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Dynamic Scaling of Virtualized, Distributed Service
Chains: A Case Study of IMS
Jingpu Duan, Chuan Wu, Franck Le, Alex X. Liu, Yanghua Peng

Abstract—The emerging paradigm of network function virtual-
ization advocates deploying virtualized network functions (VNFs)
on standard virtualization platforms for significant cost reduction
and management flexibility. There have been system designs for
managing dynamic deployment and scaling of VNF service chains
within one cloud datacenter. Many real-world network services
involve geo-distributed service chains, with prominent examples
of mobile core networks and IP Multimedia Subsystems (IMSs)).
Virtualizing these service chains requires efficient coordination
of dynamic VNF deployment across geo-distributed datacenters,
calling for a new management system. This paper designs a
dynamic scaling system for geo-distributed VNF service chains,
using the case of an IMS. IMSs are widely used subsystems for
delivering multimedia services among mobile users in a 3G/4G
network, whose virtualization has been broadly advocated in the
industry for reducing cost, improving network usage efficiency
and enabling dynamic network topology reconfiguration for
performance optimization. Our scaling system design caters to
key control-plane and data-plane service chains in an IMS,
combining proactive and reactive approaches for timely, cost-
effective scaling of the service chains. The design principles are
applicable to scaling of other systems with multiple related service
chains. We evaluate our system using real-world experiments on
both an emulation platform and a geo-distributed public cloud.

Index Terms—Software defined networking, network function
virtualization, IP multimedia subsystem.

I. INTRODUCTION

Traditional hardware-based network functions are notori-
ously hard and costly to deploy and scale. The recent paradigm
of network function virtualization (NFV) advocates deploying
software network functions in virtualized environments (e.g.,
VMs) on off-the-shelf servers, to significantly simplify deploy-
ment and scaling at much lowered costs [1].

Despite the advantages, many problems remain when intro-
ducing NFV to the provisioning of practical network services.
One problem is to design efficient VNF software, such that
software VNFs can achieve packet processing speeds close
to hardware middleboxes. Another is to design an efficient
management system, which deploys and scales VNF service
chains – an ordered collection of VNFs that altogether com-
pose a network service, according to the traffic demand. There
have been efforts targeting architectural improvement of VNF
software [2]. A number of management systems have also been
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proposed [3], [4], which operate VNF service chains deployed
in a single server cluster or datacenter. These management
systems are adequate for service chains such as “firewall→
intrusion detection system (IDS)”, which are typically used to
provide access service to a client-server Web system, deployed
in the on-premise cluster/datacenter of the service provider.

There are many other service chains which render a geo-
distributed nature, e.g., the service chains in IP Multimedia
Subsystems (IMS) [5] and mobile core networks [6] (ex-
amples presented in Fig. 1). In these systems, the network
functions are desirably deployed close to geo-dispersed users,
and putting the service chain in a single datacenter would be
unfavourable as compared to distributing its VNFs across sev-
eral datacenters. The existing management systems cannot be
directly applied to handle such geo-distributed service chains
[7], due to the escalated challenges on efficient interconnection
of VNFs over the WAN, dynamic decision making on how
VNF instances are deployed in different datacenters, and
optimally dispatching individual flows through the deployed
instances.

This paper presents ScalIMS, a management system that en-
ables dynamic deployment and scaling of VNF service chains
across multiple datacenters, using representative control-plane
and data-plane service chains of the IMS system [5]. ScalIMS
is designed to provide good performance (minimal VNF
instances deployment and guaranteed end-to-end flow delays),
using both runtime statistics of VNFs and global traffic infor-
mation. IMS is chosen as the target platform because of its
important role in the telecom core networks as well as the
accessibility of open-source software implementation of IMS
[8]. ScalIMS has two important characteristics that distinguish
itself from existing management systems:
. Dynamic Scaling over Multiple Datacenters: ScalIMS

dynamically deploys multiple instances of the same network
function onto different datacenters according to real-time
traffic demand and user distribution. The network paths that a
service chain traverses are optimized to provide QoS guarantee
of user traffic (i.e., bounded end-to-end delays). This feature
distinguishes ScalIMS from systems that can only scale service
chains within a single datacenter [3], [4].
. A Hybrid Scaling Strategy: Most existing VNF man-

agement systems [9] [4] scale service chains using reactive
approaches, adding/removing VNF instances by responding
to changes of runtime status of existing VNFs. Novelly,
ScalIMS combines reactive scaling with proactive scaling,
using predicted traffic volumes based on the history. This
hybrid strategy exploits all opportunities for timely scaling
of VNFs and significantly improves system performance.
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Fig. 1: IMS: an architectural overview

We evaluate ScalIMS on IBM SoftLayer cloud. Experiment
results show that ScalIMS significantly improves QoS of user
traffic compared with scaling systems that use only reactive
or proactive scaling approaches. Meanwhile, ScalIMS achieves
this improvement using almost 50% less VNF instances.
Even though ScalIMS is designed for IMS systems, similar
design principles can be easily applied to other NFV systems,
which benefit from service chain deployment across multiple
datacenters.

II. BACKGROUND

A. IMS Overview

An IP Multimedia Subsystem (IMS) [5] is a core part
in 3G/4G telecom networks (e.g., 3GPP, 3GPP2) [10] [11],
responsible for delivering multimedia services (e.g., voice,
video, messaging) over IP networks. It is a complex system
consisting of multiple service chains. We investigate two most
important service chains as follows. An illustration is given in
Fig. 1.
. Control Plane (CP) Service Chain includes three main

network functions, Proxy-CSCF (P-CSCF), Interrogating-
CSCF (I-CSCF), and Serving-CSCF (S-CSCF), which col-
lectively handle user registration, user authentication and call
setup. These network functions rely on the Session Initiation
Protocol (SIP) [12] to interoperate with users of the IMS
system. Users can only contact with P-CSCF, which acts as
a relay point between users and S-CSCF. Since I-CSCF acts
as a middleman that forwards SIP messages between P-CSCF
and S-CSCF, real-world implementation sometimes merges I-
CSCF into S-CSCF as in [8] to simplify the structure of the
IMS control plane service chain, making I-CSCF optional.
S-CSCF dispatches SIP messages to their final destinations
and constantly queries an external storage server called Home
Subscriber Server (HSS), which is a database that contains
identities of the users. We consider the control plane service
chain P-CSCF→ S-CSCF→ P-CSCF in ScalIMS.
. Data Plane (DP) Service Chain contains a sequence of

