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Abstract

We develop a semidefinite programming method for the optimization of quantum networks,
including both causal networks and networks with indefinite causal structure. Our method applies to
abroad class of performance measures, defined operationally in terms of interative tests set up by a
verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the
informativeness of the test. Building on this result, we extend the notion of conditional min-entropy
from quantum states to quantum causal networks. The optimization method is illustrated in a number
of applications, including the inversion, charge conjugation, and controlization of an unknown
unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the
maximization of the winning probability in a non-causal quantum game.

1. Introduction

Advances in quantum communication [1-3] and in the integration of quantum hardware [4—8] are pushing
towards the realization of networked quantum information systems, such as quantum communication
networks [9—13] and distributed quantum computing [ 14—16]. Networks of interacting quantum devices are
attracting interest also at the theoretical level, providing a framework for quantum games [17] and protocols
[18-20], insights on the foundations of quantum mechanics [18, 21-23], a starting point for a general theory of
Bayesian inference [24—31] and for the development of models of higher-order quantum computation [32—-34].

The network scenario motivates a new set of optimization problems, where the goal is not to optimize
individual devices, but rather to optimize how different devices interact with one another. In many situations,
the devices operate in a well-defined causal order—this is the case, for example, in the circuit model of quantum
computing, where computations are implemented by sequences of gates [35, 36]. Recently, researchers have
started to investigate more general situations, where the causal order can be in a quantum superposition
[20, 33, 34, 37-39] or can be indefinite in other more exotic ways, in principle compatible with quantum
mechanics [34, 40-45]. In these new situations, optimizing quantum networks is important, for at least three
reasons: First, in order to establish an advantage, one has to first find the optimal performances achievable in a
definite causal order. Second, finding the maximum advantage requires an optimization over all non-causal
networks. This is an essential step for assessing the power of the new, non-causal models of information
processing. Third, identifying the ultimate performances achieved in the absence of pre-defined causal structure
is expected to shed light on the interplay between quantum mechanics and spacetime.

In this paper we develop a semidefinite programming (SDP) approach to the optimization of quantum
networks. We start by analyzing scenarios with definite causal order, choosing an operational measure of
performance, quantified by how much the network scores in a given test. The test consists in sending inputs to
the devices, performing local computations, and finally measuring the outputs. Tests of this type are also
important in the theory of quantum interactive proof systems [46], wherein they are used to model the
interaction between a prover and a verifier. The input-output behavior of a quantum causal network is described
in the framework of quantum combs [18, 47] (also known as quantum strategies [ 17]), which associates a positive
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Figure 1. Generalized network (in blue) interacting with two sequences of local devices in Alice’s laboratory (orange boxes) and in
Bob’s laboratory (green boxes). Devices acting in the same laboratory are applied in a well-defined causal order, corresponding to the
direction from left to right in the picture. However, no causal order is assumed between the devices in the two laboratories.

operator to any given sequence of quantum operations. In this framework, the optimization is a SDP. We work
out the dual optimization problem, showing that the maximum score is quantified by a one-shot entropic
quantity that characterizes the informativeness of the test. This quantity extends to networks the notion of max
relative entropy [48—51] (see also the monograph [52]). Building on the connection with the max relative
entropy, we define a measure of the amount of correlations that a causal network can generate over time. This
quantity is based on the notion of conditional min-entropy [50, 51], originally defined for quantum states and
extended here to quantum causal networks.

After discussing the causal case, we turn our attention to quantum networks with indefinite causal order.
Some of these networks arise when multiple quantum devices are connected in a way that is controlled by the
state of a quantum system [18, 20, 38]. Some other networks are not built by linking up individual devices [41].
They are ‘networks’ in a generalized sense: they are spatially distributed objects that can interact with a set of local
devices. The description of these generalized networks is trickier, because we cannot specify their behavior in
terms of the behavior of individual quantum devices. Instead, we must characterize them through the way they
respond to external inputs. More specifically, a general quantum network is specified by a map that accepts as
input the operations taking place in local laboratories and returns as output an operation, as figure 1. Maps that
transform quantum operations are known as quantum supermaps. They were originally introduced in the causal
scenario [18, 53] and later generalized to the case of networks with indefinite causal structure [18, 34, 41]. These
maps can be represented by positive operators, subject to a set of constraints that guarantee that valid operations
are transformed into valid operations. Again, the form of these constraints leads to SDPs. In this case, we find
that the maximum score can be expressed in terms of a max relative entropy, here named the max relative entropy
of signaling, which quantifies the deviation from the set of no-signaling channels. In addition, we characterize the
max relative entropy between two non-causal network, showing that it is equal to the maximum of the max
relative entropy over all the states that can be generated by interacting with the two networks. This result opens
the way to the definition of hypothesis testing protocols to probe the fundamental structure of spacetime, by
testing the possibility of exotic non-causal networks against the null hypothesis that events have a well-defined
causal structure.

To illustrate the general method, we provide a number of applications to concrete tasks, involving the
optimization of both causal and non-causal networks. For the optimization in the causal setting, we consider the
tasks of inverting an unknown unitary dynamics, simulating the evolution of a charge conjugate particle, and
adding control to an unknown unitary gate. Looking at these tasks in terms of network optimization is a
relatively new approach and here we provide the first optimized solutions. For the optimization in the non-
causal setting, we illustrate our method by analyzing the non-causal game introduced by Oreshkov et al[41]. In
this case, we fix the operations performed by the players (as in [41]) and we search for the non-causal network
that offers the largest advantage for these operations. Using the SDP approach, we obtain a simple proof of the
optimality of the network presented in [41]. Optimality can also be derived from a recent result of Brukner [54],
who considered a more general scenario where the players’ operations are not fixed, but rather subject to
optimization. When the operations are fixed as in [41], however, our SDP technique yields a significantly shorter
optimality proof. The simplification in this restricted scenario suggests that SDP may prove useful also for the
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broader scope of identifying a non-causal analogue of the Tsirelson bound, which was the motivating problem
of [54].

The paper is organized as follows. In section 2 we introduce the framework of quantum combs and the
characterization of quantum causal networks. In section 3 we review the basic facts about SDP and establish a
general relation with the max relative entropy. The general result is applied to quantum causal networks in
section 4 and is then used to define a suitable extension of the conditional min-entropy (section 5) and of the
max relative entropy (section 6). In sections 7 and 8 we extend the results to quantum networks without
predefined causal structure. Our techniques are illustrated in section 9, where we present applications to the
tasks of inverting unknown evolutions, simulating charge conjugation, controlling unitary gates, and
maximizing the winning probability in a non-causal quantum game. Finally, the conclusions are drawn in
section 10.

2. The framework of quantum combs

In this section we introduce the concepts required for the optimization of quantum causal networks. First of all,
we review the connection between quantum channels and operators. Then, we present the basics of the
framework of quantum combs.

2.1. Quantum operations, quantum channels, and the Choi isomorphism

Quantum operations [55] describe the most general transformations of quantum systems, including both the
reversible transformations associated to unitary gates and the irreversible transformations due to
measurements. A quantum operation with input system A and output system B is a completely positive trace
non-increasing map C, transforming operators on the input Hilbert space H, into operators on the output
Hilbert space Hp. We will often use the diagrammatic notation

Afc}s (1)

We say that the quantum operation C in the above diagram is of type A — B.
When system A is trivial—that is, when its Hilbert space is one-dimensional—the quantum operation C
corresponds to the preparation of a state of system B, diagrammatically represented as .When system

Bis trivial, the quantum operation C in equation (1) corresponds to a measurement effect on system A and is
represented as ‘ Measurement effects are positive (semidefinite) operators P satisfying P < I, where

Iis the identity operator on the system’s Hilbert space. Effects are associated to the outcomes of measurements
and the probability of the outcome corresponding to the effect Pis given by the Born rule

. = Tr[Pp], @

where p is the state of the system before the measurement. In the special case where Pis the identity operator, we
represent the corresponding effect as

In general, quantum measurement processes are described by quantum instruments. A quantum instrument
with input A and output Bis a collection of quantum operations {C, },cx of type A — B, subject to the condition
thatthesum )y C, is trace-preserving. Each quantum operation corresponds to one alternative outcome x
and the probability that the quantum operation C, takes places on a given input state p is given by

AC 2 = Te[C.(p)], 3

When the instrument {C, },cx has a single outcome, say xo, the corresponding process is deterministic, meaning
that one can predict in advance that the outcome will be x,. In this case, the quantum operation C,, is trace
preserving. Trace preserving quantum operations are also known as quantum channels.

Completely positive maps can be represented by positive operators. Let Lin () be the space of linear
operators on the Hilbert space H and let C be a completely positive map transforming operators in Lin (H,) into
operators on Lin(H;). Then, the map C can be represented by a positive operator C € Lin(H; ® H,), defined as

C = (C® Zo(IIHKID, 4)

where Z, denotes the identity map on Lin () and |I)) is the unnormalized maximally entangled state
1) = > li)|i) € Ho ® Ho. The operator Cis known as the Choi operator [56].

Quantum operations and quantum channels can be characterized in terms of their Choi operators: a positive
operator Q € Lin(H; ® Hy) corresponds to a quantum operation if and only if it satisfies the condition
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Tr[Q] < I, (5

where Tr denotes the partial trace over the Hilbert space Hj, I denotes the identity operator on the Hilbert
space Hy, and < denotes the standard operator order: A < Biff (p|Alp) < (¢|Ble), V|p) € Ho. A positive
operator C € Lin(H; ® H,) corresponds to a quantum channel if and only if it satisfies the condition

Trl[C] = Io. (6)

2.2. Thelink product

Two quantum operations can be connected with each other, as long as the output of the first operation matches
the input of the second. At the level of Choi operators, the connection is implemented by the operation of link
product [47], denoted as *. To define the link product, it is convenient to introduct the following shorthand
notation: if A is an operator on Hy ® Hy and Bisan operator on Hy ® Hz, then we use the notation AB for the
product

AB:= (A ® I,)(Ix ® B). @)
With this notation, the link product of A and Bis the operator A * B defined as
A % B :=Try[A BY], ®)

where BT denotes the partial transpose of B with respect to the Hilbert space Hy. Note that the definition of the
link product presupposes that the Hilbert spaces have been labeled: in order to compute the link product, one
needs to take the partial transpose and the trace on the Hilbert space in common between A and B.
Mathematically, the partial transpose in the rhs of equation (8) is essential to guarantee that the link product of
two positive operators is a positive operator [47]. As a counterexample, think of the case where Hy, Hy, and H
are two-dimensional and A and B are projectors on a maximally entangled state: in this case, removing the partial
transpose results in a non-positive A * B). Physically, the role of the partial transpose can be understood in
terms of entanglement swapping [57, 58]. Thanks to the partial transpose, the link product can be expressed as

A x B =TryTry [(Axy ® Byz) Ux @ [IN{I] ® I)], C))

where [I)) := ZZYZI |n) |n) is the unnormalized maximally entangled state on Hy ® Hyr, Hy' being an identical
copy of Hy. This means that, up to normalization, thelink product A * B is the state obtained when a Bell
measurement, performed on the states A/Tr A and B/Tr B, yields the outcome corresponding to the projector
[INKI]/dy. At the fundamental level, the possibility of representing operations as states and their composition as
entanglement swapping follows from the Purification Principle—the property that every state can be obtained as
the marginal of a pure state, unique up to reversible transformations [59].

