Emission Modeling and Pricing on Single-Destination Dynamic
Traffic Networks

Rui Ma?, Xuegang (Jeff) Ban* W.Y. Szeto®

% Department of Civil and Environmental Engineering, University of California, 2041 Academic Surge, 1 Shield Avenue,
Davis, CA 95616, USA
b Department of Civil and Environmental Engineering, University of Washington, 121G More Hall, Seattle, WA 98195, USA
¢Department of Civil Engineering, The University of Hong Kong, Rm 622 Haking Wong Building, Pokfulam Road, Hong
Kong, China

Abstract

This paper proposes an emission pricing model for single-destination dynamic traffic networks. The model contains
two sub-models derived from the corresponding two sub-problems: a system optimum dynamic traffic assignment
problem and a first-best dynamic emission pricing scheme. For the first problem, it proves that under certain
conditions, an optimal solution, if exists, must be a free-flow solution to minimize the generalized system cost
including the costs of total travel times and total emissions (or fuel consumption). The optimal first-best emission
pricing can then be determined by solving an optimal control problem, using the free-flow dynamic system optimal
solution as the input. Numerical results are provided to illustrate the proposed models and the solution methods.
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1. Introduction and Motivation

Air pollution has been recognized as acute negative effects in many urban areas. Recently, some major
urban areas in Eastern Asia have to face reduced visibility and deteriorated air quality frequently, largely
due to emissions (such as smug) from industry and urban traffic. Reducing the emissions from urban
traffic becomes necessary and urgent for a sustainable urban environment. Traffic emission programs and
regulations on vehicle population and emission rates have been implemented by many regions in the last
decades (Netherlands Ministry of Housing, Spatial Planning, and the Environment (2004); Fung et al.
(2010)). However, the objective to reduce air pollution has not been fully achieved by these programs
alone. Besides government regulations, market-based approaches for network-wide emission control have
been proposed and studied recently.

As introduced in the marginal cost pricing theory in Pigou (1920) and its later developments in Walters
(1961) and Vichrey (1969), road pricing has been recognized as a key market-based approach to efficiently
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internalize the external costs imposed by the drivers on other users in the network, and to maximize the
total social welfare. As a special form of road pricing, network-wide emission pricing aims at controlling
the emission externalities in traffic networks to minimize the total externalities, including the environmental
costs.

Emission pricing studies on different objectives have been performed in the recent decades. Some emission
pricing models considered traffic emissions as the single indicator for the externalities (see Yin and Lu (1999);
Hizir (2006); Sharma and Mishra (2011)), while more and more studies simultaneously incorporated the
system time costs, e.g., travel and waiting times, in addition to the environmental costs, into the emission
pricing model. To achieve the system optimal cost including both time and environmental costs, Johansson
(1997) suggested that both the congestion effects and the environmental externalities should be considered.

It was found in Rilett and Benedek (1994) and Yin and Lu (1999) that the objectives of reducing time
costs and traffic emissions can be conflicting in traffic networks. There are generally two approaches to
balance the trade-off between time and environmental costs. One approach is to embed side constraints
in the model, such as the environmental capacity constraints; see Xu et al. (2015); Zhong et al. (2012); Li
et al. (2012). The other approach is to propose multi-objective formulations by applying the weighted sum
method (Yin and Lawphongpanich (2006); Abou-Zeid (2003); Qiu and Chen (2007); Ferguson et al. (2010);
Szeto et al. (2014)), so that both types of costs are combined as a single objective. Yin and Lawphongpanich
(2006) showed that a Pareto solution set can be constructed by solutions with varied weights of such two
types of costs. Other studies incorporated more dimensions such as social costs into the objective functions;
see a comprehensive review in Szeto et al. (2012). Most of the previous studies on network-wide emission
pricing focused on static traffic networks, with a few exceptions; see Zhong et al. (2012); Friesz et al. (2013);
Kickhofer and Kern (2015); Kickhofer and Nagel (2016).

Similar to the congestion pricing problems, network-wide emission pricing can be broadly categorized
as first-best pricing and second-best pricing. The former assumes that prices (or tolls) can be imposed
on any location (e.g., links) of the network at any time, while the latter assumes that tolls can only be
imposed on a selected list of locations in the network or during a particular time period. It is well known
that the second-best pricing can be formulated and solved as bi-level problems; see Yang and Bell (1997),
Patriksson and Rockafellar (2002), Clegg et al. (2001), Liu and Boyce (2002), Abou-Zeid (2003) and Szeto
et al. (2015) for static problems, and Ban and Liu (2009) and Friesz et al. (2007) for dynamic problems.
First-best pricing for static networks can be modeled as marginal cost problems and solved accordingly,
see Yang and Huang (2005). Such marginal cost approach, however, becomes complicated when applying
to dynamic networks mainly because the traffic dynamics (such as flow propagation over time and space)
introduce extra terms (such as the terms accounting for inter-temporal effects, see Carey and Srinivasan
(1993); Shen et al. (2007)) in the marginal cost formulation that makes the marginal cost much harder to
compute. However, implementing road pricing on dynamic networks is more realistic, because time-varying
tolls can be implemented for traffic dynamics and more realistic behavior in the modeling framework. More
importantly, Lo and Szeto (2005) showed that the static and dynamic modeling approaches can produce
diametrically opposite results. They found that the impacts of pricing policies under the static approach
could be ill-represented. In some cases, the pricing schemes such determined could actually worsen the
congestion problem. This finding illustrates the importance of adopting the dynamic modeling approach for
pricing, albeit it is more complex and computationally more demanding than the static modeling approach.

Table A.2 in Appendix A summarizes the literature on dynamic road pricing, from which we can conclude
the following. First, most studies mainly focused on congestion pricing whereas only in the last few years,
a handful studies considered emissions externalities when setting optimal prices. Secondly, the travel choice
dimensions considered varied from one study to another, but for those studying emission pricing, at least
two types of choices (among route, departure time and mode choices) were considered. Third, both first and
second best pricing have been examined in the literature, including those considering emissions externalities.
Second-best pricing seems to be more realistic and practical at the first sight, because not all links are
allowed to charge a toll due to various physical or political constraints. However, with the recent emerging
technologies, such as mobile sensing (Herrera et al., 2010; Ban et al., 2009a; Ban and Gruteser, 2012; Hao
et al., 2012) and connected/automated vehicles , it is possible that each vehicle in the near future can be
equipped with a tracking device so that, at least in principle, it can be charged a toll anywhere at any
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time if needed (assuming other related issues such as privacy and security can be properly addressed).
This will make the first-best pricing idea feasible and probably more appealing. Moreover, although using
microsimulation models may give better estimates of emissions, the analytical model presented in this paper
allows more rigorous analyses of the model properties and thus provides useful insights about how to design
and implement emission pricing schemes.

In this paper, we focus on the first-best emission pricing on a dynamic traffic network. We aim to develop
a modeling framework to determine the optimal dynamic pricing schemes for all links of the network so as
to minimize the generalized system costs, including total travel times and emission costs. The formulation
is link-node based as in Ban et al. (2008, 2012b), which avoids the use of path-specific variables. The
optimization objective function in the proposed model incorporates both the economic and environmental
externalities. More specifically, the economic externalities refer to the total travel and waiting time costs,
while the environmental externalities refer to the total emissions (or fuel consumption). In the literature,
there are (at least) two types of methods for emission estimation modeling. Microscopic emission models
focus on vehicle-specific driving behaviors, including vehicle types as well as acceleration and deceleration
patterns. Macroscopic emission models use aggregated functions based on aggregated traffic data, such as
average speeds, or speed distributions, to estimate the total emissions. For network-level analysis, macro-
scopic/aggregated emission models are more commonly used. In this paper, we follow such common practice
and use macroscopic models since we focus on network-level emission control. In particular, we apply two
types of aggregated functions. The first is based on the macroscopic emission model developed in Wallace
et al. (1998) for carbon monoxide (CO). The second is for fuel consumption estimation based on more recent
research results in Boriboonsomsin et al. (2012), which can be viewed as a proxy of multiple pollutants.

The proposed first-best emission pricing problem can be decomposed and solved as two separate sub-
problems. For the first sub-problem, a dynamic system optimum (DSO) model with a combined objective
function is formulated and solved as an optimal control problem. It is proved that when the emission
function is monotonic and an optimal solution exists, the optimal solution must be a free-flow solution, i.e.,
a solution where the travel times of all links are free-flow travel times and the combined objective function is
minimized. It is further shown that the free-flow optimal solution can be derived via a specifically designed
procedure. The second sub-problem determines the dynamic optimal emission tolls on all network links to
sustain the desired DSO solution obtained from the first problem. It is formulated as an optimal control
problem with the objective to minimize the total emission tolls, while satisfying the dynamic user equilibrium
(DUE) route choice conditions and the related tolling constraints. The fact that the desired solution is a
free flow solution greatly simplifies the model formulation and the solution process. Experimental results
on multiple testing networks are presented to illustrate the proposed first-best emission pricing model and
its solution process.

The desired free-flow DSO solution is crucial for the proposed emission modeling framework. Firstly,
the free-flow solution greatly simplifies the traffic dynamics involved in the network models, e.g., it reduces
the time-varying, state-dependent delays to constant delays in the DUE problem. This makes the solution
process of the proposed emission pricing problem much easier. Secondly and more importantly, focusing
on free-flow solutions of traffic networks offers new perspectives of designing network-wide emission pricing
schemes, which has not been fully discussed before. Notice that the free-flow solution here is distinctively
different from the solution to static traffic assignment. Static assignment ignores dynamics in a traffic net-
work (such as time-varying demands, traffic dynamics, etc.) and considers traffic congestion in a simplified,
aggregated manner, e.g., via the BPR (Bureau of Public Roads) type of link travel time functions. The
solution to a static assignment should not be a free-flow solution. The free-flow solution to a DSO problem,
on the other hand, is a special DSO solution that considers the dynamics of a traffic network as essential
components. Calculating a free-flow DSO solution, especially determining the time-varying demand profile
at each origin that can lead to DSO, is not trivial as shown in Ma et al. (2014).

The major contributions of the paper are summarized as follows:

e It proves that under certain conditions, a free-flow optimal solution to the DSO problem can be found
to minimize the generalized cost including the costs of system travel times and emissions.
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e The optimal first-best emission pricing can be determined by solving an optimal control problem, using
the obtained free-flow optimal DSO solution as the input. This avoids the use of the marginal cost
approach to derive first-best pricing, which can be complicated due to traffic dynamics.

e The results of the paper have important practical implications for the design of pricing and related
traffic management strategies. For example, pricing may be designed around the free-flow traffic state
in order to minimize the generalized cost including the costs of system travel times and emissions.
This can much simplify the computation of the optimal pricing scheme in a dynamic traffic network,
while at the same time the derived pricing scheme can be used to sustain the desired free-flow traffic
state in the network.

The rest of this paper is organized as follows. Section 2 briefly describes the double-queue link model,
the network and notations. Section 3 presents the macroscopic emission framework adopted in the paper to
illustrate the proposed network emission control model. Section 4 develops an emission pricing model, which
is formulated based on two sub-problems: a dynamic system optimum problem and a first-best emission
pricing problem. Section 5 shows the numerical results on three testing networks. Section 6 concludes the

paper.

2. Network and Notations

In this section, we first summarize the double-queue link dynamics model, and then describe the traffic
network structure and the notations used throughout the paper.