network functions that the actual multimedia traffic between
users traverses, for security (e.g., firewall, deep packet in-
spection, intrusion detection), connectivity (e.g., NAT, IPv4-to-
IPv6 conversion), quality of service (e.g., traffic shaping, rate
limiting, ToS/DSCP bit setting), and media processing (e.g.,
transcoding). While 3GPP has standardized the IMS control
plane for interoperability reasons, the exact set of deployed
network functions for the data plane varies per operator.

The two service chains collectively handle two important
procedures of the IMS system, which are user registration and
call setup. To make a call, a user first registers his IP address to
the IMS by initiating a SIP REGISTRATION transaction over
the CP. When the registration is done, S-CSCF temporarily
stores the binding between the identity of the user and the P-
CSCF instance connected to the user for future calls. To setup
a call between a caller and a callee, the caller initiates a SIP
INVITE transaction to the IMS, specifying the identify of the
callee. S-CSCF uses the binding saved during user registration
to retrieve the P-CSCF instance that the callee connects to and
sends the message to the P-CSCF instance, which forwards to
the callee. After the callee responds, a call is successfully set
up. Subsequent media flows between the caller and the callee
are routed through DP service chain. When the call is finished,
a SIP BYE transaction between the caller and the callee is
carried out to close the call over the CP.

B. Related Work

Running VNF software (e.g., DP packet processing soft-
ware) on VMs incurs significant context switching cost [13],
limiting the maximum throughput of a VNF. To solve this
problem, ClickOS [2] maps packets directly from NIC receive
queues to a shared memory region, and fetch packets directly
from that shared memory region [14], which greatly improve
packet processing throughput. However, this approach com-
pletely by-passes the existing kernel networking stack, unable
to support VNFs (e.g., S-CSCF and P-CSCF) that use the
traditional TCP/IP stack.

Scaling of service chains has been investigated in a single
server, a computing cluster or a datacenter. CoMB [15] focus
on scaling VNFs in a single server, by designing customized
architecture to unify VNFs inside a single server. E2 [3]
scales VNF service chains in a single datacenter, exploiting
high-performance inter-VNF data paths through SDN-enabled
switches. Stratos [4] jointly consider VNF placement and
flow distribution within a datacenter, using on-demand VNF
provisioning and VM migration to mitigate hotspots.

The management systems mentioned above cannot be di-
rectly extended to the multi-datacenter setting. One primary
reason is that SDN controllers [16] are extensively used in
these systems to facilitate routing, scaling and load-balancing
within a datacenter. However, SDN controllers are rarely
available in the WAN, except for among datacenters of a
few large providers such as Google [17] and Microsoft [18].
ScalIMS is a NFV management system that efficiently coor-
dinates service chain deployment and scaling, as well as flow
routing, across multiple data centers. ScalIMS uses similar
methodologies as in [3] and [4] when scaling NFV service
chains within a datacenter, but adopts a novel distributed flow
routing approach and a proactive scaling strategy to scale NFV
service chains across multiple datacenters.

Similar with ScalIMS, Klein [7] also scales NFV service
chains across multiple datacenters. However, it focuses on
scaling EPC system [6] and does not use a hybrid scaling
strategy as ScalIMS does. Ren et al. [19] propose a VNF
dynamic auto scaling algorithm for 5G networks, but it lacks
a real-world implementation when compared to ScalIMS.
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Fig. 2: Functional overview of ScalIMS

III. CHALLENGES AND DESIGN HIGHLIGHTS

ScalIMS aims to address the following challenges, that arise
when scaling service chains over multiple data centers.

First, deciding service chain paths, as determined by the
datacenters where instances of VNFs in a service chain should
be deployed. The service chain path critically decides service
quality of user traffic along the chain. For instance, a traffic
flow sent by a user of the IMS system to another user may
have two optional paths. The first path traverses a sequence of
datacenters (a, c) while the second path traverses datacenters
(a, b, c). The end-to-end delays on the two paths may vary
over time. A multi-datacenter NFV scaling system should
constantly update the service chain paths, so that a good
service quality can be guaranteed for user traffic at all time.

Second, deciding scaling in/out of network functions, i.e.,
adding/removing instances of each VNF upon traffic rise/drop.
This decision is coupled with service chain path selection
in the multi-datacenter setting. If a service chain path is
overloaded, instead of launching new VNF instances on the
same datacenters, the system may search for available VNF
instances on other datacenters, and set up new service chain
paths using those instances.

Third, distributed flow routing. When a service chain path
traverses multiple datacenters, it is difficult for a single con-
troller to control the end-to-end route. When multiple SDN
controllers are employed in different datacenters, they should
work in coordination on constant updates of service chain
paths, and correctly route user traffic towards destinations.

We make the following design decisions in ScalIMS. A
functional overview of ScalIMS is given in Fig. 2.
. We adopt a hybrid scaling strategy, that combines proac-

tive scaling and reactive scaling for both CP and DP service
chains. We divide the system time into scaling intervals.
At the end of each scaling interval, proactive scaling is
invoked, which takes as input the predicted workload along
each service chain, inter-datacenter latencies and the current
VNF deployment (the numbers of instances of each VNF
on each datacenter), and generates decisions on VNF scaling
and service chain path deployment with bounded end-to-end
delay simultaneously for the next scaling interval. Reactive
scaling produces scaling decisions of each VNF based on
runtime statistics of each instance within each data center.
It compensates for the inaccuracy of workload prediction
with proactive scaling, improving system performance under
unpredicted traffic rate changes.

