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1. Introduction

Before the construction of this review article, we conducted an elec-
tronic database search through PubMed access to the MEDLINE data-
base on life sciences and biomedical issues (Fig. 1). This search was
inspired by a drastic increase in the number of journal articles on the
subject matter of type 2 diabetes (129,504) in the MEDLINE database;
approximately two-third of the publications (83,071/129,504) were
yielded for the recent 10 years, and more than half of them (49,934/
83,071) were found for the recent 5 years by 31 May 2016. Based on
our research interest, we searched through PubMed/MEDLINE on the
keywords “type 2 diabetes”, “endothelial dysfunction” and “nephropa-
thy” for the recent 5 years, and initially came up with a list of 85 full-
text journal articles (Table S1), of which 45 irrelevant articles were ex-
cluded based on our contextualized interpretations of the titles and ab-
stracts. The remaining 40 journal articles were used as the framework
for constructing this review article, and only research articles (27/40)
were summarized in Table S2 (including research type, subject charac-
teristics and significant findings).

Background

The aim of this review was to summarize some common signaling
pathways of vasodilators, vasoconstrictors and vaso-modulators from
currently proposed endothelium-centered therapies for diabetic ne-
phropathy, and hence highlight some key potential cellular mechanisms
for our future therapeutic development. This review also discussed the
potential uses of cutting-edge optoacoustic imaging tools in the real-
time monitoring of renal cortex/pelvis hemodynamics of small labora-
tory animals for preclinical drug trials.

2. Diabetes mellitus

Diabetes encompasses a spectrum of vascular complications in the
micro- (eye, kidney and nerve) and the macro-vasculature (heart and
brain) that are considerably responsible for the recently high morbidity
and mortality. Epidemiological studies demonstrated the global inci-
dence of diabetes had drastically increased from 108 million in 1980
to 422 million in 2014, which was shown to be obese-associated [1]. Di-
abetes and higher-than-optimal blood glucose also caused 3.7 million
deaths in 2012, of which nearly half of them died before age of 70
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Fig. 1. Schematic workflow outlining the article selection process for the construction of this review article.
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years. Intriguingly, it was estimated the mortality and disease burden of
diabetes will grow at an unprecedented rate and project to be the 7
leading cause of mortality in 2030 [2]. The aetiology of type 2 diabetes
mellitus (T2DM) is multifactorial; the causes of the disease are largely
attributed to a complex interplay of genetic and environmental factors.
Previous studies revealed the lifetime risk of a child of affected parents
suffering from T2DM was 3 to 4 times higher than the general popula-
tion and he/she usually developed diabetes at younger ages [3]. In addi-
tion, behavioral risk factors such as physical inactivity and unhealthy
diets leading to overweight or obese problems usually precede the
onset of prediabetes or overt diabetes [1].

3. High blood glucose-induced endothelial dysfunction

Hyperglycemia represents the pathologic hallmark of diabetes
mellitus, and has been implicated in the onset and progression of endo-
thelial dysfunction. Growing evidence demonstrated hyperglycemia
triggers excessive reactive oxygen species (ROS) production, entailing
oxidative tissue damages [4-6] and hence engaged in the development
and progression of various diseases including cardiovascular diseases
[7], nonalcoholic fatty liver disease [8], renal dysfunction [9], retinopa-
thy [10,11] and cancers [12]. In endothelium, high glucose-stimulated
ROS overproduction was shown to play a crucial role in endothelial
cell senescence [13-16], which is an early sign of vascular complications
in diabetes [17,18]. The production of ROS also uncouples the endothe-
lial isoform of nitric oxide synthase (e-NOS) leading to perturbations to
or reductions in nitric oxide (NO) bioavailability, which impair endothe-
lium-dependent vasodilatation [19]. More intriguingly, this e-NOS
uncoupling further augments superoxide radical production, and
hence deteriorates vascular endothelial functionality. The overview of
e-NOS/NO signaling and ROS production was summarized in Fig. 2.