2.1. The double-queue model

The “double-queue” model provides a concise yet accurate way to describe the evolution of traffic flow
over time and space, which is consistent with the kinematic wave theory. The concept was originally derived
from the link transmission model (LTM) (Yperman, 2007) based on the triangular fundamental diagram of
traffic flow in Newell (1993), as shown in Figure 1. The model was first proposed and used in Osorio et al.
(2011) for modeling stochastic DUE problems in discrete time. It was extended to continuous-time in Ma
et al. (2014, 2015a) to model the continuous-time DSO and DUE problems, respectively. In this section, we
provide a brief review and main results of the double queue model; more details can be found in Ma et al.
(2014). We start with the triangular fundamental diagram.

The triangularly shaped fundamental diagram of link (4,j) can be defined by three parameters: a fixed
free-flow speed (Ulfj), a flow capacity (Cj;) and a jam density (kfja ™). The critical density is defined as
kf\f = éij / vlf] On the left branch of the triangular fundamental diagram, where the density k;; < kf\f , the
traffic moves in a fixed free-flow speed vzf] On the right branch, where the density k;; > kf\]/[ , the traffic is in
a congested state. The maximum backward shockwave speed w;; is presented by the absolute value of the
slope of the right branch. Given the link length /;;, the link free flow travel time is defined as Tin = lij/ vlfj
Moreover, 77 = l;j/wij is the time that is needed for the queuing shockwave (with speed w;;) to travel from
the end of the link to the beginning of the link at the congested state. It is actually the minimum travel time
for the backward shockwave to travel the entire link. We define 7;% as ‘the shockwave travel time’ hereafter
in this paper. From Figure 1, it is observed that usually we have TZQJ» < T

Specifically, the dynamics of link (7,7) in the double-queue model can be described by a downstream
queue qu (t) and an upstream queue 45 (t) in the differential form:

For almost all time ¢ € [0, T7,

(1) = pij(t = 75) — viz (1),
@5(t) = pij(t) — vij(t — 755).
Here ¢(t) denotes the derivative of g over time ¢. p;;(t) is the inflow rate to link (7, j) at time ¢, and v;;(¢)

is the exit flow rate from link (7, ;) at time ¢. The downstream queue dynamics are similar to the queue
4
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Figure 1: Triangularly shaped fundamental diagram

dynamics of the Linear Complementarity System-based point-queue model in Ban et al. (2012a), while the
upstream queue is unique in the double-queue model. In particular, the upstream queue does NOT have a
physical meaning; both queues are referred to as “hidden states” in Ma et al. (2014) to regulate flow into
or out of the link. Also notice that, n;;(t), the number of vehicles on the link at time ¢ is:

ns; (1) = /O piy(€) — vy, (€)de (2)

Clearly these two queues (and the number of vehicles on the link) are not independent since they are
determined by the link inflow and exit flow rates (but at different time instants). The upstream and
downstream queues are the main mechanism that enables the double queue model to properly capture the
impact on the upstream flow due to congestion at the downstream. In particular, the two queues function
as the “gates” at the entrance and exit of a link to regulate flows in and out of the link. Usually when
qi(t) = @ij = (TZ-OJ- + 7 )C'i; is first reached on a link, it indicates that the queue spillback occurs, the traffic
state at the entrance of the link transits from the free-flow state to the congested state, and the inflow
to the link may be restricted. If qu(t) > 0, on the other hand, queue exists at the end of the link, due
to downstream congestion or the inflow exceeding the exit flow capacity of the link. In this case, the exit
flow from the link will reach its capacity if there is no queue spillback from the downstream. From their
definitions, it is easy to see that 0 < q%(t) < ng;(t) < gj(t) < Q,;. More discussions of the double queue
model and its properties can be found in Ma et al. (2014).

The actual travel time for vehicles entering link (7, j) at time ¢ is implicitly derived from the cumulative
curve of inflow and exit flow.

t tJrTij (t)
/ Py (€)de = / vig (€)de 3)
0 0

The implicit expression of travel time leads to integral forms in modeling and calculation. To simplify
the model, we estimate a lower bound of the implicit double-queue link travel time (3), by borrowing the
travel time function in point-queue model in Ban et al. (2012a), as shown in (4).

— -1
Tij(t) = iy + Cij it + 7)) (4)

The approximated link travel time (4) equals to the actual one, if link (4, j) is free-flowing (i.e., ¢f; (t+7;) =
0), or the actual exit flow rate v(t + 7;;) = Ci; when there is a positive downstream queue qu (t+73%) > 0.
When queue spillback from downstream links reduces the actual exit flow rate to be lower than the flow
capacity 6Z-j, the approximated link travel time (4) is normally smaller than the actual one. In this paper, we
use the approximated link travel time (4) throughout this paper to simplify the models. More importantly,
we will show in later sections that under certain conditions, the optimal solution is free-flowing, for which
the approximated link travel time is exact.

5
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2.2. The traffic network

Following the network structure introduced in Ma et al. (2014), we denote a traffic network as G(N, L),
where N is the set of nodes and L is the set of links. We consider a traffic network with multiple origins
and a single destination (denoted as ), i.e., a many-to-one network. All the origins and the destination are
nodes in IN. For origin o, the total demand is D,. We denote the number of origins by n.

The regular network G is expanded by adding a dummy origin node o and a corresponding dummy
origin link (0, 0x) at each origin node oy, as described in Ma et al. (2014) in details. The distinction
between a dummy node o and the origin node o is that while there may be incoming links to o with o as the
ending node, there is no such incoming link into 0. Moreover, there is a unique outgoing link starting at o,
namely, the corresponding dummy link. The set of dummy links is Lg, i.e., (0,0x) € Lg, k = 1,2, ,n.
The free-flow and shockwave travel times are both zero for the dummy links; the exit capacity and queue
capacity on these links are infinite. In the testing examples, they are set as very large. Since the free-flow
and shockwave travel times are both zero, the upstream and downstream queues reduce to a single queue.
However, such single queue still behaves differently from a point-queue. This is because the exit flow rate of
a dummy link is constrained (actually determined) by adjacent downstream links, and thus can never reach
its exit flow capacity (which is infinite), which is very different from a point-queue model. Furthermore, for
a dummy origin link 0, o, initially, the total demand D, from the origin node o (which is given and fixed)
is queued on the dummy link (0,0) to be discharged. That is, there is no inflow to a dummy origin link,
and the demand on each dummy origin link is presented as a non-increasing queue, whose discharging rate
is the demand rate from the corresponding origin node to the regular network.

Since the paper applies the DSO model in Ma et al. (2014), a simple junction model is used here, as
shown in Section 4.1. This is very different from DUE models in which a more complicated junction model
is usually needed to capture the behavior of traffic at junctions. In the DSO model applied in this paper,
we do not specify such behavior at junctions, which is however determined by the DSO principle implicitly.
More discussions on this are provided in Section 4.1.1.

2.8. Notations

For a link (i,5) € £ £ LU Lg, we define:
(constant) parameters: all positive scalars

Qlj upper bound of upstream queue length
il )

C;; upper bound of inflow rate

_ )

C,; upper bound of exit flow rate

iy free-flow travel time
. . 0
{7 shockwave travel time (congested); in general 7% < 77

l;; link length
pi; emission impact coefficient

(time-dependent) trajectories: all non-negative

7;;(t)link travel time for vehicles entering the link at time ¢
p;j(t)inflow rate at time ¢

v;5(t)exit flow rate at time ¢

g5 (t)upstream queue length at time ¢

qgj(t) downstream queue length at time ¢

n;;j(t)number of vehicles at time ¢
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3. Macroscopic Link Emission Models

Vehicular traffic generates various types of emission pollutants, including carbon monoxide (CO), carbon
dioxide (C'O3), hydrocarbons (HC), nitrogen oxide (NO,), and others. There are at least two types of
methods for emission estimation modeling in the traffic network. Microscopic emission models focus on
vehicle-specific driving behaviors, including vehicle types as well as acceleration and deceleration patterns.
For instance, in Comprehensive Modal Emission Model (CMEM; see Scora and Barth (2006)) and Piccoli
et al. (2015), acceleration/deceleration of cars were taken into account in estimating the emissions. Macro-
scopic emission models use aggregated functions based on aggregated traffic data, such as average speeds,
or speed distributions, to estimate the total emissions. Microscopic emission estimation models gain higher
degree of accuracy for emissions of a single vehicle with vehicle-specific data. However, they normally require
vehicle-specific, high-resolution data of each vehicle in the network and more computationally demanding to
model and estimate system-wide emissions. Macroscopic emission models, on the other hand, estimate the
total emissions from the aggregated traffic states, so that they are more efficient in terms of computations.
Both types of models are widely used in transportation applications. For network-level analysis, macro-
scopic/aggregated emission models are more commonly used. In this paper, we use macroscopic models
since we focus on network (i.e., system) wide emissions. The most commonly used traffic data for macro-
scopic emission modeling is the link average speed, which are categorized as speed-based in Szeto et al.
(2012). A handful of studies have found that for most pollutants, there exist certain nonlinear correlations
between the amount of pollutants and the average speed at the link level. A detailed review of different
types of emission models can be found in Szeto et al. (2012).

It turns out that in the literature, there are two types of aggregated emission functions. The first can
estimate emissions (e.g., grams) per vehicle per unit time (e.g., per hour), while the second estimates
emissions per vehicle per unit distance (e.g., per mile) traveled. It is unclear which type is the most
appropriate. In practice, it is up to the user to pick which type of emission functions to use. In this paper,
to illustrate the proposed method, both types of functions are applied. The first is for CO pollutants based
on the work in Wallace et al. (1998), while the second estimates multiple pollutants and fuel consumption
based on more recent research results in Boriboonsomsin et al. (2012).

We present the static models and their extensions to dynamic cases in the next two subsections. Notice
that the dynamic emission models applied in this paper are simple time-dependent extensions from the
static models. Developing a more comprehensive dynamic emission model is not trivial as it will require
extensive data collection and analysis, which is beyond the scope of the work. Rather, using the simple
dynamic emission models, we aim to show what properties an emission function needs to have in order to
be mathematical tractable when applied to a dynamic network modeling framework.

3.1. Static macroscopic emission models

Wallace et al. (1998) proposed a non-linear, static emission model for network links. For link (4, j), the
vehicular CO emissions per vehicle per hour is

0.79621;

€ij (l‘z]) = 020387'” (ZE”) exp( - (l‘ )
g\

); (5)

where 1;; is the link length (in kilometers), x;; is the link state variable, and 7;;(x;;) is the travel time (in
minutes) for link (¢, j). The emissions or fuel consumption e;;(x;;) is in grams per vehicle per hour. For the
above static emission function, x;; is usually the link flow.

A more recent study by Boriboonsomsin et al. (2012) developed a series of macroscopic emission models
on fuel consumption and multiple pollutants by considering both the average speed and the road grade. For
link (4, j), the vehicular emission per vehicle per mile is

fij = exp (Bo + Bisij + 525% + 533% + 548;-1]- + B59i5) » (6)
7
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where s;; is the link average speed (in miles per hour), g;; is road grade (in percentage), and 3;,i=1,---,5
are regression coefficients that vary for different pollutants. The emission or fuel consumption f;; is in grams
per vehicle per mile.

It is observed from both types of emission models (5) and (6) that they are non-linear, and monotonicity
rarely exists for all the speeds. However, the emission functions above are monotonic functions under
certain conditions. Next we present these conditions that will play an important role in analyzing the
solution property of the emission pricing model in this paper.