The link product is associative, namely

Ax (B*xC)=(AxB) xC,

for all operators A, B, and C. Moreover, the link product is commutative, up to re-ordering of the Hilbert spaces:
in formula,

AxB~BxA,

having used the notation A * B >~ B x Atomean A * B = SWAPx, ( B * A ) SWAPyy, where SWAPy isthe
unitary operator that swaps the spaces Hy and H. From now on we will omit the swaps, implicitly
understanding that the Hilbert spaces have been reordered in the right way wherever needed.

Using the above notation, we have the following

Proposition 1 [47]. Let A be a quantum operation transforming operators on H to operators on Hy, let B be a
quantum operation transforming operators on 'H, to operators on H,, and let C = B.A be the quantum operation
resulting from the composition of A and 3. Then, one has

C:=A % B,
where A, B, and C are the Choi operators of A, B, and C, respectively.

In the next paragraph we will use the link product to construct the Choi operator of quantum networks
consisting of multiple interconnected quantum operations.

2.3. Quantum causal networks and quantum combs

A quantum network is a collection of quantum devices connected with each other. We will call the network
causal if there are no loops connecting the output of a device to the output of the same device. Mathematically, a
quantum causal network can be represented by a direct acyclic graph, where each vertex of the

graph corresponds to a quantum device—see figure 2. For every DAG, one can always define a total ordering of
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Figure 2. A quantum causal network is a directed acyclic graph, whose nodes (orange boxes in the picture) represent quantum devices
and whose directed edges indicate the input/output direction.

the vertices, through a procedure known as topological sorting [60]. Using this fact, one can always represent the
a quantum causal network as an ordered sequence of quantum devices, such as

in out in out in out
Al Al A2 A? AN AN

Cl C2 A CN s (10)

where A}“ (Ajout) denotes the input (output) system of the network at the jth time step.

We say that a network is deterministic if all devices in the network are deterministic, i.e. if they are described
by quantum channels. Using the link product, we associate a Choi operator to the network: specifically, if the
individual channels in the network have Choi operators G, C, ,..., Cy, then the network has Choi operator

C:CI*CQ*C3*"'*CN. (11)

The Choi operator of a deterministic network is called a quantum comb [18, 47], or also a quantum strategy
[17]. The quantum comb Cis a positive operator on ®§V:1 (H?“t @ HJ"), where HY' (H?“t) is the Hilbert space

of system A}n (A;’“t). Quantum combs can be characterized as follows:

Proposition 2 [17, 18,47]. A positive operator C is a quantum comb if and only if it satisfies the linear constraints
Tryou[CM] =1, @ C"—D Vne{l,..,N} (12)

where Tty is the partial trace over the Hilbert space H,, C\™ is a suitable operator on 'H,, := (M ® ’Hij“),
CWN) := C,and C© = 1,

The constraints in equation (12) are a direct consequence of the normalization condition of quantum
channels, expressed by equation (6). Physically, the positive operator C™ represents the subnetwork
transforming the first n inputs to the first n outputs. We denote by

i t i t i t
Comb(A™ — AS™, AlM — A AlD _, A

the set of positive semidefinite operators satisfying the constraint (12). When there is no ambiguity, we will
simply write Comb.

2.4. Quantum testers and the generalized Born rule
So far we considered deterministic networks, resulting from the connection of quantum channels. However, it is
also useful to consider networks containing measurement devices, which may generate random outcomes. We
call such networks non-deterministic. Non-deterministic quantum networks can be thought as the quantum
version of classical electric networks containing measurement devices, such as voltmeters and ammeters. Like
these classical relatives are useful for testing the behavior of electrical circuits, quantum non-deterministic
networks are useful for testing the behavior of quantum circuits, or, slightly more broadly, physical processes
consisting of multiple time steps.

An example of non-deterministic network is the following

P D,

Ailn A?ut DN_l

{Pw}xex (13)

in out
AN AN

i out
AP ANL,

where pisaquantum state, (D ,..., Dy_1) is a sequence of quantum channels, and { P, },.<x is a positive operator-
valued measure (POVM), describing a quantum measurement on the last output system. Networks of the type
(13) can be used to probe quantum networks of the type (10), as follows
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p Ailn Acfut Dl Aizn e A?\;lil DN*l Aiﬁ A?\}lt {Px}xex (14)

Cl oo — CN

When the two networks are wired together, the final measurement produces one of the outcomes in the set X.
Using proposition 1, the probability of the outcome x is can be computed as

P = P*Cl*Dl*Cz*Dz*"'*DN—1*CN*P,¢T

= (p*Dl*Dz*-.-*DN,l*PxT) * (G ok Cyx - x Cy) (15)
T, « C
= Tr[T. C"],

where Cis the Choi operator of the tested network, C” is the transpose of C, and { T, }sc x is the collection of
operators defined by

Te:=p* Dy % Dy % -+ % Dy_q % PF (16)

(here the transpose of P, is needed because, according to definition 4, the Choi operator of the quantum
operation Q. (-) = Tr[P, - ]is P! instead of P,).

We call the set of operators T = { T, }.cx a quantum tester and equation (15) the generalized Born rule
[18,61,62]. The quantum tester T describes the response of the non-deterministic network (13) when
connected to external devices. Quantum testers are a useful abstraction in many applications, such as quantum
games [17] and cryptographic protocols [19, 20], quantum interactive proof systems [46], quantum learning of
gates [63—65], quantum channel discrimination [61, 66, 67], incompatibility of multitime quantum
measurements [68], tomography of quantum channels [62, 69], non-Markovian processes [70, 71], and causal
models [28].

Quantum testers can be characterized as follows:

Proposition 3 [61]. Let T be a collection of positive operators on ®§\’:1 (H?ut ® ’Hij“). T is a quantum tester if and
only if

¥ 7= Iy © T

xeX
TI'Ayin[ F(”) ] = IAnoEtl ® 1—‘(71—1)) n= 2) ,N
Tl EP1=1, a7

whereeach T'™, n = 1,...,N isa positive operator on H" ® [®}1;11 (H?ut ® Hij“)].

2.5. Assessing the performance of a quantum network

Suppose that we are given black box access to a quantum network, whose internal functioning is unknown to us.
Our goal is to assess how well the network fares in a desired task, such as solving a desired computational
problem [72], estimating an unknown parameter [64, 65], emulating a sequence of gates [63, 73], or replicating
the action of a desired gate [74-78].

For example, suppose that a manufacturer provides us with a special-purpose computer, designed to
implement a quantum search algorithm. How can we test the performance of our device? Since the computer is
claimed to find the location of an item in a list, a natural approach is to place the item in a set of random positions
and then to check whether the answer provided by the computer is correct. A simple measure of performance is
given the number of inputs on which the computer gives the right answer. More generally, one can assign
different scores depending on the distance between the correct answer and the output of the computer. Let us
consider this example in more detail, as a concrete illustration of what it means to test a quantum network.
Suppose that the computer attempts at reproducing Grover’s algorithm [79], by interacting with unitary gates
U; = 2[i) (i| — I thatencode the position of an item 7in alist of K items. A possible test, illustrated in figure 3, is
as follows:

(i) Preparea ‘position register’ in the maximally mixed state p = I /K.

(ii) Upon receiving an input from the computer, apply the control-unitary gate W = S_X | i) (il ® U; to the
position register and the input.

(iii) Repeat the previous operation until the computer returns an output. In this way, the input provided by the
computer is processed by a gate U, with i chosen at random.
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Figure 3. A computer is designed to implement Grover’s algorithm. The action of the computer (in orange) is tested by a testing circuit
(in blue), consisting in the preparation of randomly chosen input (encoded in the state p = I /K ofa ‘position register’), followed by
the application of the control-unitary gate W, which, depending on the input, performs one of the unitaries U;. In the end, the
computer outputs an outcome j (encoded in the output of the channel Cy), which is compared with the position register through a
suitable quantum measurement (POVM { B, }), which outputs the deviation x = i — j.

(iv) Compare the output with the actual position, by performing a joint measurement to the position register
and the output register. The measurement is described by the POVM { P, }X__ - with operators given by

min {K,K—x}
= > 1)l ®li+x){i+x.

i=max{0,—x}

In this way, the measurement outcome returns the deviation x from the correct position

(v) Ifthe deviation is x, assign score w, = 1 — |x|/K.

Mathematically, the test is represented by the quantum tester { T, }X_ _, with
Te = p o [WHW] s oo [WHEW] = P
The sequence of operations performed by the computer is represented by the quantum comb
C=1[8)(dl * G * - x Cy,
and the probability of finding a deviation x is given by
p=T*xC.
The average score obtained by the computer can be expressed as

K i— i
w= Z(l - Kjl)pi—j

i,j=0

K
x=—K K

=Qx*C,

where €2 is the operator {2 == (l — %) ..

Generalizing the above example, we assess the performance of an unknown quantum network by referring
to experiments where the unknown network is connected to a ‘testing network’, containing measuring devices.
The testing network will return an outcome x, to which one can assign a ‘score’ wy. In this way, the expected
score serves as an operational measured of performance. Specifically, let Cbe the quantum comb describing the
tested networkandlet T = {T,, x € X} be the quantum tester describing the testing network. Then, the average

score is given by
w= Z we (T x C)

—QxC Q=Y wT. (18)

Note that the performance of the network Cis completely determined by the operator €2, which we call the
performance operator.
For a given performance operator €2, the maximum expected score is given by
Wmax == max ) x C
CeComb

= max Tr[Q C"]
CeComb

= max Tr[QC]. (19)
CeComb

The third equality comes from the fact that the set of quantum combs is closed under transposition and,
therefore, we can omit the transpose in equation (15). Using the notation

7
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(A, B) = Tr[AB], (20)
we express the maximum score as
Wmax == max (£, C). (21)
CeComb

The above equation shows that the search for the maximum score is a SDP. The basic tools needed to address
it will be reviewed in the next section.

3. SDP and the max relative entropy

3.1. Basic facts about SDP
Here we review the background about SDP. For further details, we refer the reader to Watrous’ lecture
notes [80].

