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Estimation and LQG control over unreliable
network with acknowledgment randomly lost

Hong Lin, Hongye Su†, Senior Member, IEEE, Peng Shi, Fellow, IEEE, Renquan Lu, and Zheng-Guang Wu

Abstract—In this paper, we study the state estimation and
optimal control (i.e., linear quadratic Gaussian (LQG) control)
problems for networked control systems in which control inputs,
observations, and packet acknowledgments are randomly lost.
The packet acknowledgment is a signal that is sent from the
actuator to inform the estimator whether the actuator has
successfully received the control packets or not. For such sys-
tems, we obtain the optimal estimator, which is consisted of
exponentially increasing terms. For the solvability of the optimal
LQG problem, we come to a conclusion that even when the
optimal LQG control exists, it is impossible and unnecessary to
be obtained as its calculation is not only technically difficult but
also computationally prohibitive. This issue motivates us to design
a sub-optimal LQG controller for the underlying systems. We
first develop a sub-optimal estimator by using the estimator gain
in each term of the optimal estimator. Then we derive the sub-
optimal LQG controller and establish the conditions for stability
of the closed-loop systems. Examples are given to illustrate the
effectiveness and advantages of the proposed design scheme.

Index Terms—networked control systems, optimal estimation
and control, LQG, packet loss, Quasi-TCP-like system

I. INTRODUCTION

Recently, increasing attention has been paid on the systems
with their components (e.g., sensors, controllers, and actuators)
connected via network, namely networked control systems
(NCSs)[1]. The insertion of network brings numerous benifits,
such as reduced system wiring, lower cost in maintenance,
increased system agility, ease of information sharing, etc.
However, it also causes some network-induced constraints,
e.g., channel congestion, transmission delay, signal degrada-
tion, which may result in packet losses in data transmission
[2, 3]. To deal with this challenging issue, a number of
techniques have been developed, such as the H∞ filter [4–
8], the robust control [9–12], the predictive control [13, 14],
and the fuzzy model-based approach [15, 16].

For NCSs with packet losses, two transport protocols are
commonly deployed, i.e., the user datagram protocol (UDP)
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and transmission control protocol (TCP). NCSs with different
protocol lead to distinct results in estimation and control [17].
The key difference between these two protocols lies in the
existence of acknowledgment mechanism. In NCS with TCP
protocol, there are acknowledgments (ACKs) sent from the
actuator to inform the estimator whether the actuator has
successfully received the control packets or not. Such system
is usually called as the TCP-like system. The NCS with UDP
protocol, that is, in which there is no ACK available for the
estimator, is called as the UDP-like system. For the UDP-like
system, the implementation of transport protocol is simplified
and the additional energy consumption for the ACK signal
transmission is avoided. However, the lack of ACKs not only
makes difficult the analysis of the UDP-like system, but also
degrades the performances of estimation and control [18, 19].
For the TCP-like system, the ACK mechanism facilitates
theoretical analysis, but it is reported that for NCSs over
unreliable network, subject to network jitter and transmission
delay, it is impossible to send the ACK in time (without delay
and loss) to implement the TCP scheme [20–24]. Therefore,
the NCS with ACK randomly lost turns out to be a reasonable
and practical model for many applications, and such system
is called as the Quasi-TCP-like system [23, 24]. In this paper,
we are concerned with the optimal and sub-optimal solutions
to the estimation and linear quadratic Gaussian (LQG) control
problems for the Quasi-TCP-like systems.

For the TCP-like system, its optimal estimator has been
early known as the time-varying Kalman filter, and its stability
depends on a critical value for the observation packet loss
rate [25]. The critical value together with its upper and lower
bounds has been further studied in [26, 27]. For the LQG
problem, it has been pointed out in [17, 28] that “the separation
principle holds, and the optimal LQG controller is a linear
function of the estimated state.” Thereafter, the LQG problem
for the TCP-like systems has been extensively studied for
various cases [29–31]. While, these results generally do not
hold for the Quasi-TCP- or UDP-like systems.

For the UDP-like system, the optimal estimator and its
stability were studied in our recent work [18] for a special
case: the UDP-like system without observation packet loss.
The structure of the optimal estimator is complex and its com-
putation is time-consuming. Possibly due to the complexity of
the optimal estimator, to our best knowledge, the optimal LQG
problem is rarely studied. Instead of the optimal estimator, the
linear minimum mean square error (LMMSE) estimator was
used in studying the LQG problem (the LMMSE-estimator-
based LQG problem). While it is still difficult to solve this
problem except for some special cases [17]. Another sub-
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optimal linear LQG controllers were designed in [19, 21, 22].
However, in [21, 22] the finite horizon LQG problem is not
studied, and the estimates used are the time-update prediction
not the measurement-update estimation, which degrades the
estimation and control performances. The controller propsed
in [19] can stabilize the closed-loop system, only when the
system is scalar and there is no observation packet loss.

For the Quasi-TCP-like system, an efficient sub-optimal
estimator was developed in [32] but the optimal one is little
studied. Thus, the LMMSE estimator was again used to
study the LQG problem in [30], and the authors came to
a conclusion that “in general, the separation principle does
not hold, and the computation of the LQG controller requires
solving a nonlinear optimization problem, and the resulting
controller is a nonlinear function in the estimated state. If the
observation equation is noise free and the matrix C is square
and invertible, then the optimal control is a linear function
of the estimates.” The main reason is that when the system
state is estimated by the measurement-update estimator, like
the LMMSE estimator, the estimation error covariance (ECC)
will be a nonlinear function of the control uk, making it
difficult to solve the LQG problem. Although the time-update
predictor not the measurement-update estimator was used in
[24] to avoid such difficulty, the resulting structure of the ECC
is still complicated. Thus, the author had to introduce some
approaximations in the derivation to obtain a sub-optimal LQG
controller.

As far as we know, the optimal estimator for the Quasi-
TCP-like system has not yet been obtained. Therefore, what
is the structure of it? Whether does there exist a solution
to the optimal LQG problem, and is the solution solvable?
We also wonder that whether or not there is a sub-optimal
measurement-update estimator, based on which the LQG prob-
lem can be solved and the resulting LQG controller can be
presented in the traditional and familar way like the classic
LQG controller. These questions, to our best knowledge,
remain unsolved. Hence, motivated by these issues, we study
the optimal as well as sub-optimal solutions to the estimation
and LQG problems for the Quasi-TCP-like system. Our main
results and contributions are summarized as follows:

• Optimal estimator: We derive the optimal estimator for
the Quasi-TCP-like system, and show that its ECC can
be decoupled into two parts: one is the EEC for the TCP-
like system and the other is a summation consisting of
exponentially increasing terms.

• Solvability of the optimal LQG problem: Up to now, it
is little known about the solution to the optimal LQG
problem. We make a conclusion on its solvability that
in general, even when the optimal LQG control exists,
it is impossible and unnecessary to obtain the optimal
solutions for both the estimation and LQG control, as
their calculations are not only technically difficult but also
computationally prohibitive. We show that the difficulties
in solving the optimal LQG problem differ from the well
known ones to obtain the LMMSE-estimator-based LQG
control.

• Sub-optimal LQG controller: Although the optimal esti-
mator cannot be used in practice, in its complex structure

Fig. 1. The Quasi-TCP-like systems.

we find a component and then use it to design the desired
sub-optimal estimator. Based on it, the LQG controller
is obtained, which can be presented in the form similar
to the classic LQG controller. Finally, conditions for the
stability of the closed-loop systems are given.

The rest of the paper is organized as follows: In Section II,
the system setup and problems are formulated. In Section III,
the optimal estimator and the LQG problems are studied. Sub-
optimal estimator and LQG controller are developed in Section
IV. In Section V, numerical examples are given to illustrate the
effectiveness of the proposed design methods. The conclusions
are presented in Section VI.

Notations:
• Nx(µ, P ) denotes the Gaussian pdf of the random vari-

able x with mean µ and covariance P .
• x ∼ Nx(µ, P ) means that the pdf of the random variable

x is Nx(µ, P ).
• P(·) denotes probability measure.
• p(·) and p(·|·) denote the pdf and the conditional pdf,

respectively.
• E[·] denotes probability expectation.
• (·)′ denotes the transpose of a matrix or a vector.
• tr(·) denotes the trace of matrix.
• Let M be a matrix. (·)2M denotes the quadratic form of

(·)M(·)′. (·)2I with the identity matrix I means (·)(·)′.
• λ(M), λM : λ(M) denotes the spectral radius of M , and

λM , λ(M).