. ScalIMS enables a synergy of global and local controllers,
to best execute the hybrid scaling strategy. The global con-
troller runs on a standalone server. The local controllers are
SDN controllers in each data center. For proactive scaling,
the global controller coordinates with all local controllers:
it collects statistics from each local controller, including
CPU/memory usage and network traffic volume, runs the
proactive scaling algorithm, generates scaling/deployment de-
cisions, and broadcasts the decisions to local controllers. Each
local controller executes the received decisions by launching
new VNF instances and adjusting service chain paths. For
reactive scaling, a local controller collects runtime statistics
from each VNF instance running in its datacenter, and pro-
duces local, reactive scaling decision. For flow routing, a local
controller uses flow tags and service chain paths received from
the global controller to determine the VNF instances that a
flow should traverse within its datacenter and be dispatched
to in other datacenters.
. The architecture of ScalIMS follows ETSI NFV MANO

framework [20], where the global controller closely resembles
the NFV orchestrator and the local controller works as both
VNF manager and virtual infrastructure manager. Though
ScalIMS is designed for IMS systems, it can be easily adapted
to handle other service chain systems, which provide user
inter-connection services with users distributed over a large
geographical span. For instance, ScalIMS can be adapted
to manage the virtualized service chains in Evolved Packet
Core (EPC) in 4G LTE network [6], by augmenting the CP
service chain of EPC with an edge proxy that simulates the
functionality of P-CSCF of IMS.

IV. SCALING OF CONTROL PLANE SERVICE CHAIN

A. Deployment and Entry Datacenter Binding

The CP service chain consists of P-CSCF and S-CSCF. We
use a fixed placement strategy by deploying P-CSCF instances
on every datacenter and S-CSCF instances on a fixed selected
datacenter, such that the delay between the datacenter where
we place S-CSCF instances and other datacenters falls within
an acceptable range (the acceptable SIP transaction completion
time is typically 250ms).

The rationale behind such a fixed placement strategy is the
following. Even if we spread S-CSCF instances over different
datacenters, each S-CSCF instance still needs to access a
central HSS server and a memcached cluster to process most
of the SIP transactions. This fact urges us to place S-CSCF
instances together with the HSS server and memcached cluster
in the same selected datacenter. Since P-CSCF instances act
as relay points for user flows to access S-CSCF instances, it
is desirable to place P-CSCF instances on every datacenter,
to facilitate users’ access to a P-CSCF instance on the closest
datacenter. This fixed placement strategy also simplifies the
routing of SIP messages along the CP service chain.

ScalIMS binds each user to the nearest datacenter according
to his current geographical location, which is referred to as the
user’s entry datacenter. A user’s CP and DP traffic can only
enter and depart from the respective service chains from his
entry datacenter. Such a datacenter binding is a natural design
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choice as each user should be pinned to a unique P-CSCF
instance on a specific datacenter when he uses the IMS [5].

To implement entry datacenter binding, a DNS server is
maintained in ScalIMS. When a user queries the IP address of
an available P-CSCF instance by sending out a DNS request,
the DNS server maps the user’s IP address contained in the
DNS request to a geographical location by querying an IP-
location database (e.g., IP location finder [21]), referred to
as the location service, and then assigns a datacenter that is
closest to the user’s current location as his entry datacenter.

When a call is initiated between user a and user b, user b’s
entry datacenter is also referred to as user a’s exit datacenter.
In ScalIMS, each pair of datacenters may form an entry-exit
datacenter pair. CP workload and DP workload between each
entry-exit datacenter pair are maintained in ScalIMS, which
are the aggregate rates of traffic that callers associated with
an entry datacenter send to callees bound to the exit datacenter,
along the CP service chain and the DP service chain, respec-
tively. The traffic rates among entry-exit datacenter pairs are
used for traffic prediction and VNF instance provision.

B. Proactive Scaling

Fig. 3: Proactive scaling protocol.
Proactive scaling is executed in each scaling interval ac-

cording to the protocol illustrated in Fig. 3.
1. Workload Prediction. Workload along a CP service chain
is described by the number of SIP transactions carried out
between each entry-exit datacenter pair every second. When
a SIP transaction finishes, the S-CSCF instance involved uses
the location service to determine which entry-exit pair this
transaction belongs to (according to the IP addresses of the
caller and the callee). Each S-CSCF instance keeps a record
of the number of SIP transactions on each entry-exit datacenter
pair and reports this number to the local controller in its
datacenter every second. The local controller accumulates CP
workload for 5 seconds before relaying it to global controller.

At the end of a scaling interval t, the global controller
predicts the workload ût+1 in the next scaling interval using
historic data in past several intervals (10 as in our exper-
iments), using auto regression [9]: ût+1 = µ + φ(ut − µ).
Here µ is the mean of the historic workload values in the
past several scaling intervals, ut is the average CP workload
collected in the current interval, and φ can be decided using the
covariance of the historical workload divided by the variance
of the historical workload. The workload between each entry-
exit datacenter pair is predicted this way.
2. Acquire Current VNF Provision. The global controller
then broadcasts a message to local controllers, asking them

to send the numbers of instances of each VNF provisioned
in the respective datacenter. Upon receiving this request, a
local controller knows that proactive scaling computation is
on going, stops its reactive scaling process (Sec. IV-C) so that
it does not interfere with proactive scaling, and then sends its
current VNF provision information to the global controller.
3. Run Proactive Scaling Alrogihm. After receiving cur-
rent VNF deployment from all local controllers, the global
controller computes the numbers of P-CSCF and S-CSCF
instances to be deployed in each datacenter in the next
scaling interval. Since all S-CSCF instances are placed in the
same datacenter, the number is decided by dividing the total
predicted workload between all pairs of entry-exit datacenters
by the processing capacity of S-CSCF. The number of P-
CSCF instances to be deployed in a datacenter is computed
by dividing the overall predicted workload for the entry-exit
datacenter pairs, which use this datacenter as either entry or
exit datacenter, by the processing capacity of P-CSCF.
4. Broadcast Proactive Scaling Result. The global controller
then broadcasts the computed numbers to local controllers.
A local controller sends a completion message to the global
controller, after creating new VNF instances (scale-out) or
enqueueing unused VNF instances to the respective buffer
queues (scale-in), according to the received numbers.
5. Enter New Scaling Interval. After the global controller
receives completion messages from all local controllers, it
broadcasts an “enter new scaling interval” message to all local
controllers. After receiving this message, a local controller
increments its scaling interval index by 1, and shuts down
some VNF instances from the head of the buffer queues.
Then the local controller sends a final acknowledgement to the
global controller. Upon receiving all final acknowledgements,
the global controller increases its scaling interval index by 1.