Let X and ) be two a Hilbert spaces and let Herm (X)) be the space of Hermitian operators on X and ),
respectively.

Definition 1. A SDPisatriple (¢, A, B), where A and B are operators in Herm(X) and Herm (), respectively,
and ¢ is alinear map from Herm (X) to Herm())).

A SDP is associated to an optimization problem in the standard form

maximize (A, X)
subject to ¢(X) =B
X>o. (22)

This problem is known as the primal. The dual problem is
minimize (B, Y)
subject to ¢ (Y) > A
Y € Herm())), (23)

where ¢ is the adjoint of ¢, namely the linear map defined by the relation
X, ¢ (V) = (¢(X), Y), VX € Herm(X), VY € Herm()).
The optimal values of the primal and dual problems, denoted as
Wprimal = sup (A, X) and Wdual *= Inf (B, Y),

are related by duality: for every SDP, one has the weak duality wpimal < Waual- The strong duality wpimal = Waual
holds under suitable conditions, provided by Slater’s theorem [81]. In this paper we will use the following.

Proposition 4. Let (¢, A, B) bea SDP. If there exists a positive operator X satisfying ¢ (X) = B and an Hermitian
operator Y satisfying ¢' (Y) > A, then Wporimal = Wual-

For the proof, seee. g. [80].

3.2. The max relative entropy
An important quantity in one-shot quantum information theory is the max relative entropy, introduced by Datta
in [82]:
Definition 2. Let A and B be two positive operators on X'. The max entropy of A relative to B is given by
Diax (A || B) := —log max{w | w A < B}, (24)

with the convention log 0 := —o0.

The max relative entropy provides one way to quantify the deviation of A from B. More generally, it is useful
to consider the deviation between A and a set of operators:

Definition 3. Let A be a positive operator on X andlet S C Herm(X) be a set of positive operators. The max
entropy of A relative the set S, denoted as Dp,.x (A || S), is the quantity defined by

Diax (A || S) = inf Dy (A || B). (25)
Bes

The max relative entropy between a quantum state and a set of quantum states plays a central role in
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entanglement theory [83], where relative entropies are used to quantify the deviation from the set of separable
states, and in quantum thermodynamics [84, 85], where relative entropies are used to quantify the deviation
from the set of Gibbs states. In this paper we will extend the application of the max relative entropy to dynamical
scenarios, where S represents a set of quantum networks. This extension is promising, e. g. for applications to
hypothesis testing. Indeed, it is natural to consider scenarios where one has a null hypothesis on the input-
output behavior of a quantum network and one wants to test the null hypothesis against an alternative
hypothesis. In the case of quantum states, the minimum probability of a type I error (failing to accept the
alternative hypothesis) can be estimated in terms of the max relative entropy [86]. In the case of quantum
networks, it is natural to expect that the max relative entropy defined here will yield similar bounds—a result in
this direction will be provided in sections 6 and 8.

3.3.From SDPs to the max relative entropy
In this section we provide a general bound on the primal value of an arbitrary SDP. The bound can always be
attained and its value can be expressed in terms of a max relative entropy whenever the operator A in the SDP
(¢, A, B)is positive. To state the result, we need some basic notation, provided in the following:

For avector space V, we denote by V* the dual space, i. e. the space of linear functionals on V. Givena
subset S C V), we define the dual affine space S as

S:={TeV*I{I,X)=1,VXeS}.

Regarding V as a subspace of V**, one has the inclusion S C S. When V is finite dimensional and S is an affine
set, one has the equality S = S.
Givena SDP (¢, A, B), we define the primal affine space as

S:= {X € Herm(X) | ¢(X) = B}. (26)

Simply, S is the set of operators that satisfy the equality constraint of the primal problem. The dual affine space is
given by

S=({l' e Herm(X) | (I, X) =1,VX € S}, (27)

having used the identification of Herm (&) with its dual space. With this notation, we have

Theorem 1. Let (¢, A, B) bea SDP. The optimal solution of the primal problem is upper bounded as
Wprimal < inf min{A € R | AI' > A}, (28)
res

where S is the dual affine space defined in equation (27). If S contains a positive operator and S contains a strictly
positive operator, then equation (28) holds with the equality sign. If, in addition, the operator A is positive, then one
has the expression

Wprimal = 2Dmax (4 I §+)) (29)

where S, isthedual convexsetS, = {I' € S | T > 0}.

The proof can be found in appendix A.

We call the quantity D (A || S.,) the max divergence from normalization. This quantity measures how much
the operator A deviates from the set of positive functionals that are normalized on every element of the
primal set.

The connection between SDP and the max relative entropy has previously appeared in the special case where
the task is to optimize quantum channels [51, 87]. A related result was obtained by Jen¢ova in the framework of
base norms [88]. In the next sections we will elaborate on the physical meaning of theorem 1, which will be
applied to the optimization of quantum networks, both with definite and indefinite causal structure. Before
specializing ourselves to quantum networks, however, it is worth emphasizing a simple connection between the
max relative entropy arising in generic SDPs and the max relative entropy of quantum states.

Proposition 5. Let Cy and C; be two elements of the convex set
S, = {X € Herm(X) | ¢(X) = B, X > 0}.
Then, one has the bound
Dinax NT CoVT | VT GVT) € D (Go || G), VT €5

The bound holds with the equality if the dual convex set S, contains a full-rank operator.
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The proof can be found in appendix C. Note that, by construction the operators VT C; /T, i = 0, 1are
density matrices: indeed, they are positive and Tr[/T C;+/T | = Tr[I'C;] = 1, since, by definition I is a positive
function normalized on the primal set S. Proposition will be used to show that the relative entropy of two
quantum networks is equal to the maximum relative entropy between the output states generated by the
networks.

4. Optimizing quantum causal networks

Here we consider the scenario where a network of quantum devices, arranged in a definite causal order, is
required to perform a desired task, such as implementing a distributed algorithm. What is the maximum
performance that the network can attain? In this section we answer the question, measuring the performance
through the score obtained in a suitable test (depending on the task at hand) and providing a close form
expression for the maximum score.

4.1. The dual networks

Following section 2.5, the mathematical description of the test is provided by a performance operator (2, acting
on the Hilbert spaces of the input and output systems of the tested network. The maximum performance
achieved by an arbitrary causal network is determined by the following

Theorem 2. Let ) be an operator on ®f’:1 ( H‘;“t ® Hi]-n) and let Wi,y be the maximum of (), C) over all operators
C representing quantum networks of the form

in out in out in out
Al Al A2 AQ AN AN

c C, . C : (30)

Then, Wy 15 given by

Wmax = min min{A € R | AI' > Q}, (31)
I"eDualComb

where DualComb denotes the set of dual combs, that is, positive operators I representing networks of the form

o & En-i (32

in out in out in out
Ay A Ay AR AN AR T
A T ,

where 0 is a quantum state, (&, &, ..., En_1) is a sequence of quantum channels, and Tr A represents the trace over
the last system. Explicitly, DualComb is the set of all positive operators I satisfying the linear constraint

F = IAI(\)]ut ® F(N)
Tr [T ] = Low @ TO-D, n =2, N
Tr o [T®] =1, (33)

for suitable positive operators '™ actingon Hy» @ [QI=1 (H™ @ H'")]. When SYis positive, the maximum
performance can be expressed as

Winax = ZD““"( Q || DualComb) . (34)
The proof can be found in appendix B.
Theorem 2 has an intuitive interpretation. The dual networks (32) and the primal networks (30)

‘deterministically complement each other’: when two such networks are connected, one obtains the closed
circuit

(35)

Alp Agut Alp AR, Aln At
e Tr
c oo LD

which yields no information about the primal network and makes any such information inaccessible to further
tests. Hence, the dual networks represent the non-informative tests. The max relative entropy quantifies how
much the test with performance operator 2 deviates from the set of non-informative tests.

10
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4.2. The case of binary testers
Consider a binary test, described by the tester { T, Tio} and assume that the test is passed if and only if the
testing network yields the outcome ‘yes’. Binary testers have applications in the theory of quantum interactive
proof systems [46], where they can be used to compute the probability that the verifier accepts the token
provided by the prover through a sequence of operations. In this scenario, the performance operator is given by
{2 = T and the probability that the prover passes the test, optimized over all possible quantum strategies, is
Poax=(  max  max{w Ty, < TP, (36)
I’eDualComb
having used equation (31) with A replaced by its inverse w = 1/A. In words, the problem is to find the
maximum weight for which one can squeeze the tester operator Ty, under some dual comb I'.
This maximization has an intuitive interpretation:

Corollary 1. The maximum probability that a quantum causal network passes the test defined by the operator 1y is
equal to the inverse of the maximum weight w for which there exists a two-outcome tester { Toes, T

yes> no}
satisfying T,

yes — w Ti

Proof. Suppose that the relation wT; < T holds for some weight w and some dual comb I'. Then, define
T;es = Wles and T., == T' — T.,.Byconstruction, the operators { Ty'es, T, } form a tester: they are positive and
their sum satisfies equation (17). O

In other words, the dual problem amounts to finding the binary tester { T;,kes, T.% } that assigns the maximum
possible probability to the outcome 1, subject to the condition that T;"

- 1s proportional to Ty.s. The content of the

yes*
duality is that the maximum is attained when there exists a primal network that triggers deterministically the

outcome 1:

Corollary 2. Let { Tyts, T } be the optimal tester for the dual problem and let C* be the optimal quantum comb for
the primal problem. Then, one has

(Ty

yes’

C* = 1.
Proof. Let w* be the optimal weight in the dual problem, Then, one has T, = w* Tyesand (Tyep, C*) = 1/w*.

Combining these two equations, one gets (T, C*) = w* (Tyes, C¥) = 1. 0O

yes>

5. The conditional min-entropy of quantum causal networks

Theorem 2 allows us to extend the notion of conditional min-entropy [50] from quantum states to quantum

causal networks. Let us first review the basic properties of the conditional min-entropy of quantum states: For a

quantum state p € St(AB), the conditional min-entropy of system A, conditional on system B, is defined as [50]
Hpin (A|B), == —log[ min min{\ € R|A(I4 ® v8) = pup}l. (37)

YESH(B)

Konig et al [51] clarified the operational meaning of Hpiy (A|B), in terms of the following task: given the state

pap> find the quantum channel C that produces the best approximation of the maximally entangled state

|®)aar = % | ) 1) /\/d 4, byactinglocally on system B. Here the quality of the approximation is measured by

the fidelity, namely the probability that the output state passes a binary test with POVM { Py, By}, defined by

PBes == |®) (®|. Overall, we can jointly regard the preparation of the state p and the measurement of the binary
POVM (B, By} as atest performed on the channel C. Diagrammatically, the successful instance of the test is

represented by the network
A

T;/es =Pk P;;S

= p/dA>

whose Choi operator is given by

(with a slight abuse of notation, in the second equality we regard p as an operator on A’B, instead of AB). Hence,
the probability that the channel passes the test is

11
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p =Ty x C
_ Tr[p C7]
dy
where Cis the Choi operator of C. Kénig, Renner, and Schaffner showed that the maximum probability over all
possible channels is

2~ Huin (AIB),

S 39
pmax dA ( )

We now extend the notion of conditional min-entropy from states to networks with a definite causal structure.
This can be done in two slightly different ways, illustrated in the following subsections.