In fact, the monotonicity property of the emission function in (5) only holds when the speed does not
exceed 75km/h (46.6 mph). Yin and Lawphongpanich (2006) showed that e;;(-) in (5) is increasing as long
L
U ij(;w)
time function is strictly increasing (dr;;(x;;)/dxz;; > 0) and 0.79620;; < 7;;(x;;) (time is in minutes, and link
length is in kilometers), e;;(z;;) is monotonically increasing. Note that 0.7962;; < 7;;(x;;) means the travel

speed is less than g—t- km/min ~ 75km/h (or 46.6 mph).

For the emission function (6), monotonicity conditions can also be established for specified pollutants.
This is calculated and listed in Appendix B. Using the fuel consumption function as an example (used as
a proxy of various pollutants in this paper), it can be expressed as (assuming the grade of road is zero):

as the travel speed is not too large. Xu et al. (2015) further proved that as long as the link travel

fij = exp (6.8 — 1.4 x 107" s;; +3.92 x 10757, — 5.2 x 107°s7; + 2.57 x 107 "s};) .

It is found that for a link with no road grade, when the traffic speed is less than 72 mph, the emission
function f;;(s;;) is monotonically decreasing with respect to s;;. When the speed is larger than 72 mph, the
function is monotonically increasing.

The two types of emission models merit further discussions. As aforementioned, the unit in the emission
model (5) is grams per vehicle per hour, while the unit in (6) is grams per vehicle per mile. In the first
glance, it may seem trivial to unify the two models. Indeed, if one multiplies speed to the right hand side
of equation (5), the unit will become grams per vehicle per mile . Similarly, if one divides speed to the
right hand side of (6), the unit will become grams per vehicle per hour. Such conversion, however, is not
practically feasible. The fuel consumption models, either in terms of gram per vehicle per mile or gram per
vehicle per hour, are essentially estimated from the regression results using measured traffic and emission
data. The form of each model (function) is pre-defined and the parameters are calibrated from real data;
see Boriboonsomsin et al. (2012). As the pre-defined function form is not necessarily to realistically capture
the physical relationship between traffic data (here speed) and emissions, the model may only work well for
the assumed unit due to its data-driven nature. Therefore, one may not directly ‘create’ a new emission
model (e.g., in terms of gram per vehicle per hour) by simply manipulating (e.g., by multiplying speed) to
a calibrated emission model (e.g., in the unit of gram per vehicle per mile). If one aims to develop such
a model (in gram per vehicle per hour), similar data-driven process needs to be followed, i.e., pre-define a
functional form, and then collect emission data (e.g., in the unit of gram per vehicle per mile) and speed. The
parameters of the function can then be calibrated using measured data. Due to the above considerations,
we apply both types of models to test the model and algorithm proposed in the paper.

3.2. Extenston to dynamic emission models

The dynamic emission functions applied in this paper extend the above emission models developed in the
past by incorporating the time-varying traffic state variable. First, for the static emission model (5) that was
based on static link travel times, we use the time-varying link travel times to extend it into dynamic cases.
For double-queue link dynamics, we use the time-varying link travel time approximation (4) to calculate the
emissions in (5). (Note that such approximation is exact once the link is in free-flow state.) For link (i, j),
the vehicular CO emission rate, i.e., grams of CO emissions per vehicle per hour, at time ¢ is:

0.79621;

€ij (t) = 5;(7'” (t)) = 0.2038[21‘]'7'1‘]‘ (t) exp( T (t)

8
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0.79621:; )

where the emission can be expressed as a function of the travel time as £];(7) = 0.2038p;;T exp(~—

according to (5).

Here 7;;(t) is the travel time (in minutes) at time ¢ for link (¢, 7). p;; is the emission impact coefficient,
which may be different from link to link. The dynamic emission rate e;;(¢) is in grams per vehicle per hour.
The link travel time for double-queue model (4) is estimated as a function of the downstream queue, i.e.,
the state variable in the emission function is the downstream queue with a constant time delay qflj (t+ Tioj).
As (4) is usually a lower bound of actual travel time, (7) is a lower bound of actual emission rate. It is clear
that when the link is in free-flow state, i.e., the downstream queue is zero, the emission rate is exact.

The link CO emissions over the time period [t1,f2] can then be obtained as:

ta
Byl = / i (B)e (gl (¢ +79))dt (®)
1

where n;;(t) is the number of vehicles on link (¢, j) at time t. Then we have the network-wide total emission
(denoted as TE) over time period [0, 7] as:

TE= > Eylf= > /0 nig (e (g (t+70))dt 9)

(¢,j7)€L (¢,7)€L

For the fuel consumption and emission functions (6), we use the time-varying link travel time (4) to
calculate the speed first. Assuming all links have zero road grade, the dynamic fuel consumption/emission
function can be derived and shown in (10):

fij(t) = F*(si;(t)) = exp (Bo + Bisij () + Basi;(t) + Basi;(t) + Bast;(t))
555 (1) = S (gl (¢ + 7)) = s (10)

ij — 1
5+ Ciy gt +715)

where f;;(t) is the grams of fuel consumption (or emissions of a specified pollutant) per vehicle per mile
on link (¢,7) at time t, when the corresponding speed is s;;(t), which is calculated by the estimated link
travel time. That is, the fuel consumption/emissions can be expressed as a function of the speed as F'*(s) =
exp (60 + 15+ Bas® + P38 + 6454), according to (6). The speed can be expressed as a function of the

L
downstream queue for link (i, 7) as S¥;(¢%) = S

™ +Ciy q?

Here we can easily show that in order to es%ablish the monotonic increasing property for the emission
function f;;(t) respect to the downstream queue qu(t + 75;), we need two properties: (i) the monotonic
decreasing property with respect to speed for the fuel consumption / emission, i.e., F*(-) is a decreasing
function; and (ii) the monotonic decreasing property with respect to the downstream queue for the speed,
ie., i.e., Sfj(~) is a decreasing function. The second condition is obviously true, given I;;, T% and 51-]- are
positive.

To summarize, for the two types of emission functions with different units of emissions, we have the
following conditions.

(i) If £7;(+) in equation (7) (emissions per vehicle per hour) is a monotonically increasing positive function,
then e;;(t) is an increasing function with increasing qidj(t + TZ-OJ-), the downstream queues with constant time
shift;

(ii) If F*(-) in equation (10) (emissions per vehicle per mile) is a monotonically decreasing function, then
fij(t) is an increasing function with increasing qgj(t—i—T?j), the downstream queues with constant time shifts.
(Since Sf;(-) is a decreasing function respect to gLt +715).)

The above two statements establish conditions under which emissions or fuel consumption is an increasing
function of the downstream queue. They are crucial for the analysis presented in this paper. We also notice
that such monotonicity condition only holds for certain speed range for a given pollutant, which varies if
different pollutants are concerned. This adds complexity if one aims to control multiple pollutants at the

9
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same time. More discussions can be found in the Conclusion Section of the paper. For the emissions of a
single pollutant (as well as the fuel consumption), the above conditions are satisfied for certain ranges of
the traffic speed or the queue length, which are listed in details in Appendix C.

From (10), taking link fuel consumption as an example, the link fuel consumption over the time period
[t1,t2] can then be obtained as:

ta
Fyltz = / Py (6) iy ()Lt (1)
ty

Then we have the network-wide total fuel consumption (denoted as TF) over time period [0, 7] as:

T
TF= > Fyli= > /0 pij(t) fij (t)ijdt (12)
(

(i,5)€L i,j)€EL

Note that the unit of emissions in (7) is grams per vehicle per hour , while the unit of fuel consumption
in (10) is grams per vehicle per mile. This is why the number of vehicles n;;(¢) and the inflow rate p;;(t) are
used in (8) and (11), respectively. Both dynamic emission functions in (7) and (10) are simple extensions
from the static emission functions. We note here that these aggregated emission/fuel consumption functions
with only one state variable (such as speed or travel times) are coarse. More research is needed in the future
to develop more detailed emission/fuel consumption functions that can better capture the dynamic features
of vehicles (such as their accelerations / decelerations). See the Conclusion Section for more discussions in
this regard.

With the assumptions of the monotonicity properties of £7;() and F*(-), it is clear that the link CO
emissions and the fuel consumption are both monotonically increasing function to the downstream queue.
Hereafter in this paper, we will focus on TE in (9) to develop the proposed emission pricing model. Similar
analysis and results can also be obtained for TF in (12). Details are omitted in the paper for brevity.

4. Emission Pricing Model

The proposed emission pricing model can be decomposed into two sub-models, each of which is based
on one sub-problem. First, a DSO problem with a combined objective function, which considers both the
total time and total emission (or fuel consumption) costs, is formulated. Second, the dynamic emission tolls
for all links of the network can be obtained by solving an optimal control problem with the DUE problem
integrated as constraints and the (dynamic) inflows to each link determined by the DSO problem. It turns
out that under the above-discussed monotonicity conditions, using either the CO emission function in (9),
or the fuel consumption function as a proxy of multiple emissions in (12), an optimal solution (if exists) is
always a free-flow optimal solution for the first sub-problem. This free-flow optimal solution is then used as
the input to the pricing model to derive the first-best emission pricing scheme in the second sub-problem.
Such an emission pricing framework internalizes the externalities, which includes the emission cost as part
of the generalized cost of the drivers. In this way the drivers will consider both the travel time and emission
costs while making choice decisions. A flow chart describing the proposed emission pricing framework is
shown in Figure 2.

4.1. Sub-problem 1: dynamic system optimum

In this section, we first present a DSO formulation for the first sub-problem, where the objective function
takes both emission and time costs into consideration. Then we analyze the model with different objective
functions. We first prove in Theorem 2 that for the problem that only minimizes the total emissions, the
optimal solution is a free-flow solution under certain conditions. If both costs are considered in the objective
function, the same conclusion still hold, i.e., an optimal solution (if exists) is a free-flow solution under the
same conditions.

10
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Figure 2: Emission pricing framework

4.1.1. DSO formulations

Recently, a continuous-time DSO framework considering spillback phenomena was proposed in Ma et al.
(2014), where the objective function is to minimize the total time cost. As shown in Table A.2, not all
existing emission pricing models can consider queue spillbacks. By applying the double-queue model, the
model proposed here could capture spillbacks, although we focus on free-flow solutions when designing
optimal pricing schemes. The original DSO formulation in Ma et al. (2014) is summarized as in (13), where
‘TT’ stands for ‘total time’.

T
min TT £ / tv;z(t) dt. 13

Here Q is the feasible set of the problem as defined below in equations (15) - (22); p, v, ¢%, n are the vectors
of inflows, exit flows, downstream queues, and the numbers of vehicles of all links in the network. The DSO
formulation for emission control in this paper extends the DSO model in Ma et al. (2014). That is, we aim
to minimize the objective function (14) that integrates the time and environmental costs (denoted as “T'C"’
in this paper), following the similar idea for the static case in Yin and Lawphongpanich (2006).

T
min  TC' £~ TE +~TT =+, Z Eij|(7; + v Z / tv;z(t) dt. (14)
(povsg?in) €62 (i,j)EL i(i,5)eL 0

Here ~. is the value of emissions, which converts the emission (or fuel consumption) into monetary
measures; 7; is the value of time, which is assumed to be constant for all the drivers in the network in this
paper. As explained, one can easily replace TE by TF in (12) for an alternative objective function with
total time and fuel consumption costs, which is omitted in this paper.