Buffer Queue. In each datacenter, a double-ended buffer
queue is maintained to temporarily hold unused VNF in-
stances, with one queue for one type of VNF. When a VNF
instance is to be removed, instead of directly shutting it down,
the local controller tags it with the index of the current scaling
interval, and enqueues it to the tail of the respective buffer
queue. Once a VNF instance is enqueued, no more flows will
be routed to it. Whenever more instances of a VNF are to be
established, if there are available instances in the buffer queue
of this VNF, buffered instances will be popped out from the tail
of the queue, and transformed back to working instances, to
fulfil the demand as much as possible. The purpose is to avoid
creating new VNF instances frequently and improve flow loss
rate, as the typical VNF creation time can last a few seconds
and has a bad influence on flow loss rate. Unused buffered
VNF instances are destroyed after τ scaling intervals (τ is set
to 10 in our implementation), in Step 5 above.

C. Reactive Scaling

An agent running on each VNF instance reports to the
local controller runtime statistics of the instance, e.g., CPU
usage, memory usage and the number of input packets, in
each second. The local controller maintains time series of
these statistics for each VNF instance. It decides whether
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CPU, memory, or network is overloaded during the past several
seconds by comparing the respective statistics with a threshold
(Sec. VI). If overload is persistently identified for at least
two types of statistics (e.g., CPU and network usage) for
some consecutive time (5 seconds as in our experiments),
then that VNF instance is reported as overloaded. We make
the decision using two types of statistics in order to eliminate
false alarms brought by examining a single statistics. The local
controller then avoids routing new traffic flows (i.e., new calls)
to overloaded instances if there are other available instances.
In a datacenter, if the states of a majority of instances of a
VNF are “overloaded”, scale-out is triggered by adding one
new instance of that VNF. Note that no scale-in decisions
(i.e., removing instances) are made reactively. They are solely
handled by the proactive scaling protocol, as it improves
system stability during workload fluctuation.

D. Flow Routing on Control Plane

When a user connects to the IMS system, he first is-
sues a query to a DNS server, which determines the entry
datacenter of this user and obtains the IP address of an
available P-CSCF instance (non-overloaded) by querying the
local controller of the entry datacenter. A P-CSCF instance
learns the IP addresses of several available S-CSCF instances
(non overloaded) by querying the local controller of the
datacenter hosting S-CSCF instances and distributes its up-
stream requests to these S-CSCF instances evenly. It regularly
(every 30s in ScalIMS) updates the connections to up-stream
S-CSCF instances by querying the local controller to obtain
an updated view of S-CSCF instances.

A CP flow for establishment of a call (i.e., a SIP INVITE
transaction) runs as follows. The caller sends out a SIP
INVITE message, carrying caller’s source IP address, receive
port and send port, to the assigned P-CSCF instance. The
P-CSCF instance forwards the message to one connected
S-CSCF instance. The S-CSCF instance queries the HSS
database to obtain the P-CSCF instance assigned to the callee
that is saved when callee registers himself, and forwards the
SIP INVITE message to that P-CSCF instance. The P-CSCF
instance assigned to the callee modifies the source IP field
in the message to an IP address located on the callee’s entry
datacenter, so that the callee can learn an IP address located
on callee’s entry datacenter. The P-CSCF instance then sends
the modified SIP INVITE message to the callee. The callee
responds with a SIP OK message, going through the same
service chain in the reversed direction. When the SIP OK
message passes through caller’s entry datacenter, the P-CSCF
instance modifies source IP field in the message to an IP
address located on caller’s entry datacenter as well. When such
a SIP INVITE transaction ends, the caller and the callee use
the learned IP addresses as the destination IP addresses of
the DP media flows and send their media flows to their entry
datacenters, from where the media flows enter the DP service
chain.

Besides SIP message modification, a P-CSCF instance sends
two mappings (Table I) to its local controller after it has
received the SIP OK message. The local controller saves these
mappings for use when processing the DP flows (Sec. V).

TABLE I: Mappings saved on local controller

Controller on
Caller Entry DC

1. (caller IP, caller send port)→(callee IP)
2. (callee IP, callee send port)→(an IP on caller’s entry
datacenter, caller IP, caller receive port)

Controller on
Callee Entry DC

3. (callee IP, callee send port)→(caller IP)
4. (caller IP, caller send port)→(an IP on callee’s entry
datacenter, callee IP, callee receive port)

V. SCALING OF DATA PLANE SERVICE CHAIN

The DP service chain adopts the same reactive scaling
mechanism as discussed in Sec. IV-C. For proactive scaling,
the same steps as shown in Fig. 3 is followed, with the
following differences.

First, the proactive scaling algorithm for DP service chain,
running in Step 3 in Fig. 3, not only decides how VNF
instances are provisioned in each datacenter, but also updates
the service chain path (Sec. V-A) between each entry-exit
datacenter pair. The new proactive scaling algorithm will be
discussed in Sec. V-B.

Second, workload along a DP service chain is described
as the number of packets transmitted over each entry-exit
datacenter pair every second. The local controller acquires
input DP workload using workload measuring OpenFlow
rules installed on the SDN switch at each datacenter, and
reports DP workload measurements to the global controller
every second. Local controllers also constantly measure inter-
datacenter delays through a ping test among each other, and
report the ping delays to the global controller every second. In
Step 1 of Fig. 3, not only workload but also delays between
datacenters are predicted for the next interval, using the same
approach as discussed in Sec. IV-B.