5.1. The conditional min-entropy of a quantum causal network

The first way to generalize the conditional min-entropy from states is to regard Hp,, (A|B), as a measure of the
correlations that can be extracted from the state p, ; by acting on system B alone. A natural generalization to the
network scenario arises if we consider a quantum network of the form

Dy Dy

40
B?ut BlQn Bgut B}{I] DN ( )

in out
Bl BN

and ask how much correlation can be generated by interacting with the network in the first N — 1 time steps. To

generate the correlations, we can connect the network (40) with a second network that processes all input/

output systems before BJ"". Graphically, the second network can be described as

in out in in in
B BY Bi BY_, Bin

o & En_ ’ “h

Bout/
=N

where BJ™' is a quantum system of the same dimension as B™. When the two networks are connected, they

generate the bipartite state

D, D, Dy

in out in
Bl Bl BZ

t out i
By BRY, B

g 81 EN_l

By (42)

/
out
BN

A measure of the correlations generated by the interaction of the two networks is then provided by the fidelity
between the state (42) and the maximally entangled state.
Explicitly, the fidelity is given by
F:=(®|(0 * Dy * E; * -+ *x Dy_; * Ey_1 * Dy) |®)
_ Tr[D E']

) 43
e (43)

with
D:=D; % --- x Dy and E:=0c % E; * -+ % Ey_;
(with alittle abuse of notation, in the second equality we regard E as an operator on
Hyin @ Hpon @ -+ @Hpn @ Hponinstead of Hyin @ Hpont @ -+ @Hpgin @ H pou).
1 1 N 'N 1 1 N N

The maximum of the fidelity over all networks of the form (41) can be computed via theorem 2, which yields
the expression

Fo = minl“rl...tN,lmin (AeR | AUy ® 1L,y ) =R} ’ (44)
dBﬁlut
where I, ,isageneric element ofComb(Blin — B ., Bﬁ?_l — By™)and Ly = I ® IB;?.

Equation (44) motivates the following.

Definition 4. Let D € Comb(B," — B/ ,..., By’ — BR")beaquantum comband let ¢; := Bj" — B bethe
type corresponding to the jth time step. The network min-entropy of the Nth time step, conditionally on the first
N — 1time steps is the quantity

12
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Hyin(tn [ 8-+ tn—1)D
:= — log[ min min{\ € R|A(I,, ® [, .1y ) = D}, (45)

e IN—1

where the first minimum is over the elements of Comb(B{™ — BP™, ..., B | — By"')and I, := I B @ Ipgin.

The above definition is a compelling generalization of the conditional min-entropy for states. First of all, it
comes with a natural operational interpretation, as the maximum amount of correlations between the last
output of the network and all the system involved in the previous history. Moreover, the conditional min-
entropy of quantum networks is consistent with the conditional min-entropy of quantum states: Concretely,
one can interpret the conditional min-entropy (45) as the maximum conditional min-entropy of the output
state of the network, conditionally on an external reference system generated through the intermediate time
steps. This interpretation is based on the following.

Proposition 6. For a causal network with Choi operator D € Comb(B/™ — B ..., B — BJ"), the min-
entropy Huin (tn |ty -+ tn—1)p is equal to the min-entropy of the output state p € St(Hpow @ HBI(JJM Vin
equation (42) maximized over the input state o and over the sequence of intermediate operations &, ..., En—1.

The proofis given in appendix D. We expect that the network min-entropy defined in equation (45) will play
arole in the study non-Markovian quantum evolutions, along the lines of the entropic characterization of
Markovianity provided in [89, 90]. Intuitively, the idea is that one can evaluate how the correlations build up
from one step to the next and use this information to infer properties of the internal memory used by the
network.

5.2. The conditional min-entropy of a test

An alternative way to extend the notion of conditional min-entropy is to regard Hyin (A|B), as a quantity
associated to a test—specifically, the test depicted in equation (38). From this point of view, it is natural to extend
the definition to tests consisting of multiple time steps, as follows

Definition 5. Let Ty, be a positive operator associated to a test of the form

p D, Dy Peo | (46)

in out in out in out
Aj A7 Ay AR, AN AR

The conditional min-entropy of the output system A", conditionally on all the previous systems is

Hunin AR | A APMAS AT, = —1og[¥(11@pmin AER| AU o @ TN > T}, (47)

where I'™) is a generic element of Comb(I — A", A™ — A" ..., AJ™, — AlM), corresponding to a network
of the form

o & Enoy ' (48)

in out in out in
Al A9 All A Ain

The conditional min-entropy for ‘states’ (or, more precisely, for tests of the form (38)) can be retrieved as a
special case of this definition, by setting N = 1, A{™ = B, A™" = A,and T, = p/d,. The appeal of the above
definition is that it extends the definition of min-entropy to a class of probabilistic operations.

The conditional min-entropy can be interpreted operationally as the (negative logarithm of the) maximum
probability that a quantum causal network passes the test Ty.,. This interpretation follows from theorem 2,
which yields the following.

Corollary 3. The maximum probability that a quantum causal network of the form

in out in out in out
Al Al AQ A2 AN AN

C, C, e Cn

passes the test with operator Ty is

p =2 Hnn (AR [ APAPAS AR,
max

This result secures an operational interpretation for the conditional min-entropy defined in equation (47). Quite

13
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intuitively, the conditional min-entropy of the test is a measure of how of the first N — 1 time steps can be used
to predict the outcome of the measurement performed in the last step.

6. The max relative entropy of causal networks

We conclude our study of causal networks with a result relating the max relative entropy of quantum networks
to the max relative entropy of quantum states:

Proposition 7. Let C¥ and CV be the Choi operators of two networks

Ain Aout Ain Aout Ain Aout
' e ' : @ — ... == @ =, r=0,1, (49)
and let E be the Choi operator of a network of the form
S
?
ol ‘ o | Eno1 | (50)
apap | &y T I
where S is a generic quantum system. Then, one has
Dinax (CO || CV) = max Dy (CO*E || CV*E). (51)
E

where the maximum runs over all networks of the form (50), with arbitrary system S.

The proofis provided in appendix E. In words, equation (70) states that the max relative entropy between
two quantum networks is equal to the max relative entropy between the output states one can generate from
them. Diagrammatically, the output states are

S

g 51 5]\/'71

AP Ap Ay < g ks = ©)
O i 9%

Proposition 7 has an application to problems of hypothesis testing where the task is to distinguish between two
quantum networks. Here one has access to an quantum network, that is promised to have quantum comb C©®
or C. In order to determine which of these two hypotheses is correct, one has to interact with the network, by
sending inputs to it and processing its outputs. In the end, these operations will result in the preparation of a
quantum state, as in equation (52). At this point, the problem is to distinguish between two states p® and p
corresponding to the two hyoptheses. One-shot hypothesis testing of quantum states has been studied by Datta
etalin [86], where they provided bounds on the type I error probability in terms of the max relative entropy.
Proposition 7 then allows to relate the max relative entropy of the output states to the max relative entropy of the
networks, opening a route to adapting the results of [86] to the study of hypothesis testing to the more general
scenario.

7.Non-causal networks

In the previous sections we restricted our focus to causal networks. We will address the general scenario,
concerning networks that are not compatible with any pre-defined causal order [33, 34, 37-42, 44]. Some of
these networks arise when multiple quantum devices are connected in a way that is controlled by the state of a
quantum system [33, 38]. Some other networks are not built from individual devices [34, 41] but may possibly
arise in exotic quantum gravity scenarios. These generalized quantum networks are characterized by the way in
which they interact with external quantum devices.

7.1. A bipartite example

The characterization of the non-causal networks is not as simple as in the case of causally ordered networks. We
firstillustrate the idea in a simple example, inspired by the work of Oreshkov et al [41]. Imagine two laboratories,
A and B, where two parties, Alice and Bob perform local experiments. In each laboratory, ordinary quantum
theory holds and, in particular, one can describe the time evolution by quantum channels. Specifically, let A and
B be the quantum channels describing the evolution of the systems in laboratories A and B, respectively. Now,
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in out
B? B2

Figure 4. The quantum channels .4 and B in Alice’s and Bob’s laboratory interact through a quantum network C, describing the
interactions mediated by the background spacetime. Here, .A (13) is a bipartite channel transforming the input systems A" A"
(B{" BI"y into the output systems A" A" (BP" BSU), The connection between the channels take places only through the systems
A", AP™, B and BP™, while systems Al", A?™, Bi" and B§"! do not interact directly.

Figure 5. Schematic of a test for probing two different hypotheses of quantum spacetime. The two hypotheses are described by the
(possibly non-causal) network (in blue) connecting systems A™ and A" in Alice’s laboratory with systems B and B°"* in Bob’s
laboratory. The test consists in applying a quantum channel & (in orange), acting on systems A™, A", B, and B°, plusan
additional system S. The channel £ has the property that, once system Sis discarded, the evolution of the remaining systems is no-
signaling. We stress that the above model represents the most general way—in principle—to discriminate between two hypotheses of
causal structure. However, depending on the situation, there may be constraints on the channel £, such as the ability to implement £
with local interactions, or the presence of conservation laws that further limit the set of available channels.

one can model the interactions between one laboratory and the other by a generalized quantum network, which
describes the background structure of spacetime.

Concretely, suppose that, at some earlier time, system A,™ in the first laboratory has been prepared jointly
with system B,™ in the second laboratory, and that, at a later time, system A" and system B™ are discarded.
Indulging into a bit of science fiction, one could imagine a scenario where systems A, and B™ emerge from a
wormhole at time #, and system A°" and B"" enter the same wormhole at time t,. Between times t, and ¢, the
systems A" and B, can interact with the other systems in Alice’s and Bob’s laboratories, here denoted as
AlM) AP and BiM, BP™, respectively. The interaction is controlled locally by Alice and Bob, who implement the
channels A and B3, as illustrated in figure 4. The connection of Alice’s and Bob’s laboratories through the
background spacetime structure can be described as a map

S AR B— S(A® B, (53)

which transforms the quantum channels .4 and B into a new quantum channel S(A ® B).Maps that
transform channels into channels are known as quantum supermaps 18, 53]. The basic requirements for
quantum supermaps are linearity, complete positivity, and normalization. In this setting, linearity means that
one has
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S[Z pA® Bi] =>p S(A; ® By, (54)

for every choice of coefficients { p;}. The standard motivation for linearity comes from the requirement that
convex combinations of input channels (generated by Alice and Bob by sharing random bits) be mapped into
convex combinations of the corresponding outputs.