II. SYSTEM SETUP AND PROBLEM FORMULATION

A. System setup

Consider the following discrete-time Quasi-TCP-like linear
system:

xk+1 = Axk + νkBuk + ωk (1a)

yk =

{
Cxk + υk, for γk = 1
ϕ, for γk = 0

(1b)

where xk ∈ Rn, uk ∈ Rq , and yk ∈ Rp are system state,
control input, and observation, respectively. ϕ denotes empty
set. ωk and υk are zero mean Gaussian noises with covariances
Q ≥ 0 and R > 0, respectively. νk, γk, and τk (see, Fig. 1)
are i.i.d. Bernoulli random sequences with P(νk = 1) = ν,
P(γk = 1) = γ, and P(τk = 1) = τ . They describe the packet
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losses in the controller-to-actuator (C/A) channel, the sensor-
to-estimator (S/E) channel, and the ACK channel, respectively.
That is,

• γk = 1 stands for that the observation yk has been
successfully received by estimator, otherwise γk = 0.

• νk = 1 indicates that the control input uk has been
successfully delivered to the actuator, otherwise νk = 0.

• τk = 1 means that the ACK signal, i.e., the value
of νk, has been successfully delivered to the estimator;
Otherwise, τk = 0 and νk is unavailable for the estimator.

For the system described in (1), some standard assumptions
are made as follows.

Assumption 1: The pair (A,Q1/2) is controllable, and the
pair (A,C) is observable. The initial state x0 ∼ Nx0(x̄0, P0),
and x0, ωk, υk, νk, γk, and τk are mutually independent.

B. Problems formulation

Define the information set Ik , {yk, γk, τk} with G0 , ϕ
(empty set), where yk , {yk, · · · , y1}, γk , {γk, · · · , γ1},
and τk , {τk, · · · , τ0}. In this paper, we study the following
four problems.

Problem 1: (Optimal estimation) Determine the optimal
state estimation, denoted by x̂k, in the minimum mean square
error (MMSE) sense. That is, to find x̂k, minimizing E

[
||xk−

x̂k|Ik||2
]
.

The optimal LQG problem is formulated as follows. Given
a integer N , let {Wk} and {Λk} for 1 ≤ k ≤ N be positive
definite matrices. Define the cost functions as follows:

JN (πN−1, x̄0, P0) = E
[
x′
NWNxN +

∑N−1
k=0 x′

kWkxk

+ νku
′
kΛkuk|πN−1, x̄0, P0

]
where πN−1 = {u0, . . . , uN−1} is a sequence of the control
inputs, and uk is a function of Ik, i.e., uk = fk(Ik).

Assumption 2: The pair (A,B) is stabilizable, and the pair
(A,W 1/2) is detectable.

Problem 2: (Optimal LQG control) Determine the optimal
control sequence, denoted by π∗

N−1, that minimizes the cost
function JN , i.e.,

J∗
N = JN (π∗

N−1, x̄0, P0) = min
πN−1

JN (πN−1, x̄0, P0).

As we will see later, based on the optimal estimator, it
is difficult, sometimes impossible, to solve the optimal LQG
problem. Thus, we consider the following sub-optimal LQG
problem.

Problem 3: (Sub-optimal LQG control) Whether does there
exist a sub-optimal linear estimator, based on which the LQG
controller can be obtained?

An important property for a contrller is that whether or not
it can stablize the closed-loop system. Since the Quasi-TCP-
like system is a stochastic system, the stability is considered
in the mean sense as follows:

Definition 1: The closed-loop system is said to be mean
square stable, if both E[||xk||2] and E[||x̂k||2] are bounded.

Problem 4: (Mean square stability) Determine the condition
under which the closed-loop system is mean square stable.

The answers to Problems 1 – 4 are presented in Theorems
1 – 4, respectively.

III. THE OPTIMAL ESTIMATOR AND SOLVABILITY OF THE
OPTIMAL LQG CONTROLLER

A. Optimal estimator

It is well known in [33] that the desired optimal estimation
x̂k is given by E[xk

∣∣Ik]. Thus, we first derive the pdf of
xk in Lemma 3, and then compute the optimal estimation in
Theorem 1. Let x̄k , E[xk

∣∣Ik−1] denote the state prediction,
and let P̄k and Pk denote the prediction and estimation error
covariances, respectively.

It is shown later that the pdf of xk is a Gaussian mixture.
Two uesful results on Gaussian and Gaussian mixture pdfs are
formulated in the following two lemmas.

Lemma 1: [34, pp. 44] Given two independent random vari-
ables X ∼ NX(m,P ) and Z ∼ NZ(0,W ). Let Y = CX+Z
where C is a constant matrix. Then

PY = CPC ′ +W (2a)
p(Y ) = NY (Cm,CPC ′ +W ) (2b)

p(X|Y ) = NX

(
m+K(y − Cm), (I −KC)P

)
(2c)

where K = PC ′(CPC ′ + W )−1, and PY is the covariance
of Y .

Lemma 2: [33, pp. 213] Consider the following discrete-
time linear system:

xk = Axk−1 +Bk−1uk−1 + ωk−1

yk = Cxk + υk

where the Bk is a time-varying deterministic parameter. ωk ∼
N (0, Q) and υk ∼ N (0, R) are mutually independent. Then
the following facts hold.

(i) If p(xk−1) =
∑N

i=1 α
[i]
k−1Nxk−1

(m
[i]
k−1,Mk−1), then the

time-update pdf

p(xk) =
∑N

i=1 ᾱ
[i]
k Nxk

(m̄
[i]
k , M̄k), (3)

where ᾱ
[i]
k = α

[i]
k−1, m̄[i]

k = Am
[i]
k−1 + Bk−1uk−1, and

M̄k = AMk−1A
′ +Q.

(ii) If p(xk) takes the form as in (3), then the measurement-
update pdf

p(xk|yk) =
∑N

i=1 α
[i]
k Nxk

(m
[i]
k ,Mk), (4)

where m
[i]
k = m̄

[i]
k + Kk(yk − Cm̄

[i]
k ), Kk =

M̄kC
′(CM̄kC

′ + R)−1, Mk = (I − KkC)M̄k, α[i]
k =

ᾱ
[i]
k ϕ

[i]
k /c, ϕ[i]

k = Nyk
(Cm̄

[i]
k , PY

k ), PY
k = CM̄kC

′ + R,
and c =

∑N
j=1 ᾱ

[j]
k ϕ

[j]
k .

(iii) Denote x̂k = E[xk|yk] and Pk = E[(xk − x̂k)
2
I |yk]. If

p(xk|yk) takes the form as in (4), then

x̂k =
∑N

i=1 α
[i]
k m

[i]
k , Pk = B +

∑N
i=1 α

[i]
k (m

[i]
k − x̂k)

2
I .

1) Probability density function of xk: Denote by nk the
number of the lost ACK signals during time 0 to k − 1.

Lemma 3: Let Nk = 2nk . For 1 ≤ i ≤ Nk,

p(xk|Ik−1) =
∑Nk

i=1 ᾱ
[i]
k Nxk

(m̄
[i]
k , M̄k) (5a)

p(xk|Ik) =
∑Nk

i=1 α
[i]
k Nxk

(m
[i]
k ,Mk), (5b)



4

Algorithm 1 Prediction-update step:

M̄k = AMk−1A
′ +Q. (6)

• If τk−1 = 1, then Nk = Nk−1 and

m̄
[i]
k = Am

[i]
k−1 + νk−1Buk−1, 1 ≤ i ≤ Nk (7a)

ᾱ
[i]
k = α

[i]
k−1, 1 ≤ i ≤ Nk. (7b)

• If τk−1 = 0, then Nk = 2 ∗Nk−1 and

m̄
[i]
k =

{
Am

[i]
k−1, 1 ≤ i ≤ Nk−1

Am
[i−Nk−1]
k−1 +Buk−1, Nk−1 + 1 ≤ i ≤ Nk

(8a)

ᾱ
[i]
k =

{
ν̄α

[i]
k−1, 1 ≤ i ≤ Nk−1

να
[i−2k−1]
k−1 , Nk−1 + 1 ≤ i ≤ Nk.