Notice that the total emission function defined in (9) or (12) brings nonlinearity. By including the same
constraints from the DSO model in Ma et al. (2014), as shown below, a nonlinear optimal control problem
can be formulated. These constraints define the feasible set €, i.e., tuples (p, v, ¢%,n), of the problem:

1. Flow conservation at all intermediate nodes: for node ¢ € N\{s} and t € [0, 7],

> opt) = > (b (15)

j:(i,5)€L 0:(L,0)EL
2. Bounds of the double-queues on regular links: For link (i,5) € L and ¢ € [0, 7]

a(t) < Qusalh(t) > 0; (16)
i1
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3. Bounds of exit flow rates from all links: For link (¢,j) € £, t € [0,T],

—-—v

0 < wvy(t) < Cy, (17)
with Cs, = oo for (3,0) € Lq.
Bounds of inflow rates to regular links: For link (4, j) € L, t € [0,T],
0 < pi(t) < Cyyy t€[0,T = 7], (18)

with p;;(t) = 0,t e (T — TZ-Oj,T];
4. Double-queue dynamics on regular links: For link (¢, ) € L and ¢ € [0, T

tﬁj(t) = pij(t) —vij(t — 75)
5 (t) = pij (t = 75) — i (t). (19)
n(t) = fg Pij (&) — vij (§)dE.

Demand discharging queue dynamics on dummy origin links: For link (0,0) € Lq and t € [0, T

G5 (t) = —vo(1).

¢ 20
4 (1) = Dy — [ vso(€)ie. (20)
5. Initial conditions:
For (0,0) € Lq,
%,(0) = Do; (21)
For (i,j) € L,
q45(0) = ¢f5(0) = 0; (22)

6. Other boundary conditions:

For (i,7) € L and t € (—o0,0), pi;(t) = v;;(t) = 0;

For link (i,5) € L, ¢}5(T) = ¢}5(T) = 0;

For link (0,0) € L%, ¢¢ (T) = 0.

Equation (19) above describes the traffic dynamics via the double queue model, while equations (15)
- (18) defines the simple junction model applied in this paper, which describes the flow conservation and
nonnegativity /boundedness constraints at junctions. The double queue model at the link level, along with
the simple junction model, connects the inflow rates and exit flow rates of adjacent links, which also extend
the double queue model at a link level to a network level. It is obvious that the inflow and exit flow rates
of a regular link (4,j) € L are bounded.

Equation (20) defines the queue dynamics of the dummy origin links. It can be seen (also from the
discussions in Section 2.2) that such a queuing model for dummy origin links is different from the point-
queue model, since the exit flow is constrained by the downstream links’ inflow capacities. It is different
from the double-queue model as well, since there is only one queue variable instead of two, with no inflow
to the link.

The boundedness of the exit flow from the dummy origin links can also be shown. According to the flow
conservation at the origin node o, for the dummy link (0, 0) € Lg4, the exit flow rate vz, = Z Vo (t) —

0:(£,0), b£5EL

Z Poj(t) < S+ Crazio, where Crgzo = {rm_i)};Lézj, and S is the number of outgoing links from node o,
j:(o,4)EL T
ie., S=card{j: (o,j) € L}. Aslong as S is finite (which is the case for real-world networks), the exit flow
rates of a dummy link is also bounded. (The capacity of each dummy origin link does not matter as it must
be larger than the corresponding exit flow rate.) As defined by the queue dynamics of dummy origin links
in (20), there is no inflow to a dummy origin link, and the demand on each dummy origin link is presented
as a non-increasing queue, whose discharging rate is the demand rate from the corresponding origin node.

12
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Overall, since the exit flow rates from dummy origin links, the inflow rate to and the exit flow from each
regular link are all bounded, it is ensured that all the flow rates are bounded in the solution set.

The simple junction model (15) - (18) merits further discussions. First, a junction model, sometimes
called a Riemann Solver (Han et al., 2016b), is often needed to determine the entering and exiting flows of
links adjacent to the same junction. Demand and supply are normally needed for these junction models.
However, different from these models, in this paper, we do not need explicit definitions or calculation of
demand and supply. This is because the double-queue dynamics can reflect the demand at its downstream
queue (¢%), and the supply at its upstream queue (¢g*). If the downstream queue reduces to zero, then the
exit flow (as the demand of sending flow) is no more than the amount of inflow of such link (with a time
delay of free-flow travel time 7°). If the upstream queue reaches to the queue capacity, then the inflow (as
the supply for receiving flow) is no more than the amount of exit flow of the link (again with a time delay of
shockwave travel time 7). These constraints are guaranteed by the double-queue dynamics in (19), and the
boundedness of double queue in (16). Notice that the double queue model applied here is a continuous-time
reformulation of the Link Transmission Model (LTM). Detailed discussion on the sending and receiving flows
in the LTM can be found in Yperman (2007) [Chapter 4.6]. There are also other equivalent representations
of the continuous-time LTM, such as the link-based kinematic wave model in Han et al. (2016b) and Jin
(2015). In particular, the difference of the queue storage capacity and the upstream queue in the double-
queue model is defined as ‘vacancy size’ in Jin (2015), which can be used to indicate whether spillbacks
occur at the entrance of a link.

Secondly, existing junction models usually need to pre-define or derive some merging / diverging rules at
a junction (such as turning ratios or maximizing flows or others). In this paper, we intend not to specify
any pre-defined rules for that. Instead, we aim to determine the optimal inflow rates at every junction (i.e.,
at the entrance of every link) by the DSO principle in order to optimize the specific objective function.
Thus the turning ratio is not pre-defined in the formulation, while a set of optimized turning ratios at
junctions can be calculated after an optimal solution is obtained. In this sense, one may consider that the
turning ratio is calculated by a more complex rule, as implicitly determined by the DSO model itself. These
optimized turning ratios can be treated as a target or benchmark to control / manage traffic to achieve the
desired DSO objective. How to design control schemes at junctions to achieve the desired turning ratios or
objectives is, of course, not a trivial task, which however is not the focus of the paper.

Here we also need to point out that if one intends to model DUE or to incorporate existing traffic control
devices (such as traffic signals) into the DSO model, then pre-defined merging/diverging rules (such as
pre-defined ratios, maximizing flow, etc.) will have to be integrated into the DSO model. In this case, the
junction model will be more complicated as discussed in Han et al. (2016b). The authors have developed
such junction models for the double queue link model for DUE problems; details can be found in Ma et al.
(2015a).

4.1.2. Discussion on the solution set

As shown in Ma et al. (2014), a DSO problem is feasible when a proper finite terminal time is selected.
A DSO problem may have multiple feasible solutions. One of such feasible solutions is a free-flow feasible
solution that does not have any downstream queue on any of the regular network links. We define the set of
free-flow feasible solutions as Qf C Q. For any free-flow feasible solution X/ = (pf, v/, ¢/ nf) € Qf, the
downstream queues of all regular links are zero at any time instant, i.e.,

vxF el ¢/ (t)=0,%(i,j) € L,vt € [0,T)]

Notice that a free-flow feasible solution is not necessarily an optimal solution.
Problem (14) combines the total emission and total time costs as the objective. To study the properties
of the solution set, we formulate two other optimal control problems based on these two costs individually.
First, it is clear that the original DSO formulation (13) is an optimal control problem that only minimizes
the total time cost. The set of optimal solutions to the original DSO is denoted as Q77 £ argming, , ¢ yeq 1T C
Q. As shown in Ma et al. (2014), Q77T could contain both free-flow solutions and non-free-flow solutions.
13
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We then construct an optimal control problem that only minimizes the total emissions. The two problems
share the same feasible solution set with problem (14), i.e., the set Q.

TS 3 =
(,4)eL

We define the set of optimal solution to formulation (23) as Q7F £ argming, , .a ,ycq TE C Q.

Similar to problem (14), the objective function of (23) is also nonlinear. Generally, it is not trivial to
solve nonlinear optimal control problems, or their discrete forms as nonlinear programs. However, we prove
in Theorem 2 that a free-flow optimal solution to (23) exists if certain monotonicity conditions are satisfied.
This property will be used to solve the nonlinear optimal control problems. We start with Proposition 1.

Proposition 1. For any non-free-flow feasible solution X9 € Q of problem (23), if e;;() is a monotonically
increasing positive function for any link (i,j) € L, then a free-flow feasible solution X9/ can be constructed
from X9. That is, if 0 < q1 < g2 = 0 < e;;(q1) < eij(qz), then VX9 = (p9,0v9,¢%9,n9) € Q, X9/ =
(p9f w9f | q49:F 9Ty € QF . Furthermore, the objective value of (23) under X 97 is smaller than that under
X9, That is, TE(X9F) < TE(X9).

Detailed proof of Proposition 1 can be found in Appendix D, which is based on the construction of
a free-flow feasible solution X9/ from a feasible solution X9. If X9 itself is a free-flow feasible solution,
then the proof is trivial since X9/ = X9; Otherwise, X97 is constructed so that for every link, the total
cumulative exit flow, which is equivalent to the total number of vehicles passing through the link over the
entire time span, remains the same as in the solution X9. The constructed solution X9/ reassigns the flow
temporally, so that for all regular links, the link dynamics are free-flowing, and the downstream queues are
shifted to the dummy origin links.

For problem (23), it is quite different whether vehicles waiting at the regular links or at the dummy origin
links. Vehicles waiting at regular links, i.e., downstream queues on regular links, generate emissions (or
consume fuel). On the other hand, vehicles waiting at dummy origin links may not generate any emissions
since it is reasonable to assume that they do not start their trips and idle at the origins (e.g., at homes). In
the constructed free-flow feasible solution X9/, all regular links have zero downstream queues, so that the
objective function of problem (23) is reduced, compared to X9. This is very different from the original DSO
problem (13) that only minimizes the time cost. For the different optimal solutions to the original DSO
problem (13) that only concerns about travel time, vehicles may wait at the origins or on some intermediate
link in the network. In this case, waiting the same time at different locations of the network means the same
in terms of objective value. This also explains why the DSO problem may have multiple solutions: even the
total system travel times and waiting times (the objective function value of problem (13)) are exactly the
same and at the minimum (i.e., the optimal state is obtained), vehicles can still wait at different locations
in the network, leading to different optimal DSO solutions. It implies that, while the DSO problem with the
time cost objective (13) could have non-free-flow optimal solutions, an optimal solution to (23), if exists,
must be a free-flow solution if e;;(-) is a monotonically increasing. This is stated in the following theorem.

Theorem 2. If eij(qu) is a monotonically increasing positive function for any link (i,j) € L, an optimal
solution to problem (23), if exists, must be a free-flow solution, i.e., QTF C Q.

Proof. Proposition 1 shows that for any non-free-flow feasible solution X9 € Q\ Q7, we can construct a free-
flow feasible solution X9 € Qf with a smaller objective value since eij(qu) is a monotonically increasing
positive function for any link (,5) € L. That is, we have TE(X%f) < TE(XY), which means a non-free-
flow feasible solution is not an optimal solution, i.e., (2\ Q) N QTF = . Since Q7F C Q, we then have
QTE c f. O

Theorem 2 shows that if an optimal solution exists for problem (23) that only minimizes total emissions,
an optimal solution has to be free-flowing, if the emission function is positive and monotonically increasing.
As pointed out in Ma et al. (2014), free-flow optimal solutions indicate that there is no congestion in the
network and the drivers wait, if needed, at their origins before departure.