Regarding complete positivity, it can be motivated by the local form of the interactions. Since the interaction
between Alice’s and Bob’s laboratory takes place only through systems A; and By, it is natural to assume that the
supermap S acts non-trivially only on these systems, as

S(A 02y B) = (IAZHAZ ® C & IBZHBZ)(A & B)’ (55)

where T4, _, 5, (Zp,p,) is the identity supermap, acting trivially on the channels with input A (BMand output
AS™ (B3"), and C is a supermap that annihilates channels with input A" B, and output A " B™. Physically,
the map C represents the piece of spacetime connecting A, and B} with AS"*and B"".

7.2. Choi operator formulation
Since all the maps A, B, and C are completely positive, one can represent them with Choi operators A, B, and C,
respectively. In terms of Choi operators, equation (55) can be expressed as

C" = Trap aow pin pou [ (Lyo @ Iin @ C® Igow ® Ipin) AT @ BT)], (56)

where C’ the Choi operator of the channel S(A ® B). Oreshkov et al refer to the Choi operator Cas a process
matrix [41]. For the supermaps that can be implemented by connecting quantum devices in a fixed causal
structure, Choi operators Care the same as the quantum combs considered in the previous sections.

Here the operator Cacts on the tensor product Hilbert space HiAn] R HEY' ® Hg‘l ® HE". Inorder to be the
Choi operator of a valid quantum network, the operator C must be positive semidefinite and satisfy a suitable
normalization condition—specifically, C should satisfy the condition

Tr i ape s s [CA @ B)] = 1 (57)
for every operators Aand B satisfying the conditions
Trye[A] =I,»  and  Trpe«[B] = I, (58)
(See appendix F for the derivation). Physically, this means that the non-causal network C deterministically

annihilates every pair of local channels A and B, acting on systems A", A" and B/, B", respectively.
Equivalently, the valid networks can be characterized as in the following:

Proposition 8. An operator C is the Choi operator of a non-causal network as in figure 4 if and only if C is positive
and Tr[CD] = 1 for every operator D satisfying the conditions

Tryeu[D] = I 4o @ B, TrBlom[’g] = Ipn (59)
and
Trye[D] = Iy ® A, Tr o [A] = I 4, (60)

with suitable operators AandB.

For the proof, see theorem 2 of [34]. The operator D represents the Choi operator of a no-signaling channel
[91-93], that is, a channel that prevents the transmission of information from Alice to Bob and from Bob to
Alice. The intuitive idea is that whenever a network can be connected with two local channels, it can also be
connected with a no-signaling channel.

In the following we will denote by NoSig (A" — AP" | B/® — B°") is the set of positive operators satisfying
the no-signaling conditions (59) and (60). With this notation, proposition 8 can be reformulated as

Corollary 4. An operator C is the Choi operator of a non-causal network as in figure 4 ifand only if
C>0 (61)
C € NoSig(A™ — AP"|B{® — B, (62)

where NoSig(A™ — AP"|B/™ — BP™) is the dual affine space of the set of no-sinalling channels.

We will denote by DualNoSig(A™ — AP"|B[™ — BP") the set of operators satisfying conditions (61) and
(62). The set DualNoSig is the set containing all the Choi operators of the non-causal networks of actin on pairs
oflocal operatinos.
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7.3. The max relative entropy of signaling
In some situations, such as the study of non-causal games [41], it is natural to search for the non-causal networks
that maximize a certain figure of merit. For example, consider an experiment where Alice and Bob probe a non-
causal network as in figure 4. In their local laboratories, Alice and Bob measure the output systems of the
network with the POVMs {P}X_ | and { Q; f: 1 respectively, and prepare inputs for the systems, say p and o,
respectively. The outcomes i and j are assigned a score w (i, j), which quantifies the performance of the non-
causal network. For example, Alice and Bob may want to quantify how much the network correlates their
outcomes, corresponding to the score w (i, j) = &;;. More generally, Alice and Bob can probe the network by
preparing correlated states, applying local interactions, and performing local measurements.

Describing the test with a performance operator €2, the maximum score is achievable by quantum non-
causal networks is

Winax = max (Q, C). (63)
CeDualNoSig(A" — A" [B"— B

Finding the network that achieves maximum score is similar to finding the entangled state that maximizes the
violation of a Bell inequality. The optimization task can be tackled with our theorem 1, which provides a dual
expression for the maximum score:

Proposition 9. Let €2 € Herm(H 4o @ H yin @ Hpow @ Hpin) be a generic performance operator a Wax be the
maximum score defined in equation (63 ). Then, one has

Wmax = ‘min min{\ € R| AI' > Q}.
I eNoSig(A{"—AP™ |Bi"— BPY)

When ( is positive, the maximum score is given by

Winax = 2DPmax (2 || NoSIgUA" —AP™|B{"—B™) ) (64)

In words: the maximum score achieved by quantum non-causal networks is determined by the deviation of the
performance operator from set of (Choi operators of) no-signaling channels. We call

Dinax (A || NoSig(A™, AP"|B/, B"Y)) the max relative entropy of signaling, in analogy with the relative entropy
of entanglement of a state p [94-96].

7.4. Optimizing multipartite non-causal networks

The results presented in the bipartite case can be easily generalized to multipartite non-causal networks.
Consider a quantum network that can interact with k local devices, by providing an input system to each device
and annihilating its output system. As in the bipartite case, the network can be represented by its Choi operator
C, which will have to satisfy the condition

Tr[CA ® A @ ® A = 1,

for every set of Choi operators (Zl, Xz, ey Zk) representing local quantum channels. Equivalently, the
normalization condition can be expressed as

Tr[C D] = 1,

for every Choi operator D representing a k-partite no-signaling channel. Specifically, the set of Choi operators
representing k-partite no-signaling channels is defined as follows:

Definition 6. An operator D, actingon ®%_, (H At @ H i), is the Choi operator of a no-signaling channel iff
foreverysubset J C {1,...,k} onehas

Trpu[D] = I, ® Dj,

where Tr 4ou is the partial trace over the Hilbert space H you == Qiey H 4o, 4 is the identity operator on the
Hilbert space H jin := ®icy H 4, and Dj is the Choi operator of a quantum channel transforming density
matrices on H jein = Rizs H 4 into density matrices on H yoou := RigaH g0

We denote the set of k-partite no-signaling channels as NoSig,, keeping implicit the specification of the
Hilbert spaces.

Like in the bipartite case, it is natural to consider tasks where one has to find the non-causal network that
maximizes a score of the form w = Tr[{2C] for some performance operator €2. The maximum score is then
given by

wmax = max { Tr[QC] | C &€ NoSig, }. (65)
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In general, characterizing the dual affine space of the set of no signaling channels is a rather laborious task.
Using theorem 1 we can circumvent the problem and express the maximum score as

Wmax = min min{f A\eR | AD>Q}, (66)
DeNoSig,
or, when €2 is positive
Winay = 2Dmax (2 || NoSigy) (67)

Again, the performance is determined by the deviation of the performance operator from the set of (Choi
operators of) no-signaling channels.

8. The max relative entropy of non-causal networks

Like in the case of causal networks, the max relative entropy between two quantum networks can be related to
the max relative entropy of their output states:

Proposition 10. Let C©) and CY be the Choi operators of two non-causal networks in NoSig, and let E be the Choi
operator of a network of the form

in out in out in out
Al Al A2 A2 AN AN

& &1 T ev[s "

where S is a generic quantum system and the reduced channel

in out in out in out
Al Al A2 A2 AN AN

51 52 . gN s (69)

is no-signaling. Then, one has

Dinax (C© || CV) = max Dynex (CO*E || CD % E), (70)
E

where the maximum runs over all networks of the form (69), with arbitrary system S.

The proofis the same as the proof of proposition 7. The above result shows that the max relative entropy
between two non-causal networks is equal to the max relative entropy between the output states generated by
connecting the networks to the ‘no-signaling part’ of a quantum channel, as in figure 5.

Like in the causal case, there is a nice connection to one-shot hypothesis testing. Here one can consider the
problem of distinguishing between two alternative models of spacetime, resulting into different ways to connect
the operations performed in Nlocal laboratories. For example, C©) could describe a null hypothesis of space
time where all the events are causally ordered, while C (M could describe an exotic, non-causal space time.
Proposition 10 tells us that, in terms of max relative entropy, the distinguishability of two models of spacetime is
quantified by the max relative entropy of the corresponding non-causal networks.

9. Applications

In the following we apply our results to four optimization problems involving quantum networks. We will start
from the causal case, considering networks that approximately transform a given set of input channels into a
target set of output channels. Then, we will move the case of non-causal networks.

9.1. Transforming quantum channels

Consider the following scenario: A black box implements a quantum channel in the set { £, },cx, where X is an
arbitrary index set. The task is to simulate another channel F, using the channel £, as a subroutine. For example,
the black box could implement a unitary gate U, and the task could be to build the control-unitary gate [97-100].

ctrl — U, =1 ® [0)(0] + Uy @ [1)(1].

To simulate the desired channel F;, we insert the input channel £, into a quantum causal network, as in the
following diagram
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Ao Al [¢o | 4 Az _ A 1| A3
e 23 e, = ] ) )

where C, and C, are suitable quantum channels. The Choi operator of the output channel £’ is then given by

E.= CxE, (72)

where Cis the Choi operator of the network and * denotes the link product.
Let us focus on the case where the target channel  is an isometry, namely 7, = V; - V), with V V, = I.
To measure how close the channel £, is to the target, we use the channel fidelity [101-103], given by

F(E, F) = %«vxlE;le», (73)
0

where dj is the dimension of the input system A, and the notation | V')) denotes the unnormalized state

d
V) = V&I, 1) = > In)In).

In this case, the fidelity can be interpreted as the probability that the network passes a test, where the channel &,
is applied locally on one part of an entangled state and the output is tested with a POVM containing the projector
on the entangled state | V')) / \/d70 . The fidelity can be expressed as

F(E., F) = %Tr[a V)Vl ® ED)].
0

Now, if the input channel &, is given with prior probability p (x), the average channel fidelity is given by
F=3 p)F(E F)

=Tr[QCl, Q=) p@(Vi)Vil ® ED. (74)

Thanks to theorem (2), the maximum fidelity can be expressed as

Fux= min {AeR | AT > Q}, (75)
I"'eDualComb

where DualComb is the set of positive operatorson Hs ® H, ® H; ® H, satistying the conditions

I' = L® Tho
Try[Tho] = 6L ® To, (76)
Tr[Ty] = 1.