(8b)

where ν̄ , 1− ν.

Algorithm 2 Measurement-update step:
For 1 ≤ i ≤ Nk,

m
[i]
k = m̄

[i]
k + γkKk(yk − Cm̄

[i]
k ) (9)

where

Kk = M̄kC
′ (CM̄kC

′ +R
)−1

(10a)
Mk = M̄k − γkKkCM̄k (10b)

and

α
[i]
k =

(
ϕ
[i]
k∑Nk

j=1 ϕ
[j]
k ᾱ

[j]
k

)γk

ᾱ
[i]
k (11)

where ϕ
[i]
k , Nyk

(Cm̄
[i]
k , PY

k ) and PY
k , CM̄kC

′ +R.

where {ᾱ[i]
k , α[i]

k }, {m̄[i]
k , m[i]

k }, and {M̄k, Mk} are computed
by Algorithms 1 and 2 with α

[1]
0 = 1, m[1]

0 = x̄0, and M0 =
P0.

Proof: We prove this lemma by mathematical induction.
Step 1: Consider the case k=1. Then x1 = Ax0+ν0Bu0+ω0.

• If τ0 = 1, then the value of ν0 is known and n1 = 0. From
(2b) in Lemma 1, it follows that p(x1) = Nx1(x̄1, P̄1),
where x̄1 = Ax̄0 and P̄1 = AP0A

′ + Q. By computing
(6) and (7) with k = 1, we can obtain ᾱ

[1]
1 , m̄[1]

1 , and M̄1.
Substituting them into (5a) yields p(x1) = Nx1(x̄1, P̄1).
Thus, (5a), (6), and (7) hold for k = 1 and τ0 = 1.

• If τ0 = 0, then the value of ν0 is unknown. Then n1 = 1
and N1 = 2. By the total probability law, we have

p(x1) = p(x1|{ν0 = 0})p({ν0 = 0})
+ p(x1|{ν0 = 1})p({ν0 = 1}) (12)

In p(x1|{ν0 = 0}), ν0 takes the value 0 and is a determin-
istic quantity. By (2b), p(x1|{ν0 = 0}) = Nx1(Ax̄0, M̄1)
where M̄1 = AP0A

′+Q. Similarly, by using (2b) again,
p(x1|{ν0 = 1}) = Nx1(Ax̄0 + Bu0, M̄1). If we set
ᾱ
[1]
1 = ν̄, ᾱ[2]

1 = ν, m̄[1]
1 = Ax̄0, and m̄

[2]
1 = Ax̄0+Bu0,

then (12) can be rewritten as

p(x1)= ᾱ
[1]
1 Nx1(m̄

[1]
1 , M̄1)+ᾱ

[2]
1 Nx1(m̄

[2]
1 , M̄1). (13)

It is easy to verify that p(x1) computed by (5a), (6), and
(8) with k = 1 is equal to (13). Hence, (5a), (6), and (8)
hold for k = 1 and τ0 = 0.

Consequently, (5a), (6), (7), and (8) hold for k = 1.
Step 2: In Step 1, we have proved that (5a) holds at k = 1,

that is,

p(x1) =
∑N1

i=1 ᾱ
[i]
1 Nx1(m̄

[i]
k , M̄1). (14)

• If γ1 = 0, there is no observation y1 and thus p(x1|I1) =
p(x1). Let p(x1|I1) take the form

p(x1|I1) =
∑2N1

i=1 α
[i]
1 Nx1(m

[i]
1 ,M1). (15)

It is evident that α[i]
1 = ᾱ

[i]
1 ,m

[i]
1 = m̄

[i]
1 , and M1 = M̄1,

since p(x1|I1) = p(x1). Hence, (5b), (9), (10), and (11)
hold at k = 1 and γ1 = 0.

• If γ1 = 1, with the observation y1, p(x1|I1) can be
derectly obtained from p(x1) in (14) by using Lemma
2 (ii). We still let p(x1|y1) take the form as in (15).
It is easy to check that p(x1|I1) and the parameters
{α[i]

1 ,m
[i]
1 ,M1}, obtained from p(x1) in (14) by using

Lemma 2 (ii), are completely indentical to those com-
puted by (5b), (9)-(11) at k = 1 and γ1 = 1.

From Steps 1 and 2, it follows that (5)-(11) hold at k = 1.
Suppose that (5)-(11) hold for 1, . . . , n. We check the case
k = n+ 1 as follows.

Step 3: For k = n+ 1, xn+1 = Axn + νnBun + ωn.
• If τn = 1, then the value of νn is known and nn+1 =

nn. p(xn+1|In) can be obtained from p(xn|In) by using
Lemma 2 (i). It is easy to verify that the p(xn+1|In)
obtained is equal to the p(xn+1|In) computed by (5a),
(6), and (7) with k = n+1. Thus, (5a), (6), and (7) hold
at k = n+ 1 and τn = 1.

• If τn = 0, then the value of νn is unknown to the
estimator, nn+1 = nn + 1, and Nn+1 = 2Nn. By using
the total probability law,

p(xn+1|In) = p(xn+1|In, {νn = 0})p({νn = 0})
+ p(xn+1|In, {νn = 1})p({νn = 1}). (16)

By applying Lemma 2 (i) to p(xn+1|In, {νn = 0}) and
p(xn+1|In, {νn = 1}), we have

p(xn+1|In, {νn = 0})
=
∑2nn

i=1 α
[i]
n Nxn+1(m̄

[i]
n+1, M̄n+1) (17)

where m̄
[i]
n+1 = Am

[i]
n and M̄n+1 = AMnA

′ + Q, for
1 ≤ i ≤ 2nn ;

p(xn+1|In, {νn = 1})
=
∑2nn

i=1 α
[i]
n Nxn+1(m̄

[i]
n+1, M̄n+1) (18)

where m̄
[i]
n+1 = Am

[i]
n + Bun, for 1 ≤ i ≤ 2nn .

By substituting (17) and (18) into (16),
p(xn+1|In) can be rewritten as: p(xn+1|In) =∑2nn+1

i=1 ᾱ
[i]
n+1Nxn+1(m̄

[i]
n+1, M̄n+1) where {m̄[i]

n+1,
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ᾱ
[i]
n+1, M̄n+1} are equal to (6) and (8) with k = n + 1,

which means that (5a), (6), and (8) hold for k = n + 1
and τn = 0.

Step 4: By using Lemma 2 (ii) and following the same line
of argument in Step 2, it is easy to verify that (5b), (9), (10),
and (11) hold at k = n + 1. For the save of space, the proof
is not presented here.

From Steps 3 and 4, it follows that (5)-(11) hold at k =
n+ 1, which completes the proof.

2) Optimal estimator for the Quasi-TCP-like system:
Theorem 1 (Optimal estimator): The optimal estimator

for the Quasi-TCP-like system is the following:

x̂k =
∑2nk

i=1 α
[i]
k m

[i]
k (19a)

Pk = Mk +
∑2nk

i=1 α
[i]
k (m

[i]
k − x̂k)

2
I (19b)

where α
[i]
k , m[i]

k , and Mk can be computed by Algorithms 1
and 2.

Proof: Since p(xk|Ik) in (5a) is a Gaussian mixture, (19)
can be readily obtained by applying Lemma 2 (iii) to (5a).

Remark 1: The impacts of the random loss of ACK are
formulated as follows:

• It is known in [17] that Mk in (10), in fact, is the
estimation error covariances for the TCP-like system.
Hence, the summation part in (19b) can be viewed as
the degradation of estimation performance caused by the
random losses of ACK signals.

• From Algorithms 1 and 2, it follows that the number of
the terms in the Gaussian mixture pdfs (5) doubles at
the time when the ACK signal is lost. As time passes,
the number of the terms will exponentially increases.
Consequently, the computation of x̂k and Pk requires
exponentially increasing time, and eventually exhausts
computer’s memory. Thus, in general, the optimal esti-
mation cannot be used in practice.

B. Solvability of the Optimal LQG problem

For the UDP- or Quasi-TCP-like system, it is only known
that it is difficult to obtain the LMMSE-estimator-based LQG
control [17, 23], whereas it is little known about the optimal
solution. In this section, by an example we reveal the diffi-
culties in solving the optimal LQG problem, and then make a
conclusion on its solvability in Theorem 2.