Next, each local controller also acts as the SDN controller
to manage DP flow routing within the respective datacenter.
When a local controller receives DP proactive scaling results
in Step 4 of Fig. 3, it immediately adds/removes DP VNF
instances accordingly, but saves the new DP service chain
paths and uses them for routing only after receiving the “enter
new scaling interval” message in Step 5 of Fig. 3 (Sec. V-D).

A. DP Service Chain Path

ScalIMS employs one DP service chain path for all the DP
media flows sharing the same entry-exit datacenter pair. A ser-
vice chain path is a sequence of datacenters l[0], . . . , l[m+ 1],
where l[0] and l[m+1] are the indexes of the entry datacenter
and exit datacenter, respectively, and l[i], 1 ≤ i ≤ m, is
the index of the datacenter hosting the ith VNF in a m-
stage service chain. For example, the DP service chain in
our implementation of ScalIMS is “firewall (stage 1)→IDS
(stage 2)→ transcoder (stage 3)”, and a service chain path is a
sequence of 5 datacenters. The DP proactive scaling algorithm
constantly adjusts the service chain path for each entry-exit
datacenter pair, to efficiently utilize deployed VNF instances.

The definition of service chain path augments an actual
service chain with a virtual entry stage 0 and a virtual exit
stage m + 1. These two stages are forced to be placed on the
entry and exit datacenter respectively, so that entry and exit
datacenters are guaranteed to be connected together. The two
virtual stages have infinite capacities.

Each service chain path should satisfy two conditions. (i)
Looplessness: if datacenter i hosts both stages x and y, x < y
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Algorithm 1: DP Proactive Scaling Algorithm
Input: Predicted delay between each datacenter pair, predicted

workload of each entry-exit datacenter pair, current VNF
deployment, current service chain paths

Output: New VNF instance provisioning, new service chain paths
1 Compute total available processing capacity of instances of each VNF

in each datacenter;
2 foreach entry-exit datacenter pair p, p .entr y , p .exit do
3 if there is enough VNF capacity on p’s current service chain path

and the end-to-end delay threshold is not violated along p’s
current path then

4 use p’s current service chain path as new path and reduce
available processing capacities of VNFs on p’s new path by
predicted workload;

5 foreach p, p .entr y , p .exit && p’s new service chain path has
not been determined do

6 compute a new path for p using Alg. 2;
7 if there is not enough capacity on p’s new path then
8 foreach datacenter d on the new path do
9 create dmax{0,Q −Q′ }/C e new instances of the VNF

that datacenter d hosts for p, where Q is p’s predicted
workload, Q′ is the total capacity of the VNF in d and
C is per-instance processing capacity of that VNF;

10 reduce available processing capacities of instances of the
VNF in d by predicted workload;

11 foreach p, p .entr y = p .exit do
12 use p’s current service chain path as new path, and carry out same

actions as in line 7-10 ;

13 scale in by enqueuing un-used VNF instances to the respective buffer
queues;

on the service chain, then datacenter i must host stage z, where
x < z < y too; otherwise, a routing loop is created on the inter-
datacenter network, which increases end-to-end delay and
wastes important inter-datacenetr network bandwidth. There is
no need for ScalIMS to tackle routing loops inside a datacenter,
as routing loops inside datacentres are not common and can
be resolved by method described in [22]. (ii) Bounded end-to-
end delay between the entry datacenter and the exit datacenter
along the service chain path, by a pre-defined threshold.

B. DP Proactive Scaling Algorithm

The DP proactive scaling algorithm is given in Alg. 1, which
computes a new service chain path for the next scaling interval,
for each entry-exit datacenter pair. The algorithm first tries to
reuse as many existing service chain paths as possible based
on the current VNF provisioning, as long as the capacity is
sufficient to handle predicted workload and the end-to-end
delay threshold is still guaranteed (lines 2-4). In case that an
existing service chain path can not be reused, a new service
chain path is computed using Alg. 2 (lines 5-6), and scale-
out is carried out if there is a shortage of VNF processing
capacities (lines 7-10). For an entry-exit datacenter pair p
where the entry and exit datacenters are the same, the entire
service chain path of p is always deployed in this datacenter
(lines 11-12). Finally, scale-in is carried out to enqueue un-
used VNF instances into the buffer queue (line 13).

C. Service Chain Path Computation

Algorithm Overview. Alg. 2 presents the algorithm to com-
pute a good service chain path between a given entry-exit
datacenter pair, that aims to minimize the number of new

Algorithm 2: Service Chain Path Computation
Input: Predicted inter-datacenter delays, an entry-exit datacenter pair

p = (entr y, exit ), p’s predicted workload, p’s current service
chain path, current available processing capacities of VNF
instances, the service chain of m stages, n datacenters

Output: p’s new service chain path
1 minProvPath = p’s current path;
2 for v = 0, ..., exit − 1, exit + 1, ..., n − 1 do
3 record[0] = entr y, record[1] = v, record[m + 1] = exit ;
4 for x = 2, ..., m do
5 find out datacenter v1 (v1 , exit) that has the largest

available capacity for stage-x VNF;
6 record[x] = v1;
7 if there is path loop on record then
8 eliminate loop by adjusting record;

9 path[0, ..., x] = record[0, ..., x];
10 path[x + 1, ..., m + 1] = exit ;
11 if path leads to a smaller number of new VNF instances to

be created for hanlding predicted workload than minProvPath
and satisfies end-to-end delay requirement then

12 minProvPath = path

13 path[0] = entr y, path[1] = v, path[2, ..., m + 1] = exit ;
14 check whether path should be assigned to minProvPath as in

lines 11-12;

15 path1[0] = entr y, path1[1, ..., m + 1] = exit ;
16 path2[0, ..., m] = entr y, path2[m + 1] = exit ;
17 check whether path1 or path2 should be assigned to minProvPath as

in lines 11-12;
18 if minProvPath violates end-to-end delay requirement then
19 find out the shortest-delay datacenter path between entry and exit;
20 run stage placement algorithm in Alg. 3 and assign the identified

service chain path to minProvPath;

21 return minProvPath;

VNF instances to be created while satisfing the end-to-end
delay requirement. For a service chain of m VNFs (stages)
and n datacenters, exhaustive search to identify such a service
chain path incurs O(mn ) running time. Instead, Alg. 2 seeks
to optimistically find a good path in O(mn) time.