4. Renal pathophysiology in T2DM

The primary function of kidney is to maintain constant plasma
volume, salt concentrations, pH value and waste levels of extracellular
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fluids (plasma and interstitial fluid) inside our body [20,21]. The two
major layers of membrane in the glomerular capsule provide some fil-
tration barriers to shield plasma proteins, of which albumin does nor-
mally enter the filtrate, but only <1% is excreted in the urine. In T2DM,
hyperglycemia-induced defects in renal capillary dilatation, podocyte
loss and oxidative tubular injury to nephron (i.e. loss of reabsorption)
might shed some light on the proposition of albuminuria or proteinuria
as a gold diagnostic measure of chronic kidney disease. Elevated pres-
ence of albumin in the filtrate causes excessive tubular reabsorption
that hence results into inflammatory and fibrotic responses, and pro-
gressive loss of renal functions [22]. Numerous recent studies [23-29]
define the presence of microalbuminuria as an individual persistently
having (>3 months) (1) urinary albumin excretion >30 mg per day,
(2) urinary albumin concentration > 20 pg/L, or (3) urinary albumin to
creatinine ratio of 30-300 mg/g or >3 mg/mmol. However, some dia-
betic patients in advanced kidney disease stages did not clinically pres-
ent microalbuminuria [30]. A recent experimental study also revealed in
preclinical murine model, neither peak albuminuria nor albuminuria at
4 weeks after adriamycin-induced nephropathy was significantly corre-
lated with histologic glomerular scarring [31]. These conflicting obser-
vations urge a revolutionary reform of the classical staging system of
chronic kidney disease upon albuminuria into directly mapping im-
paired glomerular filtration to renal dysfunction, which can be mini-
mal-invasively measured by current optoacoustic imaging systems in
a real-time manner (to be discussed).

5. Current approaches to therapy for diabetic nephropathy and their
underlying cellular mechanisms

Histologic presence of nodular glomerulosclerosis usually precedes
the disease progression of diabetic nephropathy due to an accumulation
of matrix materials, which contribute to glomerular basement mem-
brane thickening, and hence increase renal blood flow and glomerular
capillary pressure [32]. Since subtle changes in the vascular tone (vaso-
constriction and vasodilation) of the glomerular afferent arterioles (i.e.
microcirculation: <100 um in diameter) adversely impact the blood
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Fig. 2. In endothelial cells, VEGF signaling modulates e-NOS/NO-mediated vasodilation and ROS production. VEGF signaling is induced by the binding of VEGF ligands to their cognate
membrane-bound receptors (VEGFR2), upon which the PI3K/Akt pathway is activated. The activated p-Akt™3® phosphorylates the serine-1177 residues on e-NOS, and triggers an
increased production of NO. High-glucose-induced ROS overproduction uncouples e-NOS and hence leads to further O; production, which reacts with NO to form ONOO . The
ONOO™ formation further uncouples e-NOS to augment O; production, which induces substantial oxidative damages and impairs endothelial functions. e-NOS, endothelial isoform of
nitric oxide synthase; 0z, superoxide molecules; ONOO ", peroxynitrite molecules; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; VEGFR2, vascular

endothelial growth factor receptor 2.
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flow and exacerbate diabetic nephropathy, a stringent governing of va-
sodilators, vasoconstrictors and vaso-modulatory molecules is critically
important in preserving renal functional integrity. Based on the findings
from preclinical drug trials in laboratory animals and clinical trials in
T2DM patients, we herein highlighted 4 potential signaling pathways
that govern the vascular endothelial tone as the scientific basis of cur-
rently proposed drug therapies for diabetic nephropathy: (1) e-NOS/
NO, (2) renin-angiotensin, (3) endothelin-1 (ET-1), and (4) vascular en-
dothelial growth factor (VEGF).