We define the optimal value function Vk(xk) as follows and
use the cost-to-go dynamic programming approach to derive
the optimal control.

VN (xN ) = E[x′
NWNxN |IN ] (20a)

Vk(xk) = min
uk

E[x′
kWkxk

+ νku
′
kΛkuk + Vk+1(xk+1)|Ik]. (20b)

Example 1: Consider a simple scalar system [17] with A =
B = C = 1, WN = Wk = 1, Λk = 0, R = 1. We further
assume that there is no system noise (i.e., ωk ≡ 0 and Q = 0)
and no observation packet losses (i.e., γk ≡ 1). Without loss
of generality, we suppose that τN−1 = 0 and τN−2 = 1.

1) Calculations of VN (xN ), VN−1(xN−1), and VN−2(xN−2):
VN (xN ) = E[x′

NWNxN |IN ] = E[x2
N |IN ].

VN−1(xN−1) = min
uN−1

E[x2
N−1 + VN (xN )|IN−1]

= min
uN−1

E[x2
N−1 + (xN−1 + νN−1uN−1)

2|IN−1]

= min
uN−1

E[2x2
N−1|IN−1] + νu2

N−1 + 2νuN−1x̂N−1.

By solving ∂VN−1(xN−1)/∂uN−1 = 0, the optimal con-
trol is obtained as u∗

N−1 = −x̂N−1. VN−1(xN−1) =
E[2x2

N−1|IN−1] − νx̂2
N−1 = E[(2 − ν)x2

N−1|IN−1] +
νPN−1.
By virtue of τN−2 = 1, νN−2 is known to the estimator
and controller.

VN−2(xN−2) = min
uN−2

E[x2
N−2 + VN−1(xN−1)|IN−2]

= min
uN−2

E[x2
N−2 + (2− ν)(xN−2 + νN−2uN−2)

2

+ νPN−1|IN−2]

= min
uN−2

E[(3− ν)x2
N−2|IN−2] + 2νN−2(2− ν)x̂N−2uN−2

+ νN−2(2− ν)u2
N−2 + νE[PN−1|IN−2]. (21)

To obtain VN−2, we proceed to compute PN−1 and
E[PN−1|IN−2].

2) Computation of PN−1: Note that γk ≡ 1, τN−1 = 0.
From (8b), we have ᾱ

[i]
N−1 = α

[i]
N−2. Let c ,∑2nN−1

i=1 α
[i]
N−2ϕ

[i]
N−1. From (9), we have for 1 ≤ i ≤ 2k,

α
[i]
N−1 =

1

c
ϕ
[i]
N−1α

[i]
N−2 (22a)

m
[i]
N−1 = AN−1m

[i]
N−2 + ΓA, (22b)

where ΓA , νN−2KN−2BuN−2 +KN−1yN−1.
From (19a) and (22a),

x̂N−1 =
∑2nN−1

i=1 α
[i]
N−1m

[i]
N−1 = AN−1x

∗
N−2+ΓA, (23)

where x∗
N−2 , 1

c

∑2nN−1

i=1 ϕ
[i]
N−1α

[i]
N−2m

[i]
N−2.

By (19b), (22a) and (23), we have

PN−1 = MN−1 +
∑2nN−1

i=1 α
[i]
N−2(m

[i]
N−2 − x̂N−2)

2

= MN−1 + AN−1ΓB ,

where ΓB ,
∑2nN−1

i=1
1
cϕ

[i]
N−1α

[i]
N−2(m

[i]
N−2 − x∗

N−2)
2.

ΓB =
∑2nN−1

i=1
1
cϕ

[i]
N−1α

[i]
N−2

(
(m

[i]
N−2)

2 − 2m
[i]
N−2x

∗
N−2

+ (x∗
N−2)

2
)

= (x∗
N−2)

2 +
∑2nN−1

i=1
1
cϕ

[i]
N−1α

[i]
N−2(m

[i]
N−2)

2

−
∑2nN−1

i=1 2 1
cϕ

[i]
N−1α

[i]
N−2m

[i]
N−2x

∗
N−2

= − (x∗
N−2)

2 +
∑2nN−1

i=1
1
cϕ

[i]
N−1α

[i]
N−2(m

[i]
N−2)

2.

3) Computation of E[PN−1|IN−2]:
Since yk = Cxk + υk, p(yk|Ik−1) can be obtained from
p(xk|Ik−1) by applying Lemma 2 (i) to (5a). That is,

p(yk|Ik−1) =
∑2nk

i=1 Nyk
(Cm̄

[i]
k , PY

k )ᾱ
[i]
k

=
∑2nk

i=1 ϕ
[i]
k ᾱ

[i]
k .
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Then we have p(yN−2|IN−2) = c due to ᾱ
[i]
N−1 = α

[i]
N−2.

Note that IN−2 = {yN−2, . . . , y1, τN−2, . . . , τ0}. From
(11) and (19b), it is clear that PN−1 contains yN−1. Thus

E[PN−1|IN−2] =
∫∞
−∞ PN−1p(yN−1|IN−2)dyN−1

=
∫∞
−∞(ΓC + ΓD)dyN−1,

where

ΓC = − c(x∗
N−2)

2 =
(
∑2nN−1

i=1 α
[i]
N−2ϕ

[i]
N−1m

[i]
N−2)

2∑2nN−1

i=1 α
[i]
N−2ϕ

[i]
N−1

ΓD = cMN−1 + AN−1

∑2nN−1

i=1 ϕ
[i]
N−1α

[i]
N−2(m

[i]
N−2)

2.

Since c is a Gaussian mixture function and ϕ
[i]
N−1 is

a Gaussian function, there is a analytic expression for∫∞
−∞ ΓDdyN−1.

4) Three difficulties are presented as follows:
• The Gaussian function ϕ

[i]
N−1 occurs in both the numer-

ator and denominator of ΓC . From the knowledge of
calculus, it is clear that there is no analytic expression
for
∫∞
−∞ ΓCdyN−1, even when nN−1 = 1. Moreover,

with the random losses of ACK signals, the number
of ϕ

[i]
N−1 will exponentially increase, which further

confirms the fact that there is no analytic expression
for
∫∞
−∞ ΓCdyN−1 and E[PN−1|IN−2] either.

• Note that the desired optimal u∗
N−1 minimizing

VN−2(N − 2) in (21) is in fact a function not a
deterministic quantity. Without analytic expression for
E[PN−1|IN−2], the nonlinear optimization cannot be
further performed to obtain the optimal control u∗

N−1

in V (N − 2);
• The number of the Gaussian functions ϕ

[i]
N−1 in ΓC

will exponentially increase, making its computation
time-consuming. Meanwhile, in solving the LQG prob-
lem, the optimal estimation x̂k is required, and its
computation also is time-consuming.

For this simplified system, these three difficulties are enough
to prevent the optimal LQG problem from being solved. �

Theorem 2 (Solvability of the optimal LQG problem):
For the general Quasi-TCP-like system, it is impossible to
solve the optimal LQG problem.

Proof: It is clear that for the general Quasi-TCP-like
system, these three difficulties mentioned above still exist.
Both the calculation of

∫∞
−∞ ΓCdyN−1 and the aforemen-

tioned nonlinear optimization are technically difficult. More
importantly, due to the random losses of ACK, the time for
the computation will tend to infinity, and computer’s memory
will be eventually exhausted. Therefore, we claim that it is
impossible to solve the optimal LQG problem.

Remark 2: The conclusion in Theorem 2 is also applicable
to the UDP-like system, since the ACK in the UDP-like system
is completely lost.

IV. SUB-OPTIMAL LQG CONTROL

The conclusion in Theorem 2 motivates us to develop a
sub-optimal but efficient solution to the estimation and LQG
problems for the Quasi-TCP-like system. In the following, we
first develop a sub-optimal linear estimator, and then based

on it we derive the LQG controller. Finally, we establish the
conditions for the mean square stability of the closed-loop
system.

A. Sub-optimal Linear Estimator

The structure of the optimal estimator is complex, but the
Kk in (10a) can be recursively calculated. By this Kk, we
design a sub-optimal linear estimator as in Algorithm 3.