14
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(a) QTENQTT £ ¢ (b) QTENQTT = ¢

Figure 3: Solution sets of formulations (14), (23) and (13)

Figures 2(a) and 2(b) illustrate the relationships of different solution sets of DSO under two scenarios.
Here we assume the emission function is a monotonically increasing positive function, so that according to
Theorem 2, the set QT¥ is a subset of /. If the optimal solution sets of formulations (23) and (13) overlap,
ie. Q° £ QTEPNQTT £ (), as shown in Figure 3(a), the optimal solution set of formulation (14) is Q°. Since
VX, € Q° and VX ¢ Q°, TE(X) > TE(X,) and TT(X) > TT(X,), we have TC'(X) > TC'(X,). We notice
that QTP C Qf, so that Q° C Q7 i.e., the optimal solution to (14) is a free-flow solution in this case.

If QT2 N QTT = (), as shown in Figure 3(b), TE and TT are two objective functions that conflict with
each other. In other words, there could be no way to minimize one objective without increasing the other
objective, which leads to a Pareto optimization. In this case, there might exist a non-free-flow optimal
solution to formulation (14). Either a non-free-flow solution (Point A) or a free-flow solution (Point B)
could be an optimal solution to formulation (14).

In Theorem 4 below, however, we prove that an optimal solution to problem (14) must be a free-flow
solution under the same monotonicity condition as in Theorem 2. That is, feasible solutions like Point
A in Figure 3(b) are not optimal for problem (14) under these conditions. Before that, we first show
in Proposition 3 that for any non-free-flow feasible solution X, a free-flow feasible solution X/ can be
constructed, so that the total emissions of X7 is smaller than the total emissions of X, and the total travel
time of X7 is equal to the total travel time of X.

Proposition 3. For a non-free-flow feasible solution X € Q of problem (14), there exist a free-flow feasible
solution X1 € QF, so that TT(X) = TT(X7); If e(-) is a monotonically increasing positive function,
TE(X) > TE(X7).

Detailed proof of Proposition 3 can be found in Appendix E.
Proposition 3 implies that an optimal solution to the emission DSO problem (14) proposed in this paper
must be a free-flow solution, as stated in the following theorem.

Theorem 4. An optimal solution to the emission DSO problem (14) is a free-flow optimal solution, if e(-)
is a monotonically increasing positive function and the optimal solution set of (14) is non-empty.

Proof. We prove this by contradiction. Since the optimal solution set is non-empty, i.e., 2° # (3, assume there
exists a non-free-flow optimal solution XV € Q°\ Qf. From Proposition 3, we can construct a free-flow
solution X¥' € Qf, where TE(X™NF) > TE(XT) and TT(XNF) = TT(XF). Then TC'(XNF) > TC/(XF).
This contradicts with the fact that XV is an optimal solution. O

Remarks Theorems 2 and 4 assume that there exists an optimal solution to the emission DSO problem
(14). The existence of an optimal solution to the discretized DSO problem is relatively easier to show
15
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by applying the Weierstrass’ extreme value theorem, since the feasible set is compact and the objective
function is continuous with respect to the state variables. However, the existence of an optimal solution
to the continuous-time DSO problem (14) is not that obvious, since the variables for the optimal control
problem is infinite dimensional. In Burger (2003) (Theorem 2.3), it was noted that in order to establish the
solution existence of a general optimization problem in infinite dimensions, two basic properties are needed:
compactness and lower semicontinuity. Eberlein-Smulian theorem shows that compactness is caused by
boundedness for Hilbert spaces. However, it is quite challenging and not straightforward to provide an exact
definition of a Hilbert space of the tuple {p, v} of all links with multiple time-delays as well as the two point
boundaries. Thus it is not trivial to rigorously show its solution existence, which is left for future research.

4.2. Sub-problem 2: first-best emission pricing

To determine the optimal emission pricing, we have to consider drivers’ choice behaviors, which are
modeled as DUE in this paper. The link-node based DUE model presented in Ma et al. (2015b) is used here
for the single-destination DUE problem. In general, the flow pattern in a DUE solution is not necessarily a
DSO solution. This is where the emission pricing can play a critical role. That is, by imposing the emission
tolls, drivers will have to consider this extra cost (in addition to their travel times). This will change their
choices and as a result, the flow pattern of the network. By properly selecting the pricing scheme, the DSO
flow pattern can be achieved, which is the first-best emission pricing scheme in this paper.

By solving the emission DSO problem (14) in the previous subsection, a free-flow optimal solution can
be obtained. This will produce the inflow and exit flow of all links. The demand rate of an origin can also
be calculated from the inflow and exit flow rates. The travel time at regular link (7,5) is reduced to the
free-flow travel time under a free-flow optimal solution, i.e., 7;(t) = TPj.

The Wardrop’s route choice in the dynamic user equilibrium, was introduced in Ma et al. (2015b) in the
complementarity form:

0<pij(t) Ll +mi(t+75) —m(t) > 0. (24)

In (24), no monetary cost is included. Therefore, 7;(t), the minimum cost from node i to the destination
at time ¢, only represents the time cost.

In the Sub-problem 2, we apply the following modifications to the complementarity form (24).

1) For link (4,7), we add the dynamic toll at time ¢, denoted as y;;(t), into the link cost. The toll is
converted into time cost by the value-of-time constant ~;;

2) The minimum time cost from node 4 to the destination at time ¢, 7;(t), is replaced by ;(t), which is
the minimum travel cost (including travel time and the tolls) from node 4 to the single destination.

3) With the inflow rates p;;(t) known as the results of Sub-problem 1, the complementarity form of the
Wardrop’s route choice is reduced to a set of linear constraints. The reduced constraints are either equations
(for the case p;;(t) > 0) or inequalities (for the case p;;(t) = 0).

By incorporating these modifications, an optimal control problem can formulated to calculate the first-
best tolling as follows.

s.t. yij(t) Z 0, (25)
wi(t) > 7

If pij(t) > 0, 72 + yi;
Ifpi(t) =0, 775 + yij

)/ve+ 75+ ) — Filt) = 05
)/ e + 7t +75) — milt) = 0.

The minimization problem finds the minimum total tolls to satisfy all the constraints, including the
non-negativity of the tolls. Notice that since p;;(t) is known from the first sub-problem, all the above
constraints are linear. Moreover, the resulting model is a continuous-time optimal control problem with
linear constraints and constant time delays. The continuous-time problem can be solved by discretization
and then solving the resulting discrete-time linear program. Details are omitted here. We note that the
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Figure 4: Two-route network

optimal toll (denoted as y*) by solving (25), together with the known free-flow optimal solution to the
emission DSO problem (14), guarantees to be an optimal solution to the DUE problem under toll y*. This
would be fine if DUE has a unique solution. However, if DUE has multiple solutions (which is very likely),
implementing the obtained optimal toll y* may or may not produce the same free-flow optimal solution used
as an input to (25). This is similar to the bi-level network design problem under multiple UE solutions; see
Ban et al. (2013, 2009). More in-depth discussions about this is beyond the scope of this paper and may be
pursued in future research.

5. Numerical Results

We test the proposed dynamic emission pricing model using several testing networks. For the simple
network with only one origin, we use aggregated fuel consumption as a proxy of overall emissions, and
Pareto solutions are shown for various values of fuel consumption. For the network with six nodes, the CO
emissions are used. The model is further tested on the well-known Sioux Falls network using CO emissions.

5.1. The simple network

First we present the numerical results of a simple network, as shown in Figure 4(a). This network contains
two routes between one origin-destination pair. The free-flow travel time and exit flow capacity of each link
is also shown in Figure 4(b). The emission (i.e., fuel in this case) impact coefficients of all regular links are
set the same as 1. The total demand from the origin node 1 is 400 (node 5 is the dummy origin node). In
this section, we set the upper bounds of the inflow and exit flow as the same for the same link, and denote
it as 6ij, ie., 6;} = éfj = éij. All links have a free-flow travel speed as 30 mph, i.e., 0.5 mile per minute.

For this particular network, it is observed that the optimal solution to the DSO problem (14) is free-
flowing, and may not minimize the total time or total fuel consumption simultaneously, which is the Case B
as shown in Figure 3(b). From Figure 5, we can find that for different ratios of the value of fuel consumption
versus value of time (i.e., 7./7), it leads to different solutions to the DSO problem (14) on the efficient
frontier of a Pareto efficiency curve. When 7, /7; is equal or less than 0.002, the fuel consumption reaches
its highest value as 5.698 x 10° grams; At the same time, the total time spent by all the drivers reaches
its minimum value as 4828 minutes. If such ratio is greater than 0.002, the total travel time is not at
its minimum, while the total fuel consumptions can be further reduced, until the ratio is large enough
(0.055 in this case). As the ratio increases, the total fuel consumption reduces and the total time increases.
With different ratios, the optimal solutions form a Pareto solution set. Similar Pareto (or non-dominated)
solution sets were also found in Yin and Lawphongpanich (2006) and Miandoabchi et al. (2015). As proved
by Theorem 4, the optimal solution (if exists) should be free-flowing, regardless the setting of values of
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Figure 5: Pareto solutions with different ratio of values of fuel consumption vs. value of time

time and fuel consumption, as long as the emission/fuel consumption function used for this network has the
monotone property.

We can also observe that for different ratios 7./7:, the optimal first-best pricing solutions can be very
different. Figure 6(b) shows that by setting ~./v: = 0, i.e., only minimizing the total travel times with no
consideration of emissions (fuel consumption), the inflow to link (2,4) reduces to zero at time 17 minutes,
which is different from the case 7./v = 0.02 (for which both travel time and emissions are considered),
where the inflow rate keeps positive until at the time 21 minutes, as shown in Figure 6(a). Furthermore, the
resulting dynamic pricing schemes for the system to achieving the optimum are quite different for different
Ye/7: ratios. For the case that v,/ = 0.02, we can calculate the first-best pricing schemes (tolls). As shown
in Figure 6(a), the tolls are only imposed on link (2,4) during time 2 to 11 minutes. On other links there is
no toll. The toll happens to be constant for this period of time. For the case that ~. /v = 0, the calculated
tolls vary more dramatically with time, showing a more “dynamic” nature, as shown in Figure 6(b). These
figures clearly show that with (e.g., Figure 6(a) with v./7 = 0.02) or without (e.g., Figure 6(b) with
Ye/v: = 0) considering emissions/fuel consumption in the objective when designing network wide emission
pricing schemes, the resulting network flow patterns and the optimal pricing schemes can be very different.
This also implies the significance of incorporating emission/fuel consumption objectives in the pricing and
control of dynamic traffic networks.

Without the toll, links (1,2) and (2,4) would be the shortest route for drivers departing at node 1 to
the destination. As a result, there would be more vehicles traveling on links (1,2) and (2,4), so that the
link would be no longer free-flowing and vehicles on it would consume more fuel, thus increasing the total
system costs. The toll on link (2,4) increases the travel cost for a driver traveling through link (2,4), but
decreases the total system cost, by switching part of the flow to the other alternative, i.e., links (1,3) and
(3,4). As shown in Figure 7, the route choice of the vehicles departing at node 1 follow Wardrop’s principle
regarding the generalized cost (i.e., travel time plus toll costs) for the drivers. During time 2 to 10 minutes,
the two routes share the same minimum travel cost, and the inflow splits onto both routes. During other
times, traveling via link (1,2) takes smaller cost for the drivers, and all inflow is assigned to link (1,2).

