for the
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noninteracting case was reported in our previous work [34]. Interestingly, turning on the electron—phonon
interaction does not affect this behavior.

5. Conclusion

Both the steady state and transient behaviors of energy transport carried by electrons in molecular junctions for
the Anderson—Holstein model in the polaronic regime have been investigated using FCS. Using a two time
measurement scheme and equation of motion technique, the GF for the energy current can be expressed as a
Fredholm determinant in the time domain using NEGF. The DTA decoupling scheme [17] which can provide a
good description of dealing with the phonon cloud operator has been adapted in obtaining the GF. This
formalism allows us to analyze the time evolution of the energy transport dynamics after a sudden switch of the
coupling between the dot and the leads towards the stationary state. The amplitudes of the oscillation in the
evolution and the asymptotic values of the cumulants are suppressed with the increasing of g. The universal
scaling of normalized transient energy cumulants is found under external bias.

In the steady states, universal relations for energy current cumulants under a finite temperature gradient
with zero voltage bias and this enables us to express the equilibrium energy current cumulant by a linear
combination of lower order cumulants. The behaviors of the energy current cumulants (from the first to the
fourth) under temperature gradient and external bias are numerically shown and explained. Under external bias,
the energy current and second cumulant are almost zero when the bias is below Ay = 2¢ for the noninteracting
case and display plateau structures when the external bias exceeds 2€. Due to the sidebands in the leads in the
polaronic regime, the plateau heights become smaller, however, smaller plateau steps appear at
Ap = 2€ + 2nwywithn = 1, 2, 3---. The plateau structures disappear in the third and fourth energy current
cumulants. Instead a dip occurs at Ay = 2& for both the third and fourth energy current cumulants with the
fourth cumulant larger for both the noninteracting and interacting cases. The polaronic regime creates smaller
dipsat Ay = 2 + 2nwywithn =1, 2, 3---.
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Appendix. Green’s function and self-energy in the time domain

A description on how to calculate the uncoupled dot Green’s function and the self-energy in the time domain in
the absence of the phonon cloud operator is presented here. The four correlation functions of the uncoupled dot
are given in a book written by Kamenev [40] as
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iGy (t, 1) = —ngexp{—ie (t — t,)}
iGy "(h, ) = (1 — na)exp{—ie (h — 1)}
Gyt (0, ) = 0(h — 1)iGy * + 0(t, — 1)iGy
iGy ~(t, ) = 0(t, — 1)iGy, T + 0(t — t)iGy (57)
where 1, 1s the initial occupation number of the QD before the system is connected. The Lorentzian linewidth
function with the linewidth amplitude I}, and bandwidth W,
LW?
is used to describe the self-energy > (r) in absence of the phonon cloud operator, so that the numerical
calculation would be more realistic. The equilibrium energy dependent self-energy can be written as,
Lw
2w + iW)

L(w) = (58)

Talw) = (59)

Performing Fourier transform, the retarded self-energy in the time domain can be obtained [33],
S, 1) = — %9 (t — 1) T, We Grat W=, (60)
where 1, is the chemical potential of the c-lead. For the lower self-energy in the time domain,
< T
it ) = i [ e L T — py) (61
0

with f (w) =1 / [ef@W=r) 4 1].Ttis a function of the time difference, and one canlet 7 = # — t, for
convenience. When t; = 1,

S5k 1) = irw (62)

The case of f; > t, for both the zero and non-zero temperatures is to be considered first. At non-zero

temperature, if f; > 1,, it has poles w and —iW,wheren = 0, 1, 2, 3 ..., so that,

2 21w T

- _ +00
S5ty 1) = 1FQ,W67,-#OT exp‘( Wr) _ i Z exp[— 2n + 1)7T7_:|
2 eXP(_lﬁa W) +1 lﬁa n=0 ﬂa

w

X —— ks T, = 0, (63)
W2 _ [(2n+1)ﬂ']

B,

Mo

where El1(x) = fxoo ?dt. Using the relation X35(t, £)|y<r, = —[Z5(t, £2) 4>, ¥, the full expression of
Y.5(f, t) can be obtained. The remaining components can be calculated by the relations,

Yot ) = X5, 1) + X4(h, 1) — S48, 1),

Yoty ) =0t — )X (0 — 1) + 0(t — 1) X356 — 1),

Sh(tn 1) = 0 — )30 — 1) + (0 — ) E5(0 — 1). (64)
Note that the following relationshold =/ = 3, ¥~ = -5, 3 " = —%> and ¥, = &

f
L
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