In Algorithm 3, the symbols x̄k and x̂k are recycled to
denote the predicted and estimated system states for this sub-
optimal estimator, respectively. Then P̄k and Pk are recycled
to denote the corresponding prediction and estimation error
covariances, respectively. Define a function

g(γ,M)=AMA′−γAMC ′(CMC ′+R)−1CMA′+Q. (24)

Algorithm 3 Sub-optimal Linear Estimator
Initial condition: x̂0 = x̄0 M̄0 = P0

Prediction step: (LMMSE predictor)

x̄k+1 = Ax̂k + (τkνk + τ̄kν)Buk (25)

where τ̄k = 1− τk.
Estimation step:

x̂k+1 = x̄k+1 + γk+1Kk+1(yk+1 − Cx̄k+1) (26)

where

Kk+1 = M̄k+1C
′ (CM̄k+1C

′ +R
)−1

(27)
M̄k+1 = g(γk+1, M̄k) (28)

Remark 3: In Algorithm 3, we use the LMMSE preditor to
obtain the predicted system state. For the estimation step, the
estimator gain Kk in (27) is in fact the Kk in (10a) computed
by the M̄k, which occurs in each term of the Gaussian mixture
pdf (5a). The way to design this Kk is inspired by [35]. In
[35], by constructing auxiliary system states, a sub-optimal
estimator was developed for the UDP-like without observation
packet loss. The resulting estimator gain is identical to the one
computed by the M̄k in each term of the Gaussian mixture
pdf. The benefit of this design method is that the Kk is not a
nonlinear function of uk, and thus the nonlinear optimization
problem is circumvented.

Remark 4: Technically speaking, the estimation perfor-
mance of the sub-optimal estimator in Algorithm 3 is inferior
to that of the LMMSE estimator, but in the backgound of the
LQG problem they are quite close, which will be shown and
explained later in Section V.

Lemma 4: The prediction and estimation error covariances
can be calculated as follows:

P̄k+1 = APkA
′ +Q+ τ̄kν̄νBuku

′
kB

′ (29)
Pk+1 = (I − γk+1Kk+1C)P̄k+1(I − γk+1Kk+1C)′

+ γk+1Kk+1RK ′
k+1. (30)

Proof: From (1a) and (25), we have

xk+1 − x̄k+1 = A(xk − x̂k) + τ̄k(νk − ν)Buk + ωk. (31)
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If τk = 1, then τ̄k = 0. By applying (2a) to (31), we obtain the
covariance of xk+1 − x̄k+1, i.e., P̄k+1 = APkA

′ +Q. If τk =
0, then τ̄k = 1 and νk is an unknown random quantity. By
using (2a) again, we have P̄k+1 = APkA

′+Q+ ν̄νBuku
′
kB

′.
Therefore, (29) holds for τk = 1 and 0.

From (1a) and (26), we have

xk+1 − x̂k+1

= xk+1 − x̄k+1 − γk+1Kk+1(Cxk+1 + υk+1 − Cx̄k+1)

= (I−γk+1Kk+1C)(xk+1 − x̄k+1)−γk+1Kk+1υk+1. (32)

The value of γk+1 is known for the estimator. By applying
(2a) to (32) and noting that γ2

k+1 = γk+1, it is easy to verify
that (30) holds. The proof is completed.

B. LQG control

To derive the finite horizon LQG controller, we first calcu-
late E[tr(HPk+1)|Ik] in Lemma 5. Such quantity is required
in Lemma 6 to derive the optimal value function Vk(xk).

Define Kk , I −KkC.
Lemma 5: Given a matrix H , let T , γK′

k+1HKk+1+ γ̄H .
Then

E[tr(HPk+1)|Ik] = tr
(
A′TAPk

)
+ tr

(
TQ
)

+ τ̄ ν̄νtr
(
u′
kB

′TBuk

)
+ γtr(K ′

k+1HKk+1R).

Proof: By substituting (29) into (30) and then taking
mathematical expectation to Pk+1, we have

E[Pk+1|Ik] = γKk+1(APkA
′ +Q+ τ̄ ν̄νBuku

′
kB

′)K′
k+1

+γKk+1RK ′
k+1 + γ̄(APkA

′ +Q+ τ̄ ν̄νBuku
′
kB

′).

By using the property that E[tr(A)] = tr(E[A]) and
tr(BAPA) = tr(ABAP ),

E[tr(HPk+1)|Ik] = tr(HE[Pk+1|Ik])
= tr

(
A′(γK′

k+1HKk+1 + γ̄H)APk

)
+ tr

(
(γK′

k+1HKk+1 + γ̄H)Q
)

+ τ̄ ν̄νtr
(
u′
kB

′(γK′
k+1HKk+1 + γ̄H)Buk

)
+ γtr(K ′

k+1HKk+1R)

= tr
(
A′TAPk

)
+ tr

(
TQ
)
+ τ̄ ν̄νtr

(
u′
kB

′TBuk

)
+ γtr(K ′

k+1HKk+1R).

The proof is completed.
In the following, we use the cost-to-go dynamic program-

ming approach to obtain the Vk(xk).
Lemma 6: Based on the sub-optimal estimator in Algorithm

3, Vk(xk) defined in (20) can be calculated as follows:

Vk(xk) = E[x′
kZkxk|Ik] + tr(HkPk) + ∆k (33)

where Kk is computed by (27) and (28), and

Lk = − (Λk +B′(Zk+1 + τ̄ ν̄Tk+1)B)−1B′Zk+1A
(34a)

Tk+1 = γK′
k+1Hk+1Kk+1 + γ̄Hk+1 (34b)

Zk = A′Zk+1A+Wk − νA′Zk+1B(Λk+

B′(Zk+1 + τ̄ ν̄Tk+1)B)−1B′Zk+1A (34c)
Hk = A′Tk+1A+Wk +A′Zk+1A− Zk (34d)

∆k = ∆k+1 + tr
(
Tk+1Q

)
+ tr(Zk+1Q)

+ tr
(
(K ′

k+1Hk+1Kk+1)R
)

(34e)

with ZN = WN , HN = 0, and ∆N = 0.
Proof: We prove this lemma by mathematical induction.

It is evident that (33) holds at time N . Suppose that (33) holds
for N, · · · , k + 1. Now we check Vk(xk).

Vk(xk)

= min
uk

E
[
x′
kWkxk + νku

′
kΛkuk + Vk+1(xk+1)|Ik

]
= min

uk

E
[
x′
k(Wk +A′Zk+1A)xk + ω′

k+1Zk+1ωk+1

+ νku
′
k(Λk +B′Zk+1B)uk + 2νku

′
kB

′Zk+1Axk

+ tr(Hk+1Pk+1) + ∆k+1|Ik
]

(a)
= min

uk

E
[
x′
k(Wk +A′Zk+1A)xk|Ik

]
+ tr(A′Tk+1APk)

+
{
∆k+1 + tr(Zk+1Q) + tr(Tk+1Q)

+ γtr(K ′
k+1Hk+1Kk+1R)

}
(35)

+ νν̄τ̄u′
kB

′Tk+1Buk

+ νu′
k(Λk +B′Zk+1B)uk + 2νu′

kB
′Zk+1Ax̂k,

where
(a)
= is obtained by using Lemma 5. Then we solve

∂Vk(xk)/∂uk = 0 and get the uk which minimizes Vk(xk) as
follows

uk = −(Λk +B′(Zk+1 + τ̄ ν̄Tk+1)B)−1B′Zk+1Ax̂k.

The quantities in {·} of (35) are equal to the ∆k in (34e).
Substituting this uk back into (35) yields

Vk(xk)

= E
[
x′
k(Wk +A′Zk+1A)xk|Ik

]
+∆k + tr(A′Tk+1APk)

− νx̂′
kA

′Zk+1B(Λk +B′(Zk+1 + τ̄ ν̄Tk+1)B)−1B′Zk+1Ax̂k

(a)
= E

[
x′
kZkxk|Ik

]
+∆k + tr(A′Tk+1APk)

+ tr
(
(Wk +A′Zk+1A− Zk)Pk

)
(b)
= E

[
x′
kZkxk|Ik

]
+∆k + tr(HkPk),

where
(a)
= is obtained by using (34c) and the existing result

([17], Lemma 4.1) that E[x′
kSxk] = x̂′

kSx̂k + tr(SPk). The

equality
(b)
= is obtained by using (34d). Hence, (33) holds for

the time k. The proof is completed.
Based on Lemma 6, the results on the LQG control problem

are formulated in the following theorem.
Theorem 3 (LQG control): For the Quasi-TCP-like system,

based on the sub-optimal estimator in Algorithm 3,
• the finite horizon LQG controller is uk = Lkx̂k, and the

corresponding cost function

JN = x′
0Z0x0 + tr

(
(Z0 +H0)P0

)
+
∑N

k=1 tr
(
(Tk + Zk)Q+ (K ′

kHkKk)R
)
, (36)

where Lk, Zk, Tk,Hk are computed by (34), and x̂k and
Kk are computed by Algorithm 3.