In the following we illustrate the use of this expression in a few examples.

9.2. Optimal inversion of an unknown unitary dynamics

Unitary quantum dynamics is, by definition, invertible: given a classical description of a unitary gate U, in
principle one can always engineer the gate U implementing the inverse physical process. However, the situation
is different when the gate U is unknown. Can we devise a physical inversion mechanism, which transforms every
unknown unitary dynamics U, given as a black box, into its inverse? Classically, the analogue of inverting a
unitary dynamics is inverting a permutation. Inverting a permutation with a single evaluation is clearly
impossible, because evaluating the permutation allows us to know its action on one input at most, and this
information is not sufficient to perform an inversion on the other inputs. In the quantum domain, the situation
is more interesting, because one use of a unitary gate is enough to store it faithfully into a quantum memory, by
applying U on one side of a maximally entangled state. A first question is whether the information stored in the
memory can be extracted and used to implement the inverse gate U ™. Interestingly, this possibility is barred by
Nielsen’s and Chuang’s no-programming theorem [104], which states that only orthogonal states can be used to
program unitary gates deterministically and without error. As an alternative, one can try to think of protocols
that simulate U with one use of U, without storing U in a quantum memory. Protocols of this form are
implemented by quantum networks as in equation (71). We now show that even such protocols cannot
implement a perfect inversion. More specifically, we now show that the best way to generate the inverse of an
unknown dynamics is simply to estimate it and to use the estimate to implement an approximate inversion. Our
result highlights an analogy between the optimal inversion of an unknown unitary dynamics and the optimal
universal NOT (UNOT) gate [ 105, 106], the quantum channel that attempts to transform every pure quantum
state into its orthogonal complement. A known fact is that no quantum channel can approximate the ideal
UNOT gate better than a channel that measures the input state and produces an orthogonal state based on the
measurement outcome [105, 106]. Considering this feature, one can think of the unitary inversion as the
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analogue of the UNOT: they are both involutions and they both are implemented optimally by measure-and-
prepare strategies.

Let us assume that the unknown unitary gate Uis drawn at random according to the normalized Haar
measure dU . Then, the performance operator in equation (74) takes the form

1 . e —
0= [aU DU © 10)(T 77)
with d = dy = d, = d, = d5. The evaluation of the fidelity is provided in appendix G, where we obtain the value

Fox = —. (78)

Now, it turns out that the maximum fidelity can be achieved through the estimation of the gate U. Indeed,
the optimal strategy for gate estimation is to prepare a maximally entangled state, to apply the unknown gate U
on one side, and to perform the POVM Py = d |U ) U|[107]. This strategy leads to the conditional probability
distribution

p(OIU) = |Tr[UTT]P,

normalized with respect to the Haar measure. Averaging the channel fidelity F (U, U) = |Tr[UTU]] /d?, we
then obtain the value

Ea(U)= [ dUTrUTTY* /d?

=2/d?
= oo VU € SU(d). (79)

The continuous POVM with Py = d|U){ U] can also be replaced by a discrete Bell measurement, with d*
outcomes, without affecting the fidelity in the worst case scenario, or equivalently, the average fidelity over all
unitaries. One way or another, the above discussion proves that no quantum network can invert a gate better
than a classical network that generates the inverse by using gate estimation as an intermediate step.

9.3. Simulating the evolution of a charge conjugate particle
In quantum mechanics, complex conjugation implements the symmetry between particles and antiparticles. If
the evolution of a quantum particle is described by the unitary transformation U, then the evolution of the
corresponding antiparticle will be described by the unitary transformation U, where each matrix element is
replaced by its complex conjugate. Consider the scenario where one is given a black box that performs a unitary
transformation on a certain particle. Can we use this black box to simulate the evolution of the corresponding
antiparticle? Physically, the most general simulation strategy is described by a quantum network as in
equation (71).

For the charge conjugation problem, the performance operator {2 reads

Q- di [ 4U 10Ok © 10Ty

L(P+,32 ® Pp 1o " P 5 ® P,IO]

80
FE d, d_ (80)

where Py and P_ (d and d_) are the projectors on (the dimensions of) the symmetric and antisymmetric
subspaces, respectively. In appendix H we evaluate the dual expression equation (75), obtaining the maximum
fidelity

2
o dd -1

max

Note that the fidelity is equal to 1 in the case of two-dimensional quantum systems. This is consistent with the
fact that, for d = 2, the matrices Uand U are unitarily equivalent—specifically, U = YUY, where Yis the Pauli

matrix Y := ((1) :) Z). Therefore, one can implement the complex conjugation by sandwiching the original

unitary between two Pauli gates.

For systems of large dimension, the fidelity converges to 2/d?, the value achieved by gate estimation (see
equation (79) in the previous paragraph). This means that gate estimation is asymptotically the optimal strategy,
but, remarkably, it is not the optimal strategy when d is finite. The optimal simulation of the charge conjugate
dynamics is achieved by the network with Choi operator
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dP 3 _dP
=109 o 2010
d_ d_

It is immediate to verify that, indeed, the operator Csatisfies the normalization constraints and that one has
Tr[Q2C] = 1/d_ = F,. - Physically, Crepresents a ‘disconnected network’ of the form

R e

C

Y

consisting of two subsequent uses of the channel X with Choi operator K := d P_/d_. When the input gate U'is
inserted in the open slot, the overall evolution from system A to system Aj is given by the channel 7 = K U K,
which optimally simulates the charge conjugate evolution U .

Itis interesting to further elaborate on the physical meaning of the operations in the network. At first, one
may guess that the optimal way to conjugate an unknown unitary U is to approximate the sequence of
transformations

transpose transpose  _
p o R o Ul gyt PR g (81)
As the transpose is not a physical operation, one may try to use the optimal transpose channel [108—112], which
has Choi operator T = dP, /d.,. However, this choice would be suboptimal, leading to the fidelity

Ftranspose = 1/d+ = 2/[d(d + D] < Bnax-

Instead, the optimal strategy is to approximate the transpose NOT, i.e. the impossible transformation that maps
every projector into its orthogonal complement. In the Heisenberg picture, the transpose NOT maps every
observable A into the observable I — AT, allowing us to reproduce the charge conjugate dynamics as

-4t Y o1-uiay UTAT.

It turns out that the optimal approximation of the transpose NOT is exactly the channel K used in our network:
in summary, the optimal simulation of the charge conjugate dynamics employs the optimal transpose NOT
instead of the optimal transpose. Some intuition to justify this bizarre fact comes from the observation that the
optimal transpose can be implemented via state estimation and, therefore, approximating the sequence (81)
would lead to a classical, estimation-based strategy. Instead, the transpose NOT cannot be achieved via state
estimation. For example, the transpose NOT for qubits is a unitary transformation, corresponding to the Pauli
matrix Y.

transpose NOT transpose NOT
— —_—

9.4. Optimal controlization of unknown gates
Given a unitary gate U, the corresponding control unitary gate is

ctrl — U:=1® [0)(0] + U [1)(1],

where |0) and | 1) are the states of a qubit acting as control system. Controlization is the task of transforming an
unknown gate U, accessed as a black box, into the corresponding gatectrl — U.

When U'is an arbitrary unitary, perfect controlization is impossible, as it was recently shown in [97, 98]. Like
the no-cloning Theorem, this ‘no-controlization’ result establishes the impossibility of a perfect functionality.
But what about approximate controlization? A priori, nothing forbids that one could engineer an approximate
controlization protocol that achieves high-fidelity, almost circumventing the no-go Theorem. In the following
we show that this is not the case. For a completely unknown unitary gate U, we show that not only is perfect
controlization impossible, but also that every quantum strategy for controlization will be at most as good as a
classical strategy that measures the control qubit and performs the gate U or the identity depending on the
measurement outcome.

For the controlization task, the performance operator €2 reads

Q- zidzfdu lctrl — U {(ctrl — Ul @ |T) (D). (82)
The evaluation of the maximum fidelity, carried out in appendix I, yields the optimal fidelity
_1
max 2

By direct inspection, one can check that this is the same fidelity achieved by a network that measures the control
qubit in the computational basis {|0), |1) } and applies the unknown gate U when the outcome is 1. Specifically,
such strategy turns the input gate U'into the classically-controlled channel Cy; defined by

Cu(p ® o) = (0|0]0) p + (1]|o|1) UpUT,

where pis an arbitrary state of the system and ¢ is an arbitrary state of the control qubit. It is immediate to check
that the fidelity between the classically-controlled channel Cy; and the control-unitary gate is 1,/2 for every
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Figure 6. The quantum operations .A§ and Bl;’b’ in Alice’s and Bob’s laboratory interact through a non-causal network C. The
operations act on the Hilbert spaces H 4in out and H pin gout respectively. The network creates the input systems A™ and B™ and
annihilates the output systems A°** and B°™.

unitary. The above argument shows that no quantum circuit can perform better than a classical circuit where the
control qubitis decohered by a measurement.

9.5. Maximization of the payoff in a non-causal quantum game

Here we consider the non-causal game introduced by Oreshkov et alin [41]. The game involves two spatially
separated parties, Alice and Bob, and a referee, who sends inputs to and receives outputs from the players.
Specifically, the referee sends an input bit a to Alice and two input bits b and b’ to Bob. Then, the referee
demands one output bit x from Alice and one output bit y from Bob. The referee assigns a score w (x, yla, b, b'),
given by

1 x=b,
0 x = b,

y=4a

y = a. (83)

w(x, yla, b, 0) = { and w(x, yla, b, 1) = {i)
In this game, Alice and Bob are not subject to the no-signaling constraint. In principle, Alice may be able to
communicate to Bob, or vice-versa. The only constraint is that Alice and Bob can interact only through a fixed
network, which allows for communication at most in one-way: either from Alice to Bob, or from Bob to Alice.
Itis interesting to see how quantum resources can help Alice and Bob. The most general quantum resource is
described by a network that connects Alice’s operations to Bob’s operations. The network will provide inputs A
and B to Alice and Bob, respectively. Alice and Bob then perform local operations, transforming systems A™
and B™™ them into systems A°“t and B°". The local operations depend on the inputs a and (b, b’) and will
generate the outputs x and y, respectively. Diagrammatically, this scenario is depicted in figure 6.
Mathematically, the operations are described by two quantum instruments { M4 },_, 1 and {\ ’}’,’b/ Yy=0,1-

With these settings, the probability distribution of the outputs is given by
p(x, yla, b, ') = Tr[(ME ® NPY) €],

where {M} ,—¢ 1 and {N }’,’ ’b/} y—0,1 are the Choi operators of Alice’s and Bob’s instruments, respectively, and Cis
the Choi operator of the network that mediates the interaction.
With this settings, the average score is given by

W =—= Z (.LJ(X, )’|61, b) b/)P(X, )/|6l> b: b/)
8 a,b,b’,x,y
=Tr[Q2C],
where (2 is the performance operator
1 /
Q= 5 > w yla, by BYME © NP (84)
a,b,b’,x,y

The main result by Oreshkov et al is that the average score is upper bounded as w < 3/4 whenever the
network Chas a definite causal order, whereas there exists a non-causal network Cy and local operations
{ My Ym0, and {N l}’,’i/ }y—o,1 that achieve score

Wy = %(1 + %) (85)

Specifically, the score wy is achieved by choosing systems A™, B, A°Ut, BU to be qubits and by choosing the
local operations with Choi operators
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; 1
ok Z[I + (=D @ [I + (=Doz s,

/ 1
N b’[z[l + (=)0l ® me} (86)

+@W e { i [+ (=)o ]z @ [I+ (=D +rg, |gon }
where @ denotes the addition modulo 2 and p g is a fixed quantum state on Bob’s output, which can be chosen
to be the maximally mixed state without loss of generality.