5.2. The network with sixz nodes

The second testing network has six nodes and was also used in Yin and Lawphongpanich (2006). Two
dummy origins (node 8 and node 9) and corresponding dummy links are added before the origin nodes, and
a single destination node (node 7) is also added. The network and its parameters are shown in Figure 8 and
Table 1. Another important modification of the network is that the emission impact coefficient of link (1, 3)
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Figure 8: Six-node network

is set to be higher than the coefficients of other links. In order to minimize the total cost, the dynamic toll
is expected to be high on link (1,3) in order to shift part of the flow on this link to other alternatives. The
objective function is a combination of total CO emissions and total travel time as shown in (14). The value

of emission . = 200, the value of time v = 1.
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Table 1: Six-node network parameters

link 8-1 9-2 1-3 1-5 2-4 2-5 3-7 4-7 5-6 6-3 6-4
Tioj (min) 0 0 8 2 9 3 1 1 6 3 4
7o (min) | 0 0 | 16 | 4 | 18] 6 | 2 | 2 | 12| 6 | 8

Ci; (vph) | 4500 | 4500 | 2000 | 2000 | 2000 | 2000 | 4500 | 4500 | 4000 | 2500 | 2500
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Figure 9: Dynamic link flows and tolls for selected links in six-node network

The numerical results in Figure 9 support our expectation. Figure 9(a) shows that the dynamic tolls on
link (1,3) is positive during time 4 to 9 minutes, and reaches 4 dollars as its maximum at time 4 minutes.
In Figure 9(b), there are also tolls imposed on link (2,4) during time 5 to 8 minutes, which have a shorter
duration and the peak value is smaller than those on link (1,3). The inflow to link (5, 6) reaches 4000 vph
during time 4 to 7 minutes as shown in Figure 9(c), and there is no toll for link (3,6). In fact, the traffic flow
that would have entered links (1,3) and (2,4) is pushed to link (5,6) by the dynamic pricing mechanism.
With the dynamic tolls, from the network perspective, all the regular links maintain in their free-flow state,
and the total cost (time and emissions) is minimized. From the drivers’ perspective, at each node, the
route choice decision at each time instant is consistent with Wardrop’s first principle since the links with
the minimum generalized cost (travel time and tolls) are selected. The observation here is similar to that in
Figure 7 for the simple network.

5.3. Sioux Fualls network

We further test the emission pricing framework on the Sioux Falls network as shown in Figure 10, which
is much more complicated than the previous testing networks. Sioux Falls network is abstracted from the
City of Sioux Falls, and firstly used by LeBlanc et al. (1975). The network configurations and associated
free-flow travel time T,L-Oj and flow capacity can be found in Suwansirikul et al. (1987). The shockwave travel
time 7;7 is twice of the free-flow travel time for each regular link. Since only two OD pairs are selected (see
below), the exit flow capacities C;; of all regular links are rescaled as 1/6000 of the original capacities. The
queue storage capacity can be calculated as @ij = (TZ»OJ» + 75 )C' as shown in Ma et al. (2014). The parameters
of the dummy links are set similarly as in the six-node network. Traditionally, Sioux Falls network serves as
a testbed in static modelling. Recent developed dynamic models also used Sioux Falls network as a testing
network (e.g., in Han et al. (2015) and Ma et al. (2015a)). As shown in Figure 10, this network has 24 nodes
and 76 links. The entire Sioux Fall network allows up to 528 OD pairs. However, in this numerical test, we
only set two OD pairs, namely Node 1 to Node 15 and Node 16 to Node 15, respectively. The demand for
each OD pair is 30 vehicles.
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Figure 10: Sioux Falls network

The objective is to minimize the weighted summation of total travel time and total CO emissions (i.e.,
TE) for this network. In particular, the emission coefficient of link (16,17) is set higher than the coefficients
of other links. Since the Sioux Falls network has been studied very extensively in the literature, we omit the
other details of the network, such as its geometry, demands, and link parameters. Through the numerical
tests, it is observed that the dynamic tolls are not necessary on the links with the high emission coefficients,
which seems to be particularly true for complicated networks. For example, a small portion of the Sioux
Falls network is shown in Figure 11(a). Link (16,17) has a higher emission coefficient pi6,17. In order to
decrease the flows on this link, one would assume that dynamic tolls on this link should be high. However,
Figure 11(b) shows no toll on link (16,17). In fact, Figure 11(c) shows that high tolls are observed on link
(17,19), which is adjacent to link (16,17). The results suggest that the dynamic tolls may be imposed on
other links (e.g., adjacent links) as long as the total costs are minimized by the tolling mechanism.

6. Conclusions, Discussions, and Future Research Directions

This paper proposed a dynamic emission pricing framework for traffic networks with a single destination.
It includes the development of two sub-problems, and the analysis of the solution sets and the solution
techniques. The first sub-problem was a system optimum dynamic traffic assignment, or DSO problem,
where the generalized cost, including travel time and environmental costs, was minimized. It was proved that
an optimal solution to the DSO problem, if exists, must be a free-flow solution, under certain monotonicity
assumptions. The second sub-problem determines the optimal emission prices of all links in the network,
which was formulated as an optimal control problem to minimize the total tolls. Wardrop’s route choice
principle was integrated to the model as part of the constraints. The free-flow optimal solution obtained
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from the first sub-problem was used as an input to the second sub-problem. Numerical results on multiple
testing networks were reported.

The results in this paper indicate that the monotonicity property of the emission (or fuel consumption)
functions is crucial for the network emission modeling and control. They further indicate that the mono-
tonicity properties of different pollutants hold at different speed ranges. This implies that there are tradeoffs
among the different types of pollutants, which may not be simultaneously reduced. In practice, therefore,
one may want to focus on one specific pollutant (such as COs, CO, or others). In this paper, we also propose
to use the fuel consumption as a proxy to capture all pollutants. This, of course, may not be the best way
to address the issue and thus merits further investigations. The results also show the importance of the
free-flow traffic state in developing network pricing schemes and managing traffic congestion, emissions/fuel
consumption, and other related issues. One may focus on the free-flow traffic state in a network and devise
pricing schemes and other management strategies to sustain such free-flow state. This will not only be
beneficial to the network as a whole from the perspective of congestion and emission control, but also lead
to simplified dynamic network models (since the traffic dynamics are much simpler under the free-flow traffic
state) so that the optimal pricing scheme or other strategies can be much easily calculated.

For future research, firstly, we notice that in the current situation, the real world traffic state in a network
is rarely free flowing especially during peak periods. The results here provide an ‘ideal’ situation where one
may fully control / manage the system (using pricing and possibly other emerging strategies) to possibly
achieve certain desirable state (the free flow state in this case) which can hopefully provide guidance /
insights for real world traffic management and control. Arguably this is what most DSO studies try to
achieve, i.e., they aim to provide a benchmark or target so that real world traffic control / management
can rely on or compare with. The first step in our case here is to determine whether such a free-flow state
exists and if so, how to obtain it. Our previous work in Ma et al. (2014) indicated that if only travel times
are considered (as the objective), one can find a free-flow optimal solution if it exists. In this paper, we
extended the results to state that if both travel times and emissions (or fuel consumption) are considered,
an optimal solution must be a free-flow solution, if exists. We also proposed methods to obtain it. In
practice, how to implement the full control of the system is a huge challenge as it has to involve both traffic
control and demand management (with the guidance of the desirable DSO solution). This might be done
for specific situations (such as emergency evacuation, special events, etc.). With emerging new technologies
and systems such as connected and automated vehicles, new opportunities may also emerge. Investigating
the challenges of how to achieve a certain DSO state is beyond the scope of the current paper and will be
certainly studied in the future.
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Secondly, the link flow dynamics, the junction model, and the above results in this paper are applicable for
a network with a single destination, and the first-in-first-out (FIFO) condition is easily assured. However, for
a general multi-destination network, the FIFO condition may not be guaranteed without proper modifications
of the proposed model. Studying on the DSO with the double-queue model for general multi-destination
networks would be an interesting topic for future research. Furthermore, for a multi-destination network,
it is a question whether a free-flow solution exists. This needs to be studied thoroughly in future research.
Even if a free flow solution does not exist, the idea proposed in the paper may still be useful. That is,
one can try to explore specific DSO solutions that are both beneficial to system control objectives (travel
times, emissions, fuel consumption, etc.) and easy to implement. The system management can then focus
on how to achieve and sustain such optimal state, and to design specific control/management strategies. In
practice, the desirable DSO solution may not be perfectly achieved and maintained; however, it can provide
the benchmark (like most DSO studies do) that can guide practical traffic system management and control.

Thirdly, the emission/fuel consumption functions adopted in this paper were originally proposed for static
assignment problems. We extended them to the dynamic case with simple schemes. They are aggregated
function based on one traffic state variable such as travel time or speed, which are coarse to capture detailed
vehicle dynamics such as their accelerations and decelerations. More research is needed in the future to
develop more detailed emission/fuel consumption functions that can better capture the dynamic features of
vehicles. We believe, however, that even with the current coarse emission functions, the model and results
in the paper should be still useful for network wide emission control, such as the monotonicity properties of
the emission functions and the design of the control strategies around free flow solutions. On the other hand,
there are recent developments in the literature regarding modeling emissions in a more detailed manner, such
as via microscopic traffic simulation and via dynamic emission functions that consider vehicle acceleration
and vehicle specific parameters; see Szeto et al. (2012). Especially, recent studies such as Piccoli et al.
(2015) and Han et al. (2016a) can provide very insightful directions. For example, one may apply data-
driven techniques as did in Han et al. (2016a) to fit an aggregated emission or fuel consumption function over
multiple variables instead of speed or travel time only. The results in this paper can be helpful in designing
such new dynamic emission models. For instance, since ideally the emission function should have certain
monotonicity properties, a monotone function may be designed and calibrated as the desired emission/fuel
consumption function. In this way, the emission models can better capture vehicle dynamic features, while
at the same time also have desired characteristics such as monotonicity to facilitate rigorous analysis.

Fourthly, as aforementioned, the monotonicity of the emission function is crucial for the proposed method-
ology. As indicated in the literature and in this paper, the emission functions are monotonic under specific
conditions when the speed is within certain ranges. Notice that these monotonicity properties are sufficient
conditions, which means even if the monotonicity properties are not maintained for certain functions, the
results in this paper may still be valid (e.g., the free-flow solution may still exist). In the future, sharper
conditions (weaker than monotonicity) should be developed for the methods proposed in this paper to apply.
It is our understanding that to derive conclusive results, the emission function and the modeling method-
ology used in dynamic network analysis needs to balance between its mathematical rigor and its ability to
capture realism. In future research, we will investigate issues of using a dynamic or more advanced emission
function that can better represent dynamic traffic, which at the same time, has desirable properties to be
used in dynamic network analysis.

Last but not least, the results in this research also imply that to properly design and implement the first-
best dynamic pricing scheme in a network level, both technical and economic/policy advances are critical.
For the former, recent advances in connected/automated vehicles and mobile sensing can play an important
role in order to track individual vehicles and enable communications and data sharing among vehicles and
between vehicles and the infrastructure. For the latter, new pricing schemes (such as emission pricing as we
study in this paper) and recent research works in designing tradable credits in traffic networks (see Yang
and Wang (2011); Nie and Yin (2013)) are crucial for network-wide congestion/emission management and
control. For this, future research may be conducted to study how the pricing and tradable credit schemes
can be properly combined in a dynamic traffic network to control both traffic congestion and emissions.
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Appendix A. Summary of the literature on dynamic road pricing

Table A.2: Summary of the literature on dynamic road pricing.