• There is no solution to the infinite horizon LQG problem.
Proof: From the dynamic programming approach, it

follows that the control sequence uk = Lkx̂k obtained in
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Lemma 6 is the desired optimal control that minimizes the
cost function JN , and JN = V0(x0). From (33) and (34), it is
easy to obtain JN as in (36).

Similar to the TCP-like system, the estimator gain Kk

is a random quantity, making 1
kJk and Lk unconvergent.

Therefore, there is no solution to the infinite horizon LQG
problem. The proof is completed.

Remark 5: (Separation principle) From Algorithm 3, it is
known that the estimator gain Kk is independent of the design
of the LQG controller. However, the LQG controller depends
on Kk, and the estimation error covariance Pk depends on the
control inputs. Consequently, the separation principle does not
hold for the Quasi-TCP-like system.

C. Stability of the closed-loop systems

In the sequel, we show that under some conditions the
controller uk = Lkx̂k can stabilize the closed-loop Quasi-
TCP-like system, where Lk is computed by (34).

To study the stability of the closed-loop systems, we let
Wk = W , Λk = Λ, and Gk , Hk+Zk. Note that S = g(1, S)
is the standard algebraic Riccati equation, where g(·) defined
in (24). It is well known that under Assumption 1, there is
an unique positive definite solution S∞ for S∞ = g(1, S∞).
For the convenience of formulation, we define some symbols.
Denote the maximum sigular value of K by λK, where K =
I − S∞C ′(CS∞C ′ + R)−1C. Define η , γ(λK)

2 + γ̄ and
ρ , τ̄ ν̄η.

Three condtions are given as follows: Condtion 1: B is
square and invertible; Condtion 2: C is full column rank; and
Condtion 3: P0 ≥ S∞.

Theorem 4 (Stability of the closed-loop systems): Con-
sider the system in (1) with the LQG controller uk = Lkx̂k

where Lk is computed by (34).
(i) If Zk and Gk are bounded, then the system is mean

square stable.
(ii) If Conditions 1, 2, and 3 are satified, then a sufficient

condition for the boundedness of Zk and Gk is

λ2
A(η + ν − 2ην) < (η + ν − ην).

Proof of part (i): Let Kk = (I − γkKkC). We start
with calculating xk and ek. By substituting uk = Lx̂k into (1)
and using ek = xk − x̂k,

xk+1 = Axk + νkBuk + ωk

= (A+ νkBLk+1)xk − νkBLk+1ek + ωk. (37)

By combining (31) and (32), we have

ek+1 = xk+1 − x̂k+1

= Kk+1(Aek + τ̄k(νk − ν)BLk+1)x̂k + ωk)

− γk+1Kk+1υk+1

= τ̄k(νk − ν)Kk+1BLk+1xk

+Kk+1(A− τ̄k(νk − ν)BLk+1)ek

+Kk+1ωk − γk+1Kk+1υk+1. (38)

The homogenous parts of (37) and (38) are the following:

xk+1 = (A+ νkBLk+1)xk − νkBLk+1ek (39)

ek+1 = τ̄k(νk + ν)Kk+1BLk+1xk

+Kk+1(A− τ̄k(νk + ν)BLk+1)ek. (40)

Since E[||ωk||2] = tr(Q) and E[||υk+1||2] = tr(R) in (37)
and (38) are bounded, it was pointed out in [28] that if the
homogenous parts of (37) and (38) are asymptotically stable,
then the system equations (37) and (38) are mean square
stable.

To study the asympotic stability of (39) and (40), we follow
the similar line of augument developed in [28], which requires
the calculation of x′

kZkxk + e′kHkek. However, it would
be tedious to compute this quantity directly via (39) and
(40), which can be seen in [28]. Actually, majorities of the
derivations for computing this quantity have been performed
in calculating Vk(xk) in Lemma 6. Therefore, in the following
we employ the results on Vk(xk) to compute this quantity.

Denote the optimal control by u∗
k. From (20), we have

Vk(xk) = E[x′
kWxk + νk(u

∗
k)

′Λu∗
k + Vk+1(xk+1)|Ik].

According to the definition of the mean square stability, it
is the E[||xk||2] not the E[||xk||2|Ik] that is considered. Thus,
taking mathematical expectation with respect to Ik yields

E[Vk+1(xk+1)−Vk(xk)]=−E[x′
kWxk+ν(u∗

k)
′Λu∗

k]. (41)

From (33) and by noting that E[e′kHkek] = tr(HkPk), we
obtain

E[Vk(xk)] = E[x′
kZkxk + e′kHkek] + E[∆k]. (42)

Then

E[x′
k+1Zk+1xk+1+e′k+1Hk+1ek+1−(x′

kZkxk+e′kHkek)]

= E[Vk+1(xk+1)−∆k+1 − (Vk(xk)−∆k)]

= − E[x′
kWxk + ν(u∗

k)
′Λu∗

k] + (tr
(
Tk+1Q

)
+ tr(Zk+1Q) + tr

(
(K ′

k+1Hk+1Kk+1)R
)
) (43)

where the last equality is obtained by (41) and (34e).
In Lemma 6, xk and ek are determined by (37) and (38).

While what we consider is their homogenous parts, i.e., (41)
and (42), in which there is no noise, which is equivalent to
letting Q = R = 0 in Vk(xk). Therefore, for the homogenous
parts (41) and (42), by letting Q = R = 0 in (43),

E[x′
k+1Zk+1xk+1 + e′k+1Hk+1ek+1 − (x′

kZkxk + e′kHkek)]

= −E[x′
kWxk + νk(u

∗
k)

′Λu∗
k].

Summing up this equality for k = 0 to n− 1 yields

E[x′
nZnxn + e′nHnen − (x′

0Z0x0 + e′0H0e0)]

= −
∑n−1

k=0 E[x′
kWxk + ν(u∗

k)
′Λu∗

k].

Due to E[x′
nZnxn + e′nHnen] ≥ 0, we have E[x′

0Z0x0 +
e′0H0e0] ≥

∑n−1
k=0 E[x′

kWxk+ν(u∗
k)

′Λu∗
k]. By the hypothesis

that {Zk and Gk} are bounded, we have Z̄ ≥ Z0 and
Ḡ ≥ G0 = Z0 + H0 ≥ H0. Then E[x′

0Z̄x0 + e′0Ḡe0] ≥∑n−1
k=0 E[x′

kWxk+ν(u∗
k)

′Λu∗
k]. The boundedness of the series∑n−1

k=0 E[x′
kWxk] implies limk→∞ E[x′

kWxk] = 0. Due to
W > 0, E[x′

kxk] = E[||xk||2] → 0. Since E[x′
kWxk] =

x̂′
kWx̂k + E[e′kWek], we have limk→∞ E[x̂′

kWx̂k] = 0, i.e.,
E[||x̂k||2] → 0, which implies the asympotic stability of (39)
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and (40). Hence, (37) and (38) are mean square stable. The
proof of part (i) is completed.

After introducing some preliminaries and lemmas as fol-
lows, we continue the proof of part (ii).

To study the boundedness of Zk and Gk, we reverse the
time index in (34) and then rewrite (34) as follows:

Lk+1 = − (Λ +B′(Zk + τ̄ ν̄Tk)B)−1B′ZkA (44a)
Zk+1 = ΦX(Zk, Zk + τ̄ ν̄Tk) (44b)
Gk+1 = A′(γK′

kHkKk + γ̄Hk + Zk)A+W (44c)

∆k+1 = ∆k + tr
(
TkQ+ (K ′

kHkKk)R+ ZkQ) (44d)

with Z0 = W and H0 = 0, where

ΦX(Z, Y ) , A′ZA+W − νA′ZB(Λ +B′Y B)−1B′ZA.