5.1. Endothelial isoform of nitric oxide synthase/nitric oxide signaling

Induced by e-NOS, NO (an endothelium-derived relaxation factor)
serves as a paracrine regulator, which diffuses across into vascular
smooth muscle cells of blood vessels, triggers a cascade of signal trans-
ductions in cytosolic guanylylcyclase/cyclic GMP axis, and subsequently
leads to vascular smooth muscle relaxation [19,33,34]. This regulatory
molecule plays a central role in the regulation of blood flow and blood
pressure that are intricately involved in the development of micro-
and macro-vascular diseases. Recent studies addressed T2DM patients
with chronic renal impairment displayed higher plasma levels of asym-
metric dimethylarginine [35], which is an endogenous inhibitor of NOS.
In addition, a significantly lower NOS activity was observed in T2DM pa-
tients with end-stage renal disease, whom the NOS activity was posi-
tively correlated with serum creatinine clearance (as a measure of
renal function) [36]. Experimental evidence addressed the therapeutic
potentials of 22-oxacalcitriol (a vitamin D3 analog) to improve endo-
thelium-dependent flow-mediated dilatation (FMD) of femoral artery
via augmented e-NOS expression in Sprague-Dawley (SD) fatty rats
(with blood glucose levels >250 mg/dL), and ameliorate e-NOS
uncoupling in high-glucose-treated cultured endothelial cells [37]. Pre-
clinical drug trials of a nitric oxide-potentiating vasodilatory agent,
namely nebivolol, also demonstrated beneficial effects on normalizing
blood pressure, lipid profile, glomerular filtration rate and proteinuria
in Zucker diabetic fatty (ZDF) rats, whom the renal or serum expres-
sions of oxidative stress and inflammatory biomarkers including
transforming growth factor-31 and plasminogen activator inhibitor-1
were down-regulated [38].

5.2. Renin-angiotensin system

Under normal physiologic circumstances, declines in the blood vol-
ume and blood pressure of kidneys trigger juxtaglomerular secretion
of enzyme renin in the formation of angiotensin I from the enzymatic
cleavage of angiotensinogen [20,21]. Angiotensin-converting enzyme
hence converts angiotensin I into angiotensin Il by removal of two C-ter-
minal amino acid residues to facilitate vasoconstriction. Experimental
data demonstrated effective blockade of angiotensin-converting en-
zyme was a potential therapeutic target to relieve glomerular
intracapillary pressure and subsequent glomerulosclerotic burden;
combinatorial intervention of ramipril (angiotensin-converting en-
zyme inhibitor) and sitaxsentan (endothelin A-receptor antagonist)
in ZDF rats versus non-diabetic lean controls improved proteinuria
and glomerulosclerosis, and relinquished interstitial nephritis [39].
This observation was concordant with the findings in a nonrandomized
clinical trial of ramipril in T2DM patients with stage-1 chronic kidney
disease and proteinuria (>0.5 g/day) in improving proteinuria and
FMD of brachial artery [40]. The changes in proteinuria and FMD were
shown to inversely correlate with serum fibroblast growth factor
(FGF)-23 [40], of which increased levels were suggested to be an inde-
pendent predictor of chronic kidney progression in T2DM patients [41].

5.3. Circulating vasoactive peptide: endothelin-1

In the kidney, glomerular endothelial cells, mesangial cells and
podocytes are capable of producing ET-1 [42], which targets endothelin

A- and B-receptors (ET, and ETg) of vascular smooth muscle cells and
ETg of endothelial cells to facilitate vasoconstriction of renal vessels
[43]. Within vascular smooth muscle cells, ET-1 receptor activation re-
sults into the orchestration of a multitude of cellular signaling pathways
including MAPK, PI3-K and protein kinase B [44]. Increased circulating
levels of ET-1 are commonly found in T2DM patients [45-47], and
were shown to impair insulin sensitivity in apparently healthy human
subjects in a hyperinsulinemic euglycemic study with co-infusion of
ET-1 precursor and/or ETa- or ETg-receptor blockade [48]. Previous
cross-sectional association studies in T2DM patients demonstrated ele-
vated levels of plasma or urinary ET-1 were significantly correlated with
the presence of microalbuminuria/macroalbuminuria and hypertension
[49-52]. As aforementioned, combined therapy of sitaxsentan (ETx-
receptor antagonist) and ramipril (angiotensin-converting
enzyme inhibitor) in ZDF rats was shown to improve proteinuria,
glomerulosclerosis and interstitial inflammation [39]. A recent
double blind, randomized, placebo-controlled clinical trial in T2DM
patients with microalbuminuria (urinary albumin to creatinine
ratio > 3 mg/mmol) also revealed that a dual endothelin receptor
antagonist, namely bosentan, increased reactive hyperaemia index
(as a measure of microvascular endothelial function) [28]. Experimental
evidence from a recent preclinical study on nebivolol (a nitric oxide-
potentiating vasodilatory agent) in ZDF rats also revealed a significant
reduction in serum ET-1 levels [38], indicating a therapeutic crosstalk
between endothelial vasodilators and vasoconstrictors of this agent.