The score w can be regarded as a measure of the non-causality of the network mediating the interactions
between Alice and Bob. An interesting question is whether wy is the maximum score attainable when Alice’s and
Bob’s instruments (86) are connected by an arbitrary non-causal network. This question has been indirectly
answered by Brukner [54], who considered a more general scenario, wherein Alice’s and Bob’s local operations
are also subject to optimization. Brukner showed that the payoff wy = (1 + 1/+/2)/2 is maximum over all
non-causal networks and over a certain class of two-outcome instruments on Alice’s and Bob’s side, allowing
Alice’sand Bob’s systems to have generic dimensions. When Alice’s and Bob’s operations are fixed to the qubit
operations (86) used in the original paper [41], we now present an alternative (and comparatively shorter)
optimality proof for the value wy = (1 4 1/+/2)/2. This result serves as an illustration of the SDP method,
which provides here a nice and straightforward solution.

Inserting equation (86) into equation (84) we obtain the performance operator

Q= i) (ilan ® 1) (jlam © Qe @ [k) (ko
ik

where {);; are operators acting on B; and are defined as

o = = (1) (+1 + [0) 0D, oo = (1= (=1 + [0) 0D,
Qo = = () (+] + [1) (1), Qou = —(1=) (~| + 1) (1D,
o = 1)~ + 10} 0D, o = < (1+) (+] + [0} 0D,
o = (=} {=1 + 1) {11, = () (] + {1

Now, the dual optimization problem is to find the minimum A such that A I" > €, for some Choi operator
I" representing a no-signaling channel. The key observation is that all the €2 have the same maximum
eigenvalue, equal to ey = 1/8(1 + 1/+/2). Asaresult, we can satisfy the dual constraint by setting
A=1/2(1 + 1/42)and T' = I oupingou/4. Note that I' is the Choi operator of a no-signaling channel, as it
satisfies equations (59) and (60). Hence, we obtain the bound

1 1

valid for every non-causal network. The bound can be achieved, since r.h.s. matches the value in equation (85).

10. Conclusions

We developed a SDP method for the optimization of quantum networks. The method can be applied to causal
networks as well as more general networks with indefinite causal structure. For alarge class of optimization
problems, we observed that the maximum performance can be expressed in terms of a max relative entropy.
Building on this fact, we extended the notions of conditional min-entropy and max relative entropy from
quantum states to quantum networks. Specifically, the relative entropy between two networks can be
characterized as the maximum of the relative entropy between the states that can be generated by the two
networks. Similarly, the min-entropy of a quantum causal network can be characterized as the maximum min-
entropy that the network can build up by interacting over time with a sequence of quantum devices. Intuitively,
the network min-entropy can be regarded as a measure of the amount of quantum correlations generated over a
sequence of time steps.

Our results have applications to a number of scenarios, including e. g. the optimization of algorithms for
quantum causal discovery [28], tomography of quantum channels and causal networks [18, 69, 113, 114], and
quantum machine learning [115-117]. Another stimulating avenue of future research is on the quantum
engineering side, where our method can be adapted to deal with optimization tasks in the presence of limited
energy resources. For example, it is interesting to explore the causal networks that can be implemented at zero-
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energy cost, extending to the network scenario the results obtained in [118] for individual state transitions. The
interesting aspect here is the possibility to borrow energy resources at a certain time and to return them at later
times, resulting in an overall zero energy balance. As a further step, the extension from quantum networks
working in the zero-energy regime to network using bounded energy resources is even more compelling in view
of future applications. Exploring how energy and coherence across energy eigenstates can be optimally allocated
within a distributed system is expected to unveil new quantum advantages, leadingtoa new layer of
optimization in the design of quantum technologies.

Acknowledgments

We acknowledge the referees of this paper for useful comments that helped improving the presentation and
strengthening our results. The research of our group is supported by the Foundational Questions Institute
(FQXi-RFP3-1325 and FQXi-MGA-1502), the National Natural Science Foundation of China through Grant
No. 11675136, the Hong Kong Research Grant Council through Grant No.17326616, the Canadian Institute for
Advanced Research, the HKU Seed Funding for Basic Research, and the John Templeton Foundation. GC is
grateful to F Buscemi and YC Liang for useful discussions and to A Acin, M Hoban, and R Chavez for organizing
the workshop ‘Quantum Networks’ Barcelona, 30 March—1 April 2016, which offered the occasion for a
stimulating exchange of ideas that benefitted this paper.

Appendix A. Proof of theorem 1

Proof. By definition, the value of the primal problem is given by
Wprimal = SUP{<A, X> |X >0,Xe S}
= sup{(A, X)|X>0,X €S}

Z
= sup{(A, X)|X>0,(I,X)=1,VI € S},

having used the relation S = S. Now, let us pick an affine basis for 5, say (I})X_ | and re-write the value of the
primal problem as

Wprimal = sup{(A, X) | X >0, ([}, X) =1, Vie {1,...,K} }.
Weak duality then yields the relation

i=1 i

K
Wprimal g 1nf{2/\, | )‘i S R) ZAz Fz 2 A} (Al)

K
< inf{Z)\i [ NER DI NLIZA D N= o} (A.2)
i

i=1 i

=inf min{A € R | A" > A}, (A.3)
res

havingdefined A :=>"; A\jand ' == >, \, I/ .

Now, suppose that S contains a positive operator X, and S contains a strictly positive operator Iy, then
Slater’s theorem implies the equality: indeed, one can choose the affine basis (I})X_; to contain the operator Tp.
Since Ty is strictly positive, one can find strictly positive coefficients (\;)X_; such that 3°; \; T} > A. This means
that the dual problem in the rhs of equation (A.1) admits a strictly positive solution. Hence, proposition 4 implies
the equality in equation (A.1). The equality holds also in equation (A.2), because every solution with >, \; = 0
can be replaced by a new solution with 3°; A = ¢, by substituting \; with \; + ¢, ¢ > 0. Since € can be
arbitrarily small, this substitution does not change the value of the infimum. If A is positive, then one has the
lower bound wyrimal = (A, Xo) > 0.Equation (A.3) then implies that every A satisfying A\I' > A, T" € S must
be non-negative. If Ais strictly positive, the operator I must be positive. If A = 0, the operator I can be chosen
to be positive without loss of generality. In conclusion, the infimum in equation (A.3) can be restricted to S ..
Setting w := 1/ one finally obtains the desired expression. O

Appendix B. Proof of theorem 2

Proof. The maximum performance is given by equation (21). The expression can be re-written as
Wmax == max{ (2, C) | C€ S, C > 0}, (B.1)
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where S is the affine space of all the operators on ®§\’:1 (H™" @ Hij“) that are Hermitian and satisfy the linear
constraint (12). Note that S contains the strictly positive operator

Co=1h@L® - ® hy_1/(dids...dsn_1) (B.2)
and the dual affine space S contains the strictly positive operator
L= ®L®- - ® Ly-1/(dod;...doN_2). (B.3)

Since the sets S and S contain strictly positive operators, the expression in theorem 1 holds with the equality.
Moreover, one can choose the performance operator €2 to be positive without loss of generality: if 2 is not
positive, one can define Q' = Q + cIp, where cis a positive constant and Tj is the operator in equation (B.3).
This substitution only shifts the primal and dual values by the constant ¢, while preserving the optimal solutions.
For the shifted problem, theorem 1 guarantees that the dual optimization can be restricted to the positive
operatorsin S, namely

W = inf min{A € R| A > Q'}.

res.

Now, the set S, has been characterized in [18]: precisely, S* is the set of all positive operators I satisfying the
linear constraint

F = IAI(\)lut ® F(N)
TrAnin[F(N)] =L @ T® D, n=2,..,N
Tr A:"[F(”] =1, (B.4)
for suitable positive operators '™ actingon M} ® [®= (H™ ® H™)]. Observing that I 4™ is the Choi

operator of the trace channel Tr o« and comparing equation (B.4) with equation (12) we then obtain that every

operator " in ST is the Choi operator of a network of the form (32). Hence, S* = DualComb. Finally, note that
the set DualComb is compact and therefore the infimum is a minimum. O

Appendix C. Proof of proposition 5

Proof. By definition, the max relative entropies are given by Dy, (Co||G) = —log max W and
Dinax VT CoJT || VT GNT) = —log max W (T'), with
W = {weR|wC < G},
WD) = {weR|wJTCvT < JTGT}.
By construction, one has W C W(D') for everyI', and therefore

Dmax (CO || Cl) 2 Dmax (\/TCO\/f || \/TCI\/T)
On the other hand, if S, contains a full-rank element I, then W (I}) = W. O

Appendix D. Proof of proposition 6

Proof. Let us compute the conditional min-entropy of the output state
p=0* Dy *E %Dy % Ey -+ x Ey_| * Dy € St(By" ® }’\}“/)
(See equation (42)). By the operational characterization of the conditional min-entropy (equation (5)), we have

/ Tr[ o CT
Hon (B | BYY), = max  ALLC T D.1)
C=0, dBZ%u!
TrBI%ut [C] :IBIO\P‘,

where Cis the Choi operator of a recovery channel C, which attempts to turn p into the maximally entangled
state | ). Substituting the expression for p and maximizing over the sequence (o, Ej ,..., Ey_1), we then obtain

out out’
max  Hyin(By | By )

0,E,Es e EN 1
TI'[(O' * D1 *E] * D2 *E2 * ...k EN,] *DN) CT]
= max
0 ELEp e EN-1,C dpg
(0 x Dy % Ey x Dy * Ey x ... * Ey_1 x Dy) x C
= max (D.2)
0,ELEy e EN—1,C ngm
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E' xR
= max R (D.3)
0By e En-1,C dgnt

having defined
E/:O'*Elu'*EN,l*C and R =D % --- Dy.