In Alg. 2, the record list retains the service chain path under
investigation (line 3). The search starts by looping through
all datacenters except the exit datacenter, to decide the one
for hosting instances of stage-1 VNF (lines 2-3). For each
subsequent VNF in the service chain, a datacenter (except the
exit datacenter) with the largest available processing capacity
of the respective VNF is chosen (lines 4-6). We might have
created a loop in the service chain path. If so, the loop is
eliminated (lines 7-8) using the method to be discussed next.
Whenever the datacenter to host stage-x VNF is determined, a
candidate path is produced by assuming all the rest VNF stages
(x+1, . . . ,m) will be hosted in the exit datacenter (lines 9-10).
The candidate path is examined by calculating the number of
new VNF instances to be created along this path and the end-
to-end delay of this path. If the candidate path incurs addition
of fewer new VNF instances than the current best candidate
path while satisfying end-to-end delay requirement, we retain
it in minProvPath (lines 11-12). The algorithm also checks
some naive candidate paths that are not generated by the search
loop (lines 13-17). Finally, it is possible that all candidate
paths found so far fail to satisfy the delay requirement. If
so, we compute the shortest end-to-end delay path using a
shortest path algorithm, and run the stage placement algorithm
in Alg. 3 to produce the service chain path (lines 18-20).
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Algorithm 3: Stage Placement Algorithm
Input: The shortest-delay datacenter path d[0...k − 1] as a list of

distinct datacenter indices between entry-exit datacenter pair
(d[0], d[k − 1]) ; DP service chain with m + 2 stages
(augmented with virtual entry and exit stage discussed in
Sec. V-A) and per-instance capacity C j , 0 ≤ j ≤ m + 1, of
stage- j VNF; overall processing capacities Q′i, j of all stage- j
VNF instances in datacenter d[i]; predicted workload Q for
entry-exit datacenter pair (d[0], d[k − 1])

Output: service chain path l[0], . . . , l[m + 1] for entry-exit datacenter
pair (d[0], d[k − 1]).

1 Calculate N (i, j ), ∀i = 0, . . . , k − 1, j = 0, . . . , m + 1, as follows:

num(i, j ) =



0, if Q′i, j ≥ Q and m − j + 1 ≥ k − i − 1
d(Q −Q′i, j )/C j e, if Q′i, j < Q and m − j + 1 ≥ k − i − 1
+∞, if m − j + 1 < k − i − 1

(1)
N (0, 0) = 0, N (i, 0) = +∞, i = 1, . . . , k − 1 (2)

N (0, j ) = N (0, j − 1) + num(0, j ), j = 1, . . . , m + 1 (3)

N (i, j ) = min {N (i − 1, j − 1) + num(i, j ), N (i, j − 1) + num(i, j ) },
i = 1, . . . , k − 1, j = 1, . . . , m + 1

(4)
2 Backtrack from N (k − 1, m + 1) to derive the service chain path
l[0], . . . , l[m + 1];

3 return l[0], . . . , l[m + 1];

Loop Elimination. To eliminate a loop in the path introduced
in lines 5-6 of Alg. 2, we adjust the record list following
two ways: (i) place all VNF stages involved in the loop
on the datacenter at the start of the loop. Suppose the path
with loop is (1, 2, 4, 2, 5). It is adjusted to (1, 2, 2, 2, 5), i.e.,
the datacenter hosting stage 2 is changed from datacenter 4
to datacenter 2. (ii) Choose a new datacenter to replace the
datacenter that leads to the loop, which has the second largest
available capacity for hosting the respective VNF and will
not create another loop. Suppose datacenter 3 in the above
example has the second largest capacity of stage-3 VNF. Then
the path is adjusted to (1, 2, 4, 3, 5). The record list is adjusted
in both ways and the two resulting lists are compared. The list
requiring fewer new VNF instances is selected.

Stage Placement Algorithm. Alg. 3 gives the stage placement
algorithm used in line 20 of Alg. 2, which calculates a service
chain path, i.e., the sequence of datacenters to host VNF stages
on the service chain, that minimizes the number of new VNF
instances to be created on the path.

In Alg. 3, num(i, j) is the number of new stage- j VNF
instances to be created, if stage j is to be deployed on
datacenter d[i]. num(i, j) is computed in Eqn. 1 based on
the following observation: if datacenter d[i] is chosen to host
stage j, then the remaining number of yet-to-be-placed stages,
(m+2)−( j+1), must be no smaller than the remaining number
of datacenters which do not host any stage yet, k − (i + 1),
as otherwise the resulting service chain is not able to traverse
the shortest-delay datacenter path in sequence.

N (i, j) is the minimum number of instances of stage 0 to
stage j VNFs, if stage j is to be deployed on datacenter
d[i]. The computation of N (i, j) is a dynamic programming
problem (Eqn. (2) to (4) in Alg. 3). Eqn. (2) to Eqn. (3) are
base cases, initialized according to the fact that stage 0 is
on the entry datacenter d[0]. Eqn. (4) is derived based on the
following observation: if datacenter d[i] is chosen to host stage

j, then stage j − 1 can only be hosted on either datacenter
d[i − 1] (the previous datacenter on the datacenter path) or
datacenter d[i].

When calculating N (i, j) in Eqn. (4), we can construct a
link connecting N (i, j) to either N (i − 1, j − 1) or N (i, j − 1),
depending on whether N (i−1, j−1)+num(i, j) or N (i, j−1)+
num(i, j) is smaller. This indicates whether datacenter d[i−1]
or d[i] should host stage j − 1, if stage j is to be deployed
on datacenter d[i]. After N (k − 1,m + 1) is computed (recall
stage m + 1 must be placed on the exit datacenter d[k − 1]),
we can backtrack to obtain the best service chain path.