5.4. Vascular endothelial growth factor: an endothelial cell-specific mitogen

Capillary losses over the progression of chronic kidney disease to
end-stage renal disease are clinically manifested [53]; activation of
VEGF, a potent angiogenic factor, may be another therapeutic target
for alleviating diabetic nephropathy. Several cross-sectional or longitu-
dinal studies in T2DM patients proposed urinary or serum VEGF levels
as independent predictors of the presence of microalbuminuria [25,
54] and chronic kidney disease progression [41]. Genetically-
engineered constitutively-expressing or doxycycline-inducible VEGF-
Aq6sb transgenic mice were shown to resist renal impairments upon
streptozotocin (STZ) administration (a toxic agent targeting insulin-se-
creting beta cells of pancreas) as evidenced by reduced histologic fea-
tures of glomerular abnormalities and preserved morphological
integrity of glomerular endothelial glycocalyx versus non-genetically-
modified controls [55]. Concurrently, injections of recombinant
human VEGF-A;gs5b into podocytes of another mouse strain or ectopic
expression of VEGF-A4gsb in cultured primary podocytes and endothe-
lial cells exhibited similar functions in protecting against STZ- or high-
glucose-induced nephrotoxicity and endothelial dysfunction, respec-
tively. A randomized clinical trial of pioglitazone and rosiglitazone
(peroxisome proliferator-activated receptors-gamma agonists) in the
treatment of metabolic syndrome of T2DM patients also accidentally
discovered these agonists might hold additional vascular benefits in
terms of their induction of angiogenesis markers (VEGF, interleukin-8
and angiogenin) [56]. Another possible angiogenic agent, namely thy-
mosin B4 (a thromboxane inhibitor), was largely implicated in diabetic
retinol neovascularization [57], and was also shown to improve histo-
pathologic changes of kidneys in diabetic KK Cg-Ay mice [58]. Paradox-
ically, sulodexide, an antithrombotic drug, was demonstrated to reduce
urinary albumin to creatinine ratio, and suppress renal expressions of
pro-fibrotic molecules and phospho-specific p38 MAPK possibly
through inhibition of VEGF signaling in Otsuka-Long-Evans-
Tokushima-Fatty T2DM rats [59]. This discrepancy can be well ex-
plained by dose-dependent impacts of VEGF in either being a friend or
foe of diabetic nephropathy; an excessive amount of VEGF was
suggested to be largely detrimental to renal endothelial functions in
STZ-induced diabetic SD rats and diabetic e-NOS gene knockout mice
[60]. Thus, VEGF-targeted intervention could have variable impacts on
diabetic microangiopathy.
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6. Future approaches to therapy
6.1. Oxidative modification of microvasculature

The pathologic complexes of diabetic vascular complications are
simply ascribed to uncontrollable blood glucose levels that stimulate
ROS overproduction. In the kidney, excessive ROS production triggers
oxidative damages to glomerular basement membrane, subsequently
leading to loss of filtration surface and impairment in urinary albumin
homeostasis [24]. In endothelial cells, ROS over-production diminishes
NO bioavailability, either through oxidative modification of NO (in the
formation of peroxynitrite molecules) or direct interaction with e-NOS
[19]. This e-NOS uncoupling further increases ROS production and
impairs endothelial functionality. Given the angiogenic mechanisms
of VEGF ultimately converge on Akt/e-NOS/NO signaling (Fig. 2), ROS-
induced distortion in e-NOS/NO system (i.e. downstream effectors)
might block the VEGF-stimulated vascular impacts in kidney. In
addition, ROS-induced decline in NO may augment the serum levels of
ET-1 (a vasoconstrictor) [38], which might exacerbate diabetic
nephropathy.