Pricing focus  Choice (route /depar-  Pricing Traffic low modeling ap-  Queue
(congestion ture time /mode) and  scheme proach spill-
/emission demand consideration back
/both)
Henderson (1974) congestion departure time first flow density funciton no
Agnew (1977) congestion departure time first flow density funciton no
Ben-Akiva et al. (1986) congestion route and departure  second deterministic queuing  no
time / elastic demand model
Braid (1989) congestion departure time/elastic  first and sec-  deterministic queuing  no
demand ond model
Arnott et al. (1990) congestion route and departure first and sec-  deterministic queuing  no
time ond model
Amott et al. (1993) congestion departure time/ elastic  second deterministic queuing  no
demand model
Carey and Srinivasan  congestion route first exit flow model no
(1993)
Laih (1994) congestion departure time second deterministic queuing  no
model
Chu (1995) congestion elastic demand first flow density function no
Braid (1996) congestion route and departure first and sec-  deterministic queuing  no
time/elastic demand ond model
Yang and Huang  congestion departure time/elastic  first improved exit flow model no
(1997) demand
Wie and Tobin (1998) congestion route first modified exit flow model no
Arnott and Kraus congestion departure time first and sec-  deterministic queuing  no
(1998) ond model
Yang and Meng (1998) congestion route and departure  first point queue on space time  no
time/elastic demand expanded network
Daganzo and Garcia  congestion departure time second deterministic queuing  no
(2000) model
de Palma and Lindsey  congestion route and departure Profit maxi-  deterministic queuing  no
(2000) time/elastic demand mization pric-  model
ing and com-
petition
de Palma et al. (2004) congestion route and departure second deterministic queuing  no
time and mode model
de Palma et al. (2005b) congestion route, mode and depar-  first and sec- METROPOLIS - mi- yes
ture time ond crosimulation model
de Palma et al. (2005a) congestion route, mode and depar-  second and METROPOLIS - mi- yes
ture time third (no  crosimulation model
queue tolling)
Lo and Szeto (2005) congestion route first CTM yes
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Appendix B. Monotonicity conditions for emission functions (6)

Coefficients of emission functions for fuel consumption and different types of pollutants in (6) are listed

in Table B.3.

By assuming the road grade to be zero, the emission function is a nonlinear function on the average speed

Sij-

fij = exp (Bo + Bisi; + ﬁQS?j + 535% + ﬁ45?j) .

(B.1)

Piecewise monotonicity conditions over the variable s;; can be observed from these emission functions,

as shown in Table B.4.
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Table B.3: Coefficients of emission functions (Source: Boriboonsomsin et al. (2012))

Fuel COy co HC NO,
Bo | 6.80e+0 | 7.96e4+0 | -1.57e-1 | -2.12e40 | -8.14e-1
B1 | -1.40e-1 | -1.40e-1 | -1.36e-1 | -1.45e-1 | -1.07e-1
Ba | 3.92e-3 | 3.92e-3 | 4.70e-3 4.56e-3 | 4.40e-3
B3 | -5.20e-5 | -5.20e-5 | -6.96e-5 | -6.50e-5 | -7.29e-5
Ba | 2.57e-7 | 2.57e-7 | 3.70e-7 3.35e-7 | 4.17e-7
Bs 1.37e-1 | 1.37e-1 | 2.67e-1 1.65e-1 | 4.02e-1

Table B.4: Piecewise monotonoicity of emission functions

Increasing intervals (mph) | Decreasing intervals (mph)
Fuel (72.38, 4+00) [0,72.38)
COs (72.38, +00) (23.00,42.52) U (65.59, 4+00)
CO | (32.99,42.40) U (65.69, +00) [0,32.99) U (42.40, 65.69)
HC (71.50, 4+-00) [0,71.50)
NO, | (23.00,42.52) U (65.59, +o0) | [0,23.00) U (42,52, 65.59)

Appendix C. Applicability on the state variable

The monotonicity of the emissions/fuel consumption functions rely on the proper monotonic regions of
the traffic speed. On the other hand, since the monotonicity conditions are based on the downstream
queues (i.e., the link state variables), in this Appendix we list the regions of the queue length in which the
desired monotonicity condition can be satisfied, given the link length and the free-flow travel time as known
parameters.

1) The CO emissions with the unit of gram per vehicle per hour
As mentioned, & (qu) is an increasing monotonic function when the speed is no more than 46.6 mph,

li; . . .
——— €0,72.38) mph. So the desired queue length on link (i, j) should be

ie., s= —
ij
T TG,

1.
d ? 0
%ij = (46?6 - T”J’) Ci-

lij
o If the free-flow speed is greater than 46.6 mph, i.e., , then a shorter queue qz‘-ij < (46]6 — Tioj)

C;; would
not satisfy the desired condition.

o If the free-flow speed is less than or equal to 46.6 mph, then any non-negative queue length qzdj >0
would satisfy the desired condition.

Overall the monotonicity condition of such emission function is applicable for all queuing condition if the
free-flow speed of any link in the study network does not exceed 46.6 mph.
2a) The fuel consumption with the unit of gram per length per vehicle

F#(s) should be a monotonic decreasing function, which means the speed s € [0,72.38) mph according
to Table B.3. Similarly, the desired queue length on link (i, 5) is

lij _
a5 (i _o0\a.
Gy = (72.38 TU) Cii

lij —
o If the free-flow speed is greater than 72.38 mph, i.e., , then a shorter queue qu < (46]6 - T%) Cij

would not satisfy the desired condition.
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o If the free-flow speed is less than or equal to 72.38 mph, then any non-negative queue length qu >0
would satisfy the desired condition.

Overall the monotonicity condition of such emission function is applicable for all queuing condition if the
free-flow speed of any link in the study network does not exceed 72.38 mph.

Table C.5: Applicable queue length

T
=% | (0, 23] (23, 42.52] (42.52, 65.59] (65.59, +00)

i

qu 0 (0’ (35 — Tioj)cij) <(42.]52 - Tz‘Oj)Cij’ (35— Tioj)cij) (0’ (655 — Tioj)cij> U ((42.]52 - Tg)c’j (35—

2b) The C'O2 emissions with the unit of gram per length per vehicle
F#(s) should be a monotonic decreasing function, which means the speed s € (23,42.52) U (65.59, +-00)
mph. The desired queue length on link (i, j) is

li — lis — _
d 0 i 0. .
q’L] € |: T C'LJ’ (65 59 TZJ)C J) U ((4252 Zj)C (23 TZ])CZ]> .

Since the queue length is always non-negative, we can simplify the regions of queue length for different
possible free-flow speed shown in Table C.5. It is noted that only when the free-flow speed is less than 42.52
mph or greater than 65.59 mph, the monotonic condition is satisfied at the free-flow condition (zero queue).

The conditions for the HC' and NO, emissions with the unit of gram per length per vehicle are omitted
here since they can be acquired similarly as for fuel consumption and the CO emissions.

Appendix D. Proof of Proposition 1

Proof.

Assume X9 ¢ Q/ ie., X9 is not a free-flow feasible solution. We need to construct a free-flow feasible
solution X9/,

From the double queue dynamics and the definition of number of vehicles of link (4, j) at time ¢, n;;(t),
we have

nz_] fo pl] Ul] (5)]d£
- fO pzj UZJ (f + ) + Ul] (g + ) Uij (5)}d§ (Dl)
= qU (t+ T )+ ftJrT” vi;(§

Substituting (D.1) into (9), it is derived that

= Y Bl

(i,4)€EL
Z / nz_] el] qZ] (t + Tg))dt (DQ)
(i,5)€L
7]
Z / q” eij(qu(t + 7' ))dt + Z / / v;5(§)dE - e;; (q” (t+ T%))dt
(i,J)€EL (i,7)€L

From the double-queue dynamics, boundary conditions and the non-negativity of the downstream queue,
it is easily shown that v;;(t) = 0Vt € [0,75)N(T, 4+00)V(i, j) € L. We define a dummy term v;;(t; €) £ v5(£).
Then we have

I i - [ sy (0.3
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Ty (£,8) = v(8)
¢
- N
g
A I
T @
&
1 —
@ vy (¢, §)dt
0 70 G
@
N N
o 70 T 1 o 70 T i
(a) Double integral areas in (b) Integral for Area 2

Equation (D.3)

Figure D.12: Multiple integral of Equation (D.3)

The right-hand-side of Equation (D.3) is a double integral over £ and ¢t. The region of such double integral
is presented in the ¢ — & space as the shadow area in Figure 12(a). Such area can be further divided into

three sub-areas, i.e., fOT :+T” Ui;(t;€§)dédt = M I + M1y + MIs, where

MI, = / / L (&)dedt

MI, = / / . Ty (t; €)dtdg (D.4)

t-‘rT”
MI; = / / Ty (£ €)dedt
T— 7'

For Area 1, since v;;(§) =0Vt € [O,le) MI, = 0. For Area 3, since v;;(§) = 0Vt € (T, +00), we have

M1Is = 0. For Area 2, different from the integral in Eq (D.3), the sequence of double integral is switched.
Each horizontal line with the same £ is integrated first, and then the integral over all £ is made, which is
illustrated in Figure 12(b). We then have

wta= [ [ motsoas= [ [ oo
- / T [ / i dt] vy (€)de

7

— /TO. oij (€)dE = /OT v;(t)dt

ij

/OT /tm% vy (€)dEdt = 7)) /OT v (t)dt (D.5)

For VX9 € Q\ Qf, 3(i,5) € L3t € [0,T], qi' (t) > 0. Since e;;(-) is monotonically increasing, g (t +
e (q;’lj(t +77})) is also monotonically increasing on qu (t+ 7). Then we have

> / /HT” €)dg - ¢:;(0))dt

(b}l (D.6)

= Z 6”(0)7'”-/0 vf; (t)dt

(i,5)€L
28
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where the total cumulative exit flow from link (4, j) is defined as V T vf;(t)dt, which is equivalent to
the total number of vehicles passing through link (4, j) over the entlre tlme span.

In the following, we construct a free-flow feasible solution X9/ that satisfies all the constraints defining
the free-flow feasible solution set, i.e., X9%f € Qf. In the constructed free-flow feasible solution X9/ |

any link (3, j) shares a common total cumulative exit flow with the non-free-flow feasible solution X9, i.e.,

St wyae 2 VE =T 2 [ T0g (1),

We construct X g:f by three steps. Step (i) arranges the dummy origin links in an arbitrary order, and
defines the cumulative flow to be assigned for each link. We start from the first path starting from dummy
origin node 01, i.e., k =1, r = 1. In Step (ii), from path P5, .., i.e., the r-th path from dummy origin oy, to
the destination, we choose the link with the least the cumulative flow to be assigned, subtract such amount
of cumulative exit flow from all the links on path P;, ..., and reassign such amount of flow onto this path as
free-flow in X9/ i.e., no downstream queues on the path except on the dummy origin link. The link with
the least the cumulative flow to be assigned will not carry any more flow for later time periods after Step
(ii) is done. In Step (iii), we check if there is any cumulative flow to be assigned on the dummy origin link
(0K, or). If so, we scroll the time period forward, and redo Step (ii) for the (r + 1)-th path starting from
dummy origin 0. If there is no more cumulative flow to be assigned on the dummy origin link (o, o) and
the dummy origin link (o, 0x) is not the last one, we increase k by 1 and set » = 1, scroll the time period
forward, and redo Step (ii) for the first path starting from dummy origin node ogy1. If Step (ii) has been
done for all the paths, then there is no cumulative flow to be assigned, and the construction of the free-flow
feasible solution is finished.