D. Flow Routing On Data Plane

Each DP media flow enters the system from the entry
datacenter, is routed through the datacenters on its service
chain path in a fully distributed fashion, and then departs from
the exit datacenter. The DP media flow sent by the caller is
used as an example to explain the distributed routing process
in the following paragraphs.
Enter Service Chain Path. The caller learns an IP address
located in his entry datacenter when the SIP OK message is
received (Sec. IV-D). This IP address is used as the destination
IP address to send the DP media flow to the entry datacenter.
Route through Service Chain Path. The local controller
in a datacenter decides the service chain path used by a
media flow, when the first packet of the flow arrives at the
datacenter and triggers an OpenFlow Packet_IN message at
the local controller. The local controller examines whether the
packet header contains a special tag. In our implementation
of ScalIMS, the tag is added to the destination port field by a
special OpenFlow rule in the flow’s entry datacenter. The tag
contains the indices of the flow’s entry and exit datacenters,
and the current scaling interval number modulo 4.

If the special tag is not present, it indicates that this
datacenter is the entry datacenter of the flow. Then the local
controller uses the mapping 1 in Table I, saved during the SIP
INVITE transaction, to get the callee IP address and obtains
the index of the flow’s exit datacenter using the location
service (Sec. IV). The local controller then selects the service
chain path corresponding to the flow’s entry-exit datacenter
pair, recorded for the current scaling interval. If there is one or
multiple VNF stages hosted in this entry datacenter, the local
controller selects a sequence of VNF instances for those VNF
stages, according to a smallest workload-first principle for load
balancing. Next, it installs several OpenFlow rules on the SDN
switches in the datacenter, to route the flow along the selected
sequence of VNF instances. The installed OpenFlow rule will
also add the special tag to the header of all incoming packets
of the flow. If the datacenter is not the exit datacenter, the
flow is then routed to the next datacenter on the service chain
path, through a VxLAN tunnel, that is set up between each
pair of datacenters. Each VxLAN tunnel connecting a pair of
datacenters is constructed over the inter-datacenter network
connecting that pair of datacenters. Different service chain
paths share the same VxLAN tunnel if they need to traverse
the same pair of datacenters.

If the special tag is present, the datacenter hosts VNF
stage(s) on the service chain path. The local controller selects
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the service chain path indicated in the tag. Then it selects VNF
instance(s) for the VNF stage(s), installs OpenFlow rules to
route the flow through the instance(s), and routes flow out
to the next datacenter (if it is not the exit datacenter), in the
same way as discussed in the previous case. The use of the
special tag ensures that each flow is routed through a consistent
service chain path.
Exit from Service Chain Path. At the exit datacenter, the
local controller uses mapping 4 in Table I to retrieve the IP
address on callee’s entry datacenter, callee IP and callee’s re-
ceive port. If the exit datacenter also hosts VNF stage(s) in the
service chain, the flow is routed through the VNF instance(s).
Then the local controller uses an OpenFlow rule to perform
an address translation, which replaces the flow’s source IP
address by the IP address on callee’s entry datacenter, flow’s
destination IP address by the callee IP, and flow’s destination
port by the callee’s receive port. The flow is then delivered to
the callee over the Internet.

E. Handling Scaling Interval Inconsistency

In Step 5 of Fig. 3, the global controller sends an ‘enter new
scaling interval’ message to all local controllers to advance
the scaling interval index on each local controller by 1. Due
to network delay, the local controllers may not receive the
message at the same time, resulting in temporary inconsistency
of scaling interval indices on different local controllers.

When a local controller is processing a flow, it may find
that the encoded scaling interval in the header of the received
flow packets does not match its current scaling interval index:
one scaling interval ahead, or one scaling interval behind.
In the first case, since the service chain paths for the next
scaling interval are broadcast and saved at all local controllers
before the ‘enter new scaling interval’ message can be sent and
received by any local controller, the current local controller
must have received the service chain paths for the next scaling
interval, though not yet receiving the ‘enter new scaling
interval’ message; it can use the service chain path for the
next scaling interval to route the flow. In the second case, the
local controller still uses the service chain path for the previous
scaling interval to route the flow.

Since the difference between the scaling interval in the tag
of received flow packets and the scaling interval on a local
controller is among −1, 0, and 1, the scaling interval encoded
in the tag is the actual value modulo 4, to reduce the number
of bits required to only 2.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement a prototype of ScalIMS in Java and de-
ploy ScalIMS code on both local controller and global con-
troller. The local controller is implemented as a module in
the FloodLight SDN controller [23]. The global controller
is implemented as a multi-threaded server program, which
communicates with local controllers over regular sockets. We
also implement a traffic generator based on PJSIP [24]. We
deploy one traffic generator in each datacenter, producing user
arrivals bound to the datacenter at a configurable rate. A global
traffic generator coordinator receives notifications of generated

TABLE II: VNF Capacity and Overload Threshold

VNF Capacity CPU
threashold

Memory
threshold

Input pkts/s
threshold

P-CSCF 500 tran/s 70% 50% 1000 pkts/s
S-CSCF 200 tran/s 70% 50% 400 pkts/s
Firewall 35000 pkts/s 90% 50% 35000 pkts/s
IDS 20000 pkts/s 90% 50% 20000 pkts/s
Transcoder 15000 pkts/s 90% 50% 15000 pkts/s

users and pairs up users in a first-come-first-match manner. A
call process is launched between every pair of paired users,
which includes SIP transactions to establish a call, followed
by a one-minute voice call at the bit rate of 80kbit/s, as well
as necessary SIP transactions to shutdown the call.

We use P-CSCF, S-CSCF and HSS components from the
Project Clearwater [8] as our CP VNFs. I-CSCF is omitted by
ScalIMS as I-CSCF is optional and merged into S-CSCF by
Project Clearwater. The DP service chain contains a firewall
(implemented using user space Click [2]), an intrusion detector
(Snort IDS [25]) and a transcoder (implemented using user
space Click). Each network function runs on a QEMU/KVM
VM. A VM to run a CP VNF is configured with 1 core and
2GB RAM. A VM to run a DP VNF is configured with 2
cores and 2GB RAM. The capacity and overload threshold
(to decide scale-out) of each instance of each VNF are given
in Table II, which are obtained by stress testing VNF instances
to overloaded states.