NEF-E2-related factor-2 (Nrf2) is recognized as a master guardian of
lifespan that acts through targeting antioxidant response element to
transactivate a multitude of phase II genes including heme oxygenase-
1 (HO-1), whose protein products are tightly involved into ROS detoxi-
fication and elimination via conjugative stabilizing reactions or by aug-
menting cellular antioxidant capacity [61]. HO-1, which is ubiquitously
expressed in eukaryotes, is an inducible protein in response to oxidative
stress, and catalyzes the degradation of excessive heme into biliverdin
(Fig. 3) [62]. The formation of biliverdin releases carbon monoxide
and ferrous (Fe? ™), and in the presence of biliverdin reductase, it is
therefore converted into bilirubin, which scavenges and counteracts
ROS. Abrogation of Nrf2/HO-1 signaling was largely implicated in
acute kidney injury [62], cardiac dysfunction [63], and cerebral ischemia
[64]. Recent pharmacological research in natural products highlighted
many bioactive compounds possess antioxidant properties via Nrf2/
HO-1 signaling. Lycopene (a pharmacologically active compound abun-
dantly found in many fruits and tomatoes) was shown to protect Wistar
rats from cisplatin-induced nephrotoxicity via up-regulating the renal-
cellular presence of nuclear Nrf2 and expression of HO-1 [65].
Curcumin, a powdered rhizome of Curcuma longa Linn, resisted the pro-
gression of cerebral ischemia as evidenced by its effects on the reduction
of neurologic deficits, cerebral infarction and brain volume content via
over-expressing Nrf2 and HO-1 protein in middle cerebral artery-oc-
cluded SD rats [64]. Grounded on the interconnected “Yin/Yang theory”
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Fig. 3. Heme oxygenase catalyzes the conversion of heme into bilirubin, which counteracts
reactive oxygen species. Heme oxygenase degrades heme into biliverdin through which
carbon monoxide and ferrous (Fe?*) are released. Biliverdin is thus converted into
bilirubin in the presence of biliverdin reductase.

of Traditional Chinese medicines, insufficient blood flow (“Yin/Qi") to
organs will impair their functional integrities (“Yang”) [66]; given (1)
the blood circulation to the kidneys accounts for nearly one-fourth of
the total cardiac output [22], (2) a classical traditional Chinese me-
dicinal prescription of Rheum rhabarbarum and Salvia miltiorrhiza
has been proven to be very efficacious and safe in treating chronic
kidney diseases [67-69], (3) Danshensu, a naturally-occurring
aqueous phenolic extract from Salvia militorrhiza, is pharmacologi-
cally recognized to facilitate blood circulation and get rid of blood
stasis, (4) the predominant biodistribution of Danshensu was
found in the kidney after intraperitoneal injections into mice [70],
and (5) its well-recognized antioxidant roles in cardiac vasculature
via acting on Akt/Nrf2/HO-1 pathway were largely implicated [71-74],
we strongly believe a potential biological role of Danshensu in
alleviating hyperglycemic oxidative stress in renal and endothelial
cellular compartments. However, from our PubMed/MEDLINE
search, no study has been found regarding the therapeutic potentials
of Danshensu in diabetic nephropathy, where this research area
deserves further investigations. The mechanistic crosstalk between
Nrf2/HO-1 and Akt/e-NOS/NO signaling cascades, and the proposed
mechanisms by which Danshensu intercepts hyperglycemic ROS
production were depicted in Fig. 4.

