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