Step (i) Arrange the dummy links as (01, 01), (02,02), ..., (On, 0,), where n is the number of origin nodes.
The ordering of these links can be arbitrary and do not change the way how X9/ is constructed. Define the
starting time t°+73%rt for each pair of k and 7. Set toUlstart £ Set k= 1,7 = 1.

For link (7,7) € L, we deﬁne the cumulative flow to be assigned as F ij- Inltlally, i = V

Step (ii) Let Ps,.: ox = L 40— i1 =iy —> - — T —1 — Iy, = = 5 be a path joining the dummy node
Oy, to the destination s, where my., is the number of links on path Pok e For any link (ip—1,4¢), 1 <€ < my,,
on this path, F” > 0. We define Fy., = mln1<g<mk Fi, 1,ig> and C’k I m1n1<g<m,€ Ci, Liee

Define tfj" as the time when the flow on path Pj, = starts to enter link (4,7); thus $OMr = gOkimistart,

01
: : Ok;T  __ 1Ok;T 0 1 ...
inductively, bivisr = by vie  Tig_vig for =1, M.

_ s s Fy.
For / = 1, s Mipgsrs €L Vi, 4, (t"_TU 1,1,_;) = DPig_y,ip (t) = Ck;T < Ciefl,ie fort € t?gkj,iwt?ek;:,ig + 6kr
3T
o ser 5 Fiar _
which yields ¢f, () = 0 for all ¢ € {t?f’iiz,tff’:’iz 6k ] As gl (towmstarty — 0, the downstream
T
queue of link (ig_1,1¢) is always zero, i.e. qflzihié( ) = 0, which means it takes the free-flow travel time i
for the flow to travel through each link (i,_1,%¢) on path Ps, ... The total travel time on path Pj, . is thus

5 i o F,
E TQ . Define tok,r,end L tok,r,start 4 E 7'-0 oo T

1e—1,%¢ 1e—1,%¢ 6 :
=1, mp.r 0=1, My, ksr
) STk sy ) STk

Subtract Fj., from Fig_lyig for all the links (i¢_1,%¢), £ = 1,--- ,my, on path Ps, ..

Step (iii) After Step (ii),

o if F'5, ,, > 0, then set o7 +1istart & gowiriend “inerease r by 1, and repeat Step (ii) above;

o if F’ék,% = 0and k < n, then set tos+uilistart & gorimend Hincrease k by 1, reset 7 = 1, and repeat Step (ii)
above;

e otherwise finish the construction of the solution X9/,

Since all cumulative flow, presented as F5, ,, for any k, has been re-distributed following the construction
before we finish the construction, Step (iii) guarantees the same amounts of cumulative flow are in X9/
and X9 for all the links, and all the links have zero downstream queues. Moreover, X%/ has a smaller
objective value than that of the non-free-flow feasible solution X9. This is because for the objective of
minimizing total emissions, it matters where the vehicles wait. If they wait within the regular network, i.e.,
forming downstream queues on regular links, they generate emissions. If they wait at the origin, i.e., forming

0

29



R. Ma et al. / 00 (2017) 000-000 30

downstream queues on dummy origin links, they do not generate emissions. Based on Equation (D.6), w
then have Equation (D.7) showing that the total emissions of the constructed free-flow solution X9/ is lebs
than that of XY.

E(X9) = / / e €)de - e;;(0))dt

(i,9)€L "
= > ei(0)7) / vl (tydt (D.7)
(i.)EL 0
T
= > ei(0)7 / v, (t)dt < TE(XY)
(i.)EL 0
This completes the proof. O

Appendix E. Proof of Proposition 3

Proof. We first show why there could be downstream queues on the regular links, and propose a method to
construct a free-flow feasible solution X7 from a non-free-flow feasible solution X, by shifting the downstream
queues on the regular links to the dummy origin links, without modifying the arrival flow, i.e., the exit flow
from the links connecting to the single destination.

As discussed in Ma et al. (2014), it does not matter for the original DSO problem (13) where the vehicles
wait. The vehicles could wait at the origins or any intermediate links, while the total travel time is the
same. Because of this, the optimal solution to problem (13) could be free-flow or non-free-flow.

We illustrate this by simple scenarios. First we show the simplest scenario, where the starting node of
the congested link is a one-in-one-out node. Figure 13(a) shows a simple chain network with only one OD
pair. Link (0,1) is a dummy origin link, and the destination node is s. The flow capacities of regular links
(1,2), (2,3) and (3, s) are 2, 2, 1, respectively. Total demand is 2 and is initially stored at the dummy origin
link. The inflow rate capacity of link (3, s) is smaller than that of link (2, 3).

As shown in Figure 13(b), in the non-free-flow solution, because the inflow rate of link (2,3) is 2 while
the exit flow rate is 1, the downstream queue is built up on the regular link (2,3) for a period of time. For
instance, at time t1, the downstream queue of link (2, 3) is positive. In this case, link (2,3) is congested,
and the starting node of link (2,3), i.e., node 2, is a one-in-one-out node. The total waiting time caused
by this downstream queue is presented as the area of T. In this solution, there is another part of waiting
time on the dummy origin link. The waiting time caused by the demand waiting to be discharged from the
dummy link (0,1) is presented as the area of T4.

Figure 13(c) shows a free-flow solution, where there is no downstream queue on any of the regular links.
All links discharge their own flow at the bottleneck flow capacity, which is 1, so that all regular links are
in their free-flow state. The waiting time is only caused by the demand waiting to be discharged from the
dummy link (0,1). It is obvious from Figures 13(b) and 13(c) that the total waiting time in the non-free-
flow solution equals the total waiting time in the free-flow solution. We further notice that the arrival flows
in both solutions are exactly the same, i.e., the cumulative flow curves of link (3,s) in both solutions are
the same. From the original DSO formulation (13), these two solutions share the same objective value.
In fact, these two solutions are both optimal solutions for the original DSO formulation (13) that only
minimizes the time cost. This example shows that if the starting node of a congested link (i.e., a link with
a positive downstream queue) has only one upstream link and one downstream link (one-in-one-out), the
within-network downstream queues can be shifted to the upstream links up to the dummy origin links, by
changing the cumulative flow curves of the network links.

We then show that if the starting node of a congested link has two upstream links and one downstream
link (two-in-one-out, merging), the downstream queues can still be shifted to upstream links, and the exit
flow of the congested link would not change.
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Figure E.13: Shifting the downstream queue on congested link (2, 3) to dummy origin link (0, 1)

Figure 14(a) shows a network with a merging node. For each dummy origin link, the demand is 2. Other
network characteristic can be found in Figure 14(a). The inflow rate capacity of link (4, s) is smaller than
that of link (3,4).

As shown in Figure 14(b), in the non-free-flow solution, because the inflow rate of link (3,4) is 3 for a
period of time, while the exit flow rate is 2, the downstream queue is built up on the regular link (3,4). In
this case, link (3,4) is congested, and the starting node of link (3,4), i.e., node 3, is a merging node. As
indicated by the shaded areas, the total waiting time is caused by the downstream queues on link (3,4) and
the demand waiting to be discharged at the dummy links.

Figure 14(c) shows a free-flow solution, where there is no downstream queue on any of the regular links.
Links (1, 3) and (2, 3) both discharge the flow at the flow rate of 1, so that all regular links are in free-flow
state. The waiting time is only caused by the demand waiting to be discharged from the dummy links. Same
observation can be made that from Figures 14(b) and 14(c) that the total waiting time in the non-free-flow
solution equals the total waiting time in the free-flow solution, and the cumulative flow curves of link (4, s)
in both solutions are the same. This scenario shows that if the starting node of a congested link is a merging
node, the downstream queues can be shifted to the upstream links up to the dummy origin links, by changing
the cumulative flow curves of the network links.

For the scenario where the starting node of a congested link has one upstream links and two downstream
link (one-in-two-out, diverging), the downstream queues can be shifted to upstream links as well. Slightly
different from the one-in-one-out case, for this case, part of the exit flow of the upstream link is not for the
congested link, and should not be modified since it is related to the other downstream link.
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Figure E.14: Shifting the downstream queue on congested link (3,4) to dummy origin links; Node 3 is a merging
node

Above we show three scenarios, where the downstream queues can be shifted to upstream links without
changing the cumulative exit flow curves of the congested links. We here omit other types of intermediate
nodes, since they can be easily transformed into the combinations of one-in-one-out, two-in-one-out and
one-in-two-out nodes.

To summarize, the above scenarios show how to shift a non-free-flow feasible solution to a free-flow feasible
solution, where the cumulative flow curves need to be modified. More specifically, to shift the downstream
queue on a congested link without changing the objective value, the cumulative exit flow curve of the
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congested link should not be modified. By decreasing the absolute value of the slopes of cumulative curves
for the upstream links, i.e., having them discharge the flow with smaller exit flow rates, the downstream
queue on the congested link can be shifted to upstream links in sequence and finally up to the dummy origin
links. Compared to the non-free-flow feasible solution, since the absolute values of slopes of cumulative
inflow and exit flow curves are smaller in the free-flow feasible solution, all the flow constraints remain
satisfied.

Based on the above discussions, a recursive procedure can be developed to obtain a free-flow feasible
solution from a general non-free-flow feasible solution.

1. Check the network structure. Network reconstruction may be needed so that the network only contains
the above-mentioned three types of nodes, i.e., one-in-one-out, two-in-one-out, and one-in-two-out nodes.
See Daganzo (1995) for more details on this.

2. In a non-free-flow feasible solution, choose any regular link (except the dummy origin links) with a
positive downstream queue. An operation that shifts the downstream queue to its upstream links can be
made as explained above, if such operation does not violate any constraint of the DSO problem. If such
operation leads to constraint violation, e.g., the upstream link does not have adequate queue storage, an
operation should be made to corresponding upstream link first. Since the dummy origin links do not have
queue capacity limits or any upstream link, the recursion will actually start at a link immediately after
a dummy origin link, and then proceed to subsequent downstream links until the initially selected link is
reached and processed. In the end, this recursive operation can shift the downstream queues on one or
multiple links to the dummy origin link.

3. Check if the solution is a free-flow feasible solution. If so, stop. If not, continue on Step 2.

We note that in Shen and Zhang (2014), a method was proposed to construct a holding-free optimal
solution to DSO from a non-holding-free solution via creating a space-time expansion network. The recursive
method proposed here are directly operated on a continuous-time non-free-flow solution and does not require
either time-discrezitation or construction of any space-time network. In particular, the recursive method
modifies a non-free-flow feasible solution to a free-flow feasible solution, and does not change the following
characteristics:

e Total cumulative flow of each link;

e Cumulative flow curves of the arrival links that connect to the single destination.

e Feasibility, i.e., all constraints are still satisfied.

We thus conclude that any non-free-flow feasible solution X = (p,v,¢% n) can be modified to a free-flow
feasible solution X/ = (pf,vf, ¢%f n'), without violating any constraints, maintain the same total system
travel time, and maintain the same total cumulative flow for all the links.

Since in X7, the total cumulative flow of link (4, j) is not changed, and the emission function is mono-
tonically increasing, we have (see the proof of Proposition 1):

TE(X / / ™ o (€)de - e (0))dt
Z
(i,j)€L
?

T
/ ’Ui]‘(t)dt < TE(X)
(@

By the original DSO formulation (13), since the cumulative flow curves of the arrival links that connect
to the single destination is not changing, we have

TT(X') = TT(X).

This completes the proof. O
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