6.2. Erasing metabolic memory: an emerging role of epigenetics in diabetic
nephropathy

The existence of metabolic memory is defined as a phenomenon that
the effects of long-term or transient blood glucose changes persist long
in macro- and micro-vasculatures even after attaining glycemic control
in diabetes [75]. This “memory” was initially observed in the Diabetes
Control and Complications Trial conducted by the United States Nation-
al Institute of Diabetes and Digestive and Kidney Diseases that type 1 di-
abetes under intensive glycemic control had a lower incidence of
vascular complications including nephropathy and neuropathy versus
those with conventional therapy (although both groups ultimately
achieved similar levels of glycated hemoglobin (HbA1c; a standard di-
agnostic measure of diabetes mellitus [1])) [76], implicating the effects
of hyperglycemia on inducing vascular complications last long and even
cannot be completely reversed once the vascular endothelial cells had
prior exposure to high blood glucose. Some recent studies highlighted
diabetogenic signals, in particular high blood glucose, stimulated the
phenotypic alterations of vascular endothelial cells without changes in
DNA sequences [77]. This pre-established renal vascular complications
were thus shown to be largely attributed to hyperglycemic epigenetic
histone/DNA modifications of numerous protein-coding genes [75] in-
cluding forkhead box protein O1 (a gluconeogenic gene) [ 78], osteopon-
tin (a commonly up-regulated gene in diabetic nephropathy) [79],
signal transducer and activator of transcription 1 (a pro-inflammatory
molecule) [80], of which most epigenetic methylation/acetylation sig-
natures were highlighted on increased activating histone marks
H3Kac, H3K4mel, H3K4me3 and H3K36me2, and decreased
inactivating histone mark of H3K27me3.

Besides, non-coding RNA-mediated gene silencing or activation is
currently considered as one of the epigenetic mechanisms that regu-
lates endothelial cell phenotypic changes in response to high glucose
in diabetes; hyperglycemia was suggested to alter endothelial
microRNA (miR) and long non-coding RNA (IncRNA) expressions,
where VEGF-targeted miR-320 was up-regulated in myocardial mi-
crovascular endothelial cells of type 2 diabetic Goto-Kakizaki rats
[81], and anti-angiogenic miR-503 [82] and pro-inflammatory
IncRNA metastasis-associated lung adenocarcinoma transcript 1
[83] were up-regulated in high-glucose-treated cultured endotheli-
al cells. Since endothelial cell-derived plasma miRs were able to
govern the vascular motile phenotypes of both endothelial and
vascular smooth muscle cells [77], further understanding on their
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regulatory mechanisms could aid our identification of molecular
target(s) for therapeutics.

7. Real-time optoacoustic vascular imaging of renal cortex/pelvis of
small experimental animals

Since many findings from experimental studies on new drug candi-
dates in tissue cultured cells turn out to be invalid in preclinical animal
models and human clinical trials [27,84], macroscopic optic imaging
attempted to offer an avenue for characterizing pharmacodynamics
and biodistributions of small drug molecules. Nevertheless, a very long
image acquisition time usually complicated the use of conventional
small-animal optoacoustic techniques for preclinical drug trials [85].
This problem is largely attributed to the fact that large-scale image aver-
aging was required to compensate the very weak signals acquired from
low penetration power. In addition, these systems are not appropriate
for real-time whole-body imaging of small experimental animals,
hence most probably failing to capture some critical moments of rele-
vant physiologic parameters.

Recent breakthrough in the dimension of macroscopic optic imaging
has brought a variety of leading advantages from basic biology to pre-
clinical practice; multispectral optoacoustic tomography (MSOT) has