Define two operators as follows:

ΦZ(Z,G, ρ) , ΦX(Z, (1− ρ)Z + ρG)

= A′ZA+W − νA′ZB(Λ

+B′((1− ρ)Z + ρG)B)−1B′ZA

ΦG(Z,G, η) , (1− η)A′GA+ ηA′ZA+W.

Lemma 7: Some results on g(1, X), ΦX , ΦZ , and ΦG are
formulated as follows ([17, pp. 182] and [36, Theorems 10.6
and 10.7]):

(i) g(1, X), ΦX , ΦZ , and ΦG are monotonically increas-
ing functions. Namely, if Z1 ≥ Z2 and Y1 ≥ Y2,
then g(1, Z1) ≥ g(1, Z2), ΦX(Z1, Y1) ≥ ΦX(Z2, Y2),
ΦZ(Z1, Y1, ρ) ≥ ΦZ(Z2, Y2, ρ), and ΦG(Z1, Y1, η) ≥
ΦG(Z2, Y2, η).

(ii) If Condition 1 is satisfied, then a necessary and suf-
ficient condition for the convergences of Zk+1 =
ΦZ(Zk, Gk, ρ) and Gk+1 = ΦG(Zk, Gk, η) is λ2

A(η +
ν − 2ην) < (η + ν − ην).

(iii) If S0 ≥ S∞, then S0 ≥ Sk ≥ S∞.
Lemma 8: Let X > 0 and Y ≥ 0, and C is a matrix with

compatible dimension. Then
(i) ([37], Theorem 7.7.3 and Corollary 7.7.4)

The following three inequalities are equivalent:
λ(Y X−1) < 1 ⇔ X > Y ⇔ Y −1 > X−1.

(ii) ([38], pp. 213) The matrix inverse lemma:
XC ′(CXC ′ + Y )−1 = (X−1 + C ′Y −1C)−1C ′Y −1.

In the sequel, we assume that Conditions 1, 2, and 3 are
satified.

Lemma 9: Let M̄0 = P0 ≥ S∞. The following facts hold.
(i) Let Sk+1 = g(1, Sk) with S0 = M̄0 = P0. Then S∞ ≤

Sk ≤ M̄k.
(ii) F (M̄k) = K′

kHkKk is monotonically decreasing, and
thus K′

kHkKk ≤ (λK)
2Hk.

Proof:
(i) We prove this lemma by mathematical induction. For k =

0, this lemma holds. Suppose that it holds for 0, . . . , n.
We check the case k = n+1 as follws. By the hypothesis
that Sn ≤ M̄n and Lemma 7 (i), Sn+1 = g(1, Sn) ≤
g(1, M̄n) ≤ g(γn+1, M̄n) = M̄n+1. Consequently, we
have Sk ≤ M̄k. From Lemma 7 (iii), it follows that
S∞ ≤ Sk ≤ M̄k. The proof is completed.

(ii) Define h(S) , (S−1 + C ′R−1C)−1C ′R−1C, f(S) ,
I − h(S), and F (S) , f(S)′Hkf(S). By Lemma 8
(ii), we have h(M̄k) = KkC. Thus, f(M̄k) = Kk and
F (M̄k) = K′

kHkKk.
Suppose that S1 > S2. By Lemma 8 (ii), we have
S−1
1 < S−1

2 and thus S−1
1 +C ′R−1C < S−1

2 +C ′R−1C.
Let Y = C ′R−1C, and Y −1 exists by virtue of the
assumption that C is full column rank. By using Lemma
8 (ii) again, we have

(S−1
1 + Y )−1 > (S−1

2 + Y )−1

(a)⇒ λ
(
(S−1

2 + Y )−1Y Y −1(S−1
1 + Y )

)
< 1

⇒ λ(h(S2)h(S1)
−1) < 1

(b)⇒ h(S1) > h(S2)

(c)⇒ f(S1) < f(S2)
(d)⇒ λ(f(S1)f(S2)

−1) < 1,

where the inequalities on the right-hand side of
(a)⇒,

(b)⇒,
and

(d)⇒ are obtained by using Lemma 8 (i), and
(c)⇒ is

obtained by noting that f(S1) < f(S2) due to f(S) =
I − h(S).
To compare f(S1)

′Hkf(S1) with f(S2)
′Hkf(S2), we

consider the following inequalities.

λ
(
(f(S1)f(S2)

−1)′Hk(f(S1)f(S2)
−1)H−1

k

)
≤ λ

(
(f(S1)f(S2)

−1)′
)
λ
(
Hkf(S1)(f(S2)

−1H−1
k

)
=
(
λ
(
f(S1)f(S2)

−1
))2

< 1.

From Lemma 8 (i), it follows that
(f(S1)f(S2)

−1)′Hkf(S1)(f(S2))
−1 < Hk, which

means that f(S1)
′Hkf(S1) < f(S2)

′Hkf(S2), i.e.,
F (S1) < F (S2). From the result in part (i), we have
K′

kHkKk = F (M̄k) ≤ F (S∞) = K′HkK ≤ (λK)
2Hk.

The proof is completed.
Lemma 10: Define Z̄k+1 = ΦZ(Z̄k, Ḡk, ρ) and Ḡk+1 =

ΦG(Z̄k, Ḡk, η) with Z̄0 = Z0, Ḡk = G0. Then

Z̄k ≥ Zk, Ḡk ≥ Gk. (45)

Proof: From (44c) and by using Lemma 9, we have

Gk+1 = A′(γK′
kHkKk + γ̄Hk + Zk)A+W

≤ (γ(λK)
2 + γ̄)A′HkA+A′ZkA+W

= ηA′GkA+ (1− η)A′ZkA+W

= ΦG(Zk, Gk, ρ). (46)

From (34b), Zk+τ̄ ν̄Tk ≤ τ̄ ν̄(γλ2
K+γ̄)(Hk+Zk−Zk)+Zk =

ρGk + (1− ρ)Zk. By Lemma 7 (i),

Zk+1 = ΦX(Zk, τ̄ ν̄Tk)

≤ ΦX(Zk, (1− ρ)Zk + ρGk) = ΦZ(Zk, Gk, ρ). (47)

We prove this lemma by mathematical induction. It is clear
that (45) holds for k = 0. Suppose that it holds for 0, . . . , n.
We check the case k = n + 1 as follows. From (46) (47)
and Lemma 7 (i), we have Gn+1 ≤ ΦG(Zn, Gn, ρ) ≤
ΦG(Z̄n, Ḡn, ρ) = Ḡn+1, and Zn+1 ≤ ΦZ(Zn, Gn, ρ) ≤
ΦZ(Z̄n, Ḡn, ρ) = Z̄n+1. The proof is completed.
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Proof of part (ii) of Theorem 4: From Lemma 7 (ii),
it follows that if Condition 1 is satisfied and the inequality
λ2
A(η + ν − 2ην) < (η + ν − ην) holds, then Z̄k and Ḡk are

convergent and thus are bounded. By lemma 10, Zk and Gk

are bounded as well. �

V. NUMERICAL EXAMPLES

In this section, by examples, we evaluate the performance
of the proposed LQG controller and verify the main results
we obtained.

A. Stability of the closed-loop system:

In the following, we present two examples to verify the
mean square stability of the closed-loop system.

Example 2: Consider the unstable MIMO system in [17]
with following parameters:

A=


1.001 0.005 0 0
0.350 1.001 −0.135 0
−0.001 0 1.001 0.005
−0.375 −0.001 0.590 1.001

B=


0.001
0.540
−0.002
−1.066


C =

[
1 0 0 0
0 0 1 0

]
R = diag(0.001, 0.001), Q = qq′

where q = [0.003, 1,−0.005,−2.150]′, W = diag(1, 0, 0, 0),
Λ = 2.

Since Condistions 1 and 2 are not satisfied for this MIMO
system, the boundedness of Zk and Gk cannot be theoratically
determined via Theorem 4 (ii). Thus, we check their bounded-
ness by simulation. By runnig the simulation 1000 times with
randomly generated {γk, νk, τk}, we found that Zk and Gk

are always bounded. One of these running results is shown
in Fig. 2. From Theorem 4 (i), it follows that the closed-loop
system is mean square stable, as shown in Fig. 2.

k

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

E
[

||xk||
]

E[||ek||]

0 100 200 300 400 500 600 700 800 900 1000

×105

0

0.5

1

1.5

2

trace(Zk)
trace(Gk)

Fig. 2. The boundedness of Zk and Gk , and the mean square stability of
the MIMO system.