Now, note that E’ is the Choi operator of a network of the form of equation (41). Moreover, since the channel C
can be chosen to be the identity, E’ is the Choi operator of an arbitrary network of the form of equation (41).
Using equations (43) and (44) we finally obtain

t/
E l{?naXE Hmin (BI(\)]ut | BI?]u )p = Hmin (tNltl--- tN*l)R .
0,E,Ep ..y N-1

Appendix E. Proof of proposition 7

Proof. The proofis based on proposition 5. Take an operator I" € DuaIComb(')'(iL‘{‘1 , Z‘ft yeres i}{‘N , H?‘\‘;}) and
diagonalizeitas T' = Y, ¢; |¢;) (¢;]. Choose Sto be the composite system A"A" -+ AR A" and define the
vector V) = 37, /g; 1¢) o) € Hpin @ Hypen @ -+ Hyin ®  Hyon @ ‘H. Then, the positive operator

E = |¥) (P|is the Choi operator of a network of the form of equation (50), as one can check from equation (12).
Then, explicit calculation gives

CW %« E=JTCWT.
Using proposition (5) we then conclude the equality

Dinax (CO || C) = max Dy (CO % E || CV x E).
I

O
Appendix F. Normalization condition for supermaps on product channels
Equation (56) gives us the Choi operator C. In order for C to be the Choi operator of a channel, we must have
TrAzout)Bzoul[C] = IAzin ® ]Bzin, (F.1)
Inserting equation (56), we then obtain the condition
TrAZoul’Bé)ul,Alin’Aloul,Blin’Bloul [(IAzout ® IAzin ® N ® IBtzlul ® IBlzn) (A ® B)] = IAzin ® I zin’ (F,z)
which must be satisfied whenever A and B satisfy the conditions
TrAluut)A;ut [A] = IAlin X IAzin and TrBluut)B;ul [B] = IBlin X IBzin, (E.3)
Now, we have the following
Proposition 11. For every operator N, the following conditions are equivalent:
(i) N satisfies the condition (F.2) for every operators A and B satisfying the condition (F.3)
(ii) N satisfies the condition
TrAf",Af’“‘,Bli“,Bf’m[N (X (024 g] =1 (F.4)
for every operators A e Lin(H A @ H i) and B € Lin(H g @ Hpin) satisfying the conditions
Tryou[A] = I in and Tryou[B] = Igin. (F.5)

Proof. Suppose that the operators Aand B satisfy the trace conditions (F.5). By defining the operators A and B
as A=A ® Iy pom / d, in andB=B ®I Bin pout / dg in, We see that equation (F.3) is satisfied. Then,
equation (F.2) becomes

TrAf“l,Bz""t,A]i",A]"“t,B]i",B]O“([(IAzom X IAzi" R®N® IBZ"“‘ ® IBZIH)(A X B)]

IAfm IBfut

®I,»®[NA @ B) e
Al 2 dein

= TrA;ul’Bzout’A]in)Alout)B]in’B]oul{ X IBzin} = IAzin [ IBzin_ (F6)
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The above equation holds if and onyl if condition (F.4) is satisfied. Conversely, if the operator N satisfies
condition (F.4)and A and B the trace conditions (F.5), we obtain

Tr pgu, g ain a0t pin pou[(Iyt @ I yin @ N @ Igew @ Ipin)(A @ B)]
= Tryjnapw pinpout [(I 40 @ N @ Ipin) (Tr agu geu[A @ B])] (F.7)
= Tryjmapepinpos [y @ N ® Ign)(A ® B)],
where we defined Tr yo«[A] = A and Tr pe[Bl = B. Hence, equation (F.2) holds ifand only if
Tr g apet g, gt [0 @ N @ Ign)(A ® B)] = Ipyin @ Ipin, (F.8)
In turn, the above equation holds if and only if
Tr pin g0 gin gt [N (A, @ By)] = 1, Vp € St(H ), Vo € St(Hyn), (F.9)
where Kp and B, are defined as
A, = Tr [ (p @ Lypuam)A] and B, = Tryn[(p @ Ipppi)Bl. (F.10)

Now, the normalization condition (F.9) is nothing but equation (F.4). The condition is satisfied because the
operators Kp and B, satisfy condition (F.5). O

Appendix G. Maximum fidelity for the inversion of an unknown dynamics

The performance operator {2 reads

Q= di [ aU Ut Uko @ 10Ty

1 oo T — = .
=z f dU (5 ® Uy @ U, @ D)o @ IN{IL1) (5 ® Uy ® U, ® L)' (G.1)
Explicit calculation using Schur’s lemma yields the relations
[Q, 13 & UZ & Il & UO] - O, (GZ)
QU@L UL =0, (G.3)

required to hold for every unitary U. Explicitly, the operator €2 is given by

L(P+,31 ® Py 20 n P55 ® P—,zo)

G.4
d? dy d_ G

P, and P_ are the projectors on the symmetric and antisymmetric subspace, respectively.

The problem is to find the minimum A such that AI' > €, for I satisfying the conditions (76). The first
condition requires I to be of the form I' = I ® T19. Now, equation (G.3) implies that, without loss of
generality, the operator T5; can be chosen to satisfy the condition

[Gi LR Ui ® L] =0 Y U e SU) (G.5)
which in turn implies
Thio= Q0 ® I, (G.6)

where Q,( is some positive operator on Hy. Similarly, equation (G.2) implies that we can choose T51 to satisfy
the condition

[T10, U ® I ® Upl = 0, V U € SU(d). (G.7)
Combined with equation (G.6), the above relation implies
[Q20, U, ® Upl =0 vV U e SU@) (G.8)
and therefore
Qy = aP, + BP.. (G.9)
Finally, the last condition in equation (76) gives Tr[Qo] = 1and, therefore,
ad, + fd_ = d.

The dual constraint A I" > () then reads

A aBr ® Py + B85 @ P_y) ] = (G.10)

1 (P51 ® Py n P 31 ® Py
d? d, d_ ’
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Pinching both sides with the projectors P, 3; ® Py ;pand P_3; ® P_ 59, one obtains

A>—1 ad Az L
d+d2 « d2 (d — ad+)

By separately considering the cases d  ad? > (d — d a)d*and d  ad? < (d — d a)d?, wefind that the
minimum \is A\, = 2/d.

(G.11)

Appendix H. Maximum fidelity for the charge conjugation of an unknown unitary
evolution

The maximization of the fidelity proceeds in the same way as for gate inversion. The only difference is that now
the performance operator €2 is given by equation (80), namely

_ %(Pﬁﬂipﬁlo n P,szfp,lo). (H.1)

The form of €2 implies the relations
[, Us® U, ® L] =0, (H.2)
(2, L, ® U ® Ul =0, (H.3)

valid for every Uin SU(d). Now, one has to find the minimum A such that A (5 ® T519) > 2, withsome I’
satisfying equations (76). Equation (H.2) implies that, without loss of generality, one has

[Ta10, Uz ® o] = 0 VU € SU(d), (H.4)
and therefore T51p = L, ® Q9. Moreover, the second condition in equation (76) reads
Tra[Tiol = 1 ® py

and implies that Q¢ has the form Qg = I} ® p,/d. Finally, equation (H.3) implies that one can choose
p, = I/d withoutloss of generality. Summing everything up, I" can be chosen to be of the form
I' = L ® Ty9 = Ly19/d? The dual constraint A\I' > €) then becomes

3 B0 > 1 (P52 ® Py " P 5 ® Py (H.5)
d? d? di d_
yielding the minimal value Ay, = 1/d_ = 2/d(d — 1).
Appendix I. Maximum fidelity for unitary controlization
The performance operator for the controlization problem is
1 =
Q= [dgletrl — Uhfetzl — Uknoo @ I0)(Th
= Q0 ® 10) (Ol @ 10){0lo + Wzl @ 1) (1o ® 11)(1lo, (L1
where Qand Q' denote the control qubit before and after the interaction, respectively, and
1
Oy = E(an ® by, 1.2)
L L
O = L Es, ® Ejo + £ 9 By . (1.3)
4d* |

Here E denotes the projector on the maximally entangled state |®T) = [I))/+/d, E, is the orthogonal projector
E :=I®? — E,and d, := d? — 1. Note that the operators Q3,, and Q45 satisfies the conditions

[0, Us ® by @ Tp] =0, (1.4)
[0, Us ® U> @ R = 0, (1.5)
[85100 B2 @ U1 @ Upl = 0, (1.6)

for every group element U € SU(d).

To solve the dual problem, we have to find the minimum A satisfying the relation A I' > €2 for some dual
comb . By equation (76), wehave I' = I, ® I; ® T5)04, for some suitable operator T;;, satisfying the
conditions
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T[Tl = 5L ® py,
Troa[pg,] = 1.

Without loss of generality, 15,0, can be chosen of the form

Thioa = T3ty @ 10) (Olg + Ti1p @ 11) (Lo (L.7)
with the operators T3% and T3}) satisfying the conditions
TolTil = plh @ ol and  Tr[Til = plh @ o), (L8)

where pf)o) and pgl) are two density matrices and py and p, are probabilities. The dual constraint is then reduced
to

AB® TR > 08, Vke{o,1}. (1.9)
At this point, equation (I.4) implies that, without loss of generality, one can choose T5'; to satisfy the relation

[T, Li® Tyl =0,  YUeSU@),

which implies T35 = Q{Y ® I, for some suitable operator Q{?. Moreover, equation (I.2) implies that, without
loss of generality, one can choose Q4 to be proportional to the identity, so that, eventually one has
T3 = bo %- (1.10)
Similarly, equation (I.3) implies that, without loss of generality, one can choose T4}) to satisfy the relations
[T5it U ® Lol = 0, (L.11)
[TSh b ® T, ® Upl = 0, (L.12)
for every unitary U € SU(d). Now, equation (I.11) implies that T5}) has the form
TS =15L® QY 1.13)

and equation (I.8) implies the condition
d Qfy = Tro[Tiih]
=plh @ pf]

for some probability p; and some quantum state pg). Combining equations (I.13) and (I.12) one finally obtains
Q) = ph®I / d?, and therefore
IZ ® 11 ® IO

TS = b = (L14)
Inserting the above relations into the dual constraint, we then obtain
oo 1
0" > E(an ® by) (1.15)
Lo 1 Ej; ® Ejg
2} 2 = F,ZZ(E” ® Ejp + T ) (1.16)

having used equations (1.10), and (I.14). To satisfy the constraint, the parameters A, p,,and p; must satisfy
Ap, = 1/4and A\p; > 1/4,leading to the minimum value Ay, = 1/2.
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