afforded very rapid high-radiant-power interlock system in the near-
infrared region passing through several millimeters into centimeters
of tissue to generate ultrasound signals, which substantially surpass
light-scattering interference of tissue in the formation of high-contrast
multiple spatial images [86]. It also carries high-throughput capability
for quantitative differentiation of target tissues in video-rate mode to
avoid image acquisition delay over time. Through multispectral
unmixing algorithms, this system can pinpoint some regions of interest
in the target tissues and allow multiple detections of signals at various
wavelengths simultaneously, thereby accurately decomposing the
biodistribution of relevant intrinsic and exogenous chromophores
from non-specific background noises. With function-specific exogenous
chromophores (e.g. indocyanine green, IRDye 800CW carboxylate,
MMPSense 680), functional characterizations of drug candidates on tis-
sues of interest will be optimized. Previous studies demonstrated FITC-
sinistrin and IRDye 800CW carboxylate clearance were shown to signif-
icantly feature glomerular damage in adriamycin-administered mice
[31]. MSOT was also able to detect atherosclerotic activity with aids of
a protease-activatable fluorescent probe (MMPSense 680), and the con-
clusions drawn were in line with that from standard epi-fluorescent
cryosection imaging, in situ zymography and immunohistochemistry
of elevated activity of various matrix metalloproteases (MMPs) [87].
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Besides, MSOT was capable of demonstrating a real-time tumoral ex-
pression and inhibition of MMP activities in a subcutaneous tumor-
bearing mouse model [88].

Using the same imaging protocol that was validated and adopted in
Scarfe group's study on SCID mice [31], our team was able to demon-
strate the renal cortex/pelvis hemodynamics using isoflurane- anes-
thetic diabetic/obese db/db C57BL/6 mouse model [This preliminary
study was approved by the Animal Subjects Ethics Sub-committee of
the Hong Kong Polytechnic University (15-16/14-HTI-R-OTHERS)].
The two Kinetic curves against time (min) displayed the near-infrared
fluorescent IRDye 800CW carboxylate (10 nmol, intravenously injected)
transition from renal cortex into pelvis, and the time difference between
the signal peaks of the two curves (Tyax.2 — Tmax-1) Was used to com-
pute kidney perfusion time (as a measure of glomerular filtration rate)
(Fig. 5). Given the drug candidates potentiate renoprotective functions
against diabetogenic nephrotoxicity, the time difference between
Tymax.1 and Tyax.2 will be shortened compared with non-treated
group. Fig. 6 illustrated the video-rate, real-time MSOT monitoring of
kidney perfusion of the diabetic/obese db/db mouse.

Due to highly vascularized infrastructure of kidneys, the specificity and
sensitivity of MSOT open a novel avenue for studies of renal-kinetic drug

127

candidates in small experimental animals. Without sacrificing the ani-
mals as the endpoint, the minimally invasive characteristic of MSOT
also anticipates the significance of experimental animal welfare and
ethics (replacement, reduction and refinement) to pilot drug efficacy
and safety in laboratory animals prior to conducting sizable clinical
trials in human.

8. Conclusion

In summary, the published journal articles for the recent 5 years
demonstrated a concurrent therapeutic direction for diabetic nephrop-
athy towards targeting vasodilators, vasoconstrictors and vaso-modula-
tory molecules, where the signaling aberrations underlying the
pathogenesis of vascular endothelial dysfunction lay the groundwork
for the current therapeutic designs. The hyperglycemic induction of ox-
idative stress and epigenetic changes in kidneys offers new insight of
our future drug studies and experimental trials, and our proposed
optoacoustic imaging system provides feasibility of highly penetrating
into target organs and processing extremely high-contrast vascular im-
ages of preclinical animal models for experimental drug trials that the
data are valid and reliably re-produced.
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Fig. 5. Cross-sectional optoacoustic image of a diabetic/obese db/db C57BL/6 mouse. (a) The cross-sectional optoacoustic image aligned with the corresponding cryoslice at the same
position. (b) The optoacoustic images illustrated the near-infrared fluorescent IRDye 800CW carboxylate transition from renal cortex to pelvis, and the regions of interest were
selected (red, renal cortex; blue, renal pelvis). (c) The two kinetic curves of the selected regions demonstrated the fluorescent signal intensities against time (min) and also indicated
two time points with maximal signals (Tyax.1 and Tyax-2). The kidney perfusion time was thus computed by subtracting Tyax.1 from Tyax.» (arrow).
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