B. Evaluation in IBM SoftLayer Cloud

We evaluate the performance of ScalIMS on IBM SoftLayer
Cloud [26] by renting one bare-metal server in each of the 4
Softlayer datacenters, located in Tokyo, Hong Kong, London
and Houston, respectively. Each server is equipped with two
6-core 2.4GHz Intel CPU, 64GB RAM, and 1TB SATA
disk. In the SoftLayer cloud, servers in different datacenters
are connected through a global private network [26], which
provides a Gigabyte throughput. ScalIMS creates a VxLAN
tunnel mesh in the private network to route DP traffic. CP
VNFs are connected directly over the private network. The
difference in the connection method is because CP VNFs are
addressable at L3 layer (IP layer) whereas DP VNFs are only
addressable at L2 layer (Ethernet layer).

We evaluate the performance of ScalIMS based on two
groups of metrics. (1) The total number of new VNF in-
stances created over time: the smaller the number is, the more
cost/resource effective ScalIMS is; (2) QoS of user traffic
including the SIP transaction completion time for CP flows,
the RTT and loss rate for DP flows: a large number of QoS data
is collected and their cumulative distribution function (CDF)
curves are shown (as in Fig. 5, 6, 7), so that the higher the
CDF curve is on a figure, the better the QoS is.

We compare the performance achieved by using proactive
scaling only (the local controller does not react to overload
of instances), reactive scaling only (the global controller
initializes a good set of service chain paths, but no subsequent
proactive scaling decisions are sent to local controllers), and
both proactive and reactive scaling enabled (i.e., the combined
scaling strategy of ScalIMS). The reactive-scaling-only is
the base-line case as the reactive scaling used by ScalIMS
inside a single datacenter is similar to that of [4], [3]. Each
scaling interval is set to be 50 seconds long, and each buffer
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Fig. 4: Overall number of new VNF instances created: (a)
simultaneous start; (b) asynchronous start.
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Fig. 5: QoS of DP flows: simultaneous start.
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Fig. 6: QoS of CP flows: simultaneous start.

queue retains an unused VNF instance for at most 10 scaling
intervals. The maximum allowed end-to-end flow delay is
250ms.

1) Simultaneous Start: In this set of experiments, each
traffic generator starts generating users simultaneously at the
rate of 1 users/s, which gradually increases to 15 users/s and
then decreases to 6 users/s. The rate change happens once
every change interval. The duration of change intervals is set
to different values in different experiments. In this way, the
peak workload arrives at each datacenter almost concurrently.

Fig. 4(a) shows that the total number of VNF instances
provisioned (for both CP and DP service chains) does not
differ much under the three schemes. Since the maximum
workload on each datacenter arrives at around the same time,
the proactive scaling algorithm has no opportunity to decrease
the number of provisioned VNF instances by adjusting the
service chain path, and therefore the numbers are similar.

Fig. 5 plots CDFs of the number of DP flows at different
average packet loss rates and average RTTs, and shows that
the combined scaling strategy of ScalIMS out-performs the
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Fig. 7: QoS of DP flows: asynchronous start.
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other two strategies in terms of DP traffic quality. Pure reactive
scaling adds new instances only when overload occurs. During
the boot-up time of new instances, traffic continues to arrive
at the overloaded VNF instances, resulting in a high packet
loss rate and then high RTT. Pure proactive scaling adjusts
VNF instances once every scaling interval. During each scaling
interval, increased workload may have overloaded the system.
The best performance is achieved combining both proactive
and reactive scaling.

Fig. 6 shows that the average SIP transaction completion
time is similar with the three schemes. This is because scaling
of CP service chains is not triggered as often as DP service
chains, since each instance of a CP VNF is able to handle a
large number of SIP transactions.

2) Asynchronous Start: In this set of experiments, the traffic
generator in the Tokyo datacenter is started first, followed
by the traffic generators in Hong Kong, in Houston and
then in London. In this way, the peak workload in different
datacenters does not occur at the same time. Each traffic
generator increases its user generation rate from 5 users/s
to 15 users/s and then reduces it to 5 users/s, with a 30s
change interval.

In Fig. 4(b), the start delay between traffic generators in
Tokyo and in Hong Kong is set according to the values on
the x axis, while start delays between traffic generators in
Hong Kong and in Houston, and between traffic generators in
Houston and in London, are set to 120s. We observe that the
number of VNF instances created with the combined scaling
approach is similar to proactive scaling approach, but always
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smaller than reactive scaling approach. Fig. 7 shows that the
traffic quality is the best with the combined approach as well.

Why can the combined scaling strategy perform well even
when it creates a smaller number of VNF instances? The
Tokyo datacenter sees the peak workload first, leading to the
provisioning of many VNF instances in the datacenter, which
later become redundant and will be buffered for 10 scaling
intervals. When peak workload arrives at other datacenters,
the global controller can re-use the buffered VNF instances by
creating service chain paths traversing the Tokyo datacenter.
These phenomena are exhibited in Fig. 8.

The performance of CP SIP transaction completion time un-
der asynchronous start is very similar to the results presented
in Fig. 6, and the figures are omitted due to space limit.

VII. CONCLUSION

This paper proposes ScalIMS, a NFV management system
designed to deploy and scale service chains spanning geo-
distributed datacenters, using the case of an IMS. ScalIMS
features joint proactive and reactive scaling of DP and CP
service chains, for timely and cost-effective provisioning of
practical network services. Evaluation of our prototype imple-
mentation on IBM SoftLayer cloud shows that: (i) ScalIMS
improves QoS of user traffic by a large margin when compared
with pure reactive scaling; (ii) when peak workload arrives
asynchronously over the geographic span, ScalIMS effectively
reduces the total number of VNF instances provisioned while
guaranteeing excellent QoS.
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