Example 3: Consider the scalar unstable system used in
[19, 21] with the parameters: A = 1.1, B = C = 1, Q =
R = W = Λ = 1. Let γ = ν = τ = 0.8. It is easy to
check that for this system, Condistions 1 and 2 are satisfied,

and the inequality λ2
A(η + ν − 2ην) < (η + ν − ην) holds.

It follows from Theorem 4 (ii) that Zk and Gk are bounded,
which guarantees the mean square stability of the closed-loop
system. These results are illustrated in Fig. 3.

0 50 100 150 200 250 300 350 400 450 500
1
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3

4

5

trace(Zk)
trace(Gk)
trace(Z̄k)
trace(Ḡk)90 100
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4.46
4.5

4.54

299.8 300 300.2

2.214

2.216

k
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0

2
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6

8

E
[

||xk||
]

E[||ek||]

Fig. 3. The boundedness of Zk and Gk , and the mean square stability of
the scalar system.

B. Performance of the sub-optimal estimator and controller
Example 4: To compare the estimation performance of the

sub-optimal estimator we proposed with that of the LMMSE
estimator, we consider the quantity ∆P = Pk − PL

k , where
PL
k denotes the estimation error covariance of the LMMSE

estimator. For the scalar system above, ∆P is shown in Fig.4.
If the control inputs are deterministic and are independent
of the estimates, like the cases uk ≡ 10 or 20, then the
larger the magnitude of control inputs is, the more apparant
the difference between their estimation performances becomes.
However, it is in the background of the LQG control problem
that we propose this sub-optimal estimator. Once the control
inputs are determined by the LQG controller we design, the
performances between these two estimators are closer, as
shown in Fig. 4. The main reason is that when the system is
stabilized by the LQG controller, the system states are usually
near zero and then the magnitude of the feedback control is
small. From (29), it is known that P̄k is closer to the prediction
error covariance of the LMMSE estimator [23]. Thus, Pk is
closer to PL

k .
Example 5: For the LQG problem, Jk/k is usually adopted

to evaluate the long term performance. For the scalar (i.e.,
SISO) and MIMO systems presented in Examples 1 and 2,
the Jk/k is not convergent, which is shown in Fig. 5. When
the ACK packet arrival rate τ is close to 1, the performance
of the proposed LQG controller approches that of the optimal
LQG controller for the TCP-like system (that is, the “Real
TCP-like” case in Fig. 5).

VI. CONCLUSIONS

In this paper, for the general Quasi-TCP-like systems we
have proposed the optimal estimator and given a conclusion
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k

0 20 40 60 80 100 120 140 160 180 200

∆
P
=

P
k
−

P
L k

0
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1.5
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τ = ν = γ = 0.8

uk ≡ 10

uk ≡ 20

uk = Lkx̂k

Fig. 4. The difference of the performances between the sub-optimal estimator
we proposed and that of the LMMSE estimator.
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k

0 100 200 300 400 500 600 700 800 900 1000
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The SISO system: γ = ν = 0.8

Fig. 5. The average cost function Jk/k.

on the solvability of the optimal LQG controller. Also a sub-
optimal LQG controller is designed. Examples are given to
demonstrate the potential and effectiveness of the proposed
LQG controller.

REFERENCES

[1] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints
in networked control systemsła survey,” Industrial Informatics, IEEE
Transactions on, vol. 9, no. 1, pp. 403–416, 2013.

[2] J. Zhang, Y. Lin, and P. Shi, “Output tracking control of networked con-
trol systems via delay compensation controllers,” Automatica, vol. 57,
pp. 85–92, 2015.

[3] P. Shi, H. Wang, and C.-C. Lim, “Network-based event-triggered control
for singular systems with quantizations,” Industrial Electronics, IEEE
Transactions on, doi:10.1109/TIE.2015.2475515.

[4] R. Yang, P. Shi, and G.-P. Liu, “Filtering for discrete-time networked
nonlinear systems with mixed random delays and packet dropouts,”
IEEE Trans. Automat. Control, vol. 56, no. 11, pp. 2655–2660, 2011.

[5] P. Shi, X. Luan, and F. Liu, “H∞ filtering for discrete-time systems

with stochastic incomplete measurement and mixed delays,” Industrial
Electronics, IEEE Transactions on, vol. 59, no. 6, pp. 2732–2739, 2012.

[6] L. Zhang, Y. Zhu, P. Shi, and Y. Zhao, “Resilient asynchronous H∞
filtering for markov jump neural networks with unideal measurements
and multiplicative noises,” Cybernetics, IEEE Transactions on, vol. 45,
no. 12, pp. 2840–2852, 2015.

[7] H. Yan, F. Qian, F. Yang, and H. Shi, “H∞ filtering for nonlin-
ear networked systems with randomly occurring distributed delays,
missing measurements and sensor saturation,” Information Sciences,
doi:10.1016/j.ins.2015.09.027.

[8] H. Zhang, Q. Chen, H. Yan, and J. Liu, “Robust filtering for switched
stochastic system with missing measurements,” Signal Processing, IEEE
Transactions on, vol. 57, no. 9, pp. 3466–3474, 2009.

[9] Z. Wang, F. Yang, D. W. Ho, and X. Liu, “Robust H∞ control for
networked systems with random packet losses,” IEEE Trans. Syst., Man,
Cybern., Syst.B, vol. 37, no. 4, pp. 916–924, 2007.

[10] R. Yang, P. Shi, G.-P. Liu, and H. Gao, “Network-based feedback
control for systems with mixed delays based on quantization and dropout
compensation,” Automatica, vol. 47, no. 12, pp. 2805–2809, 2011.

[11] L. Zhang, Z. Ning, and P. Shi, “Input–output approach to control for
fuzzy Markov jump systems with time-varying delays and uncertain
packet dropout rate,” Cybernetics, IEEE Transactions on, vol. 45, no. 11,
pp. 2449–2460, 2015.

[12] L. Qiu, Y. Shi, F. Yao, G. Xu, and B. Xu, “Network-based robust
H2/H∞ control for linear systems with two-channel random packet
dropouts and time delays,” Cybernetics, IEEE Transactions on, vol. 45,
no. 8, pp. 1450–1462, 2014.

[13] G.-P. Liu, Y. Xia, J. Chen, D. Rees, and W. Hu, “Networked predic-
tive control of systems with random network delays in both forward
and feedback channels,” Industrial Electronics, IEEE Transactions on,
vol. 54, no. 3, pp. 1282–1297, 2007.

[14] J. Zhang, Y. Xia, and P. Shi, “Design and stability analysis of networked
predictive control systems,” Control Systems Technology, IEEE Trans-
actions on, vol. 21, no. 4, pp. 1495–1501, 2013.

[15] H. Dong, Z. Wang, J. Lam, and H. Gao, “Fuzzy-model-based robust
fault detection with stochastic mixed time delays and successive packet
dropouts,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 42, no. 2, pp. 365–376, 2012.

[16] H. Li, C. Wu, P. Shi, and Y. Gao, “Control of nonlinear networked sys-
tems with packet dropouts: interval type-2 fuzzy model-based approach,”
Cybernetics, IEEE Transactions on, vol. 45, no. 11, pp. 2378–2389,
2015.

[17] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Foundations of control and estimation over lossy networks,” Proc. the
IEEE, vol. 95, no. 1, pp. 163–187, 2007.

[18] H. Lin, H. Su, Z. Shu, Z.-G. Wu, and Y. Xu, “Optimal estimation in
UDP-like networked control systems with intermittent inputs: Stability
analysis and suboptimal filter design,” IEEE Trans. Automat. Control,
doi:10.1109/TAC.2015.2479195.

[19] H. Lin, H. Su, P. Shi, R. Lu, and Z.-G. Wu, “LQG control for networked
control systems over packet drop links without packet acknowledgment,”
Journal of the Franklin Institute, vol. 352, no. 11, pp. 5042–5060, 2015.

[20] A. L. Garcia and I. Widjaja, Communication Networks. McGraw Hill,
2000.

[21] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. Sastry,
“Optimal linear LQG control over lossy networks without packet ac-
knowledgment,” Asian Journal of Control, vol. 10, no. 1, pp. 3–13,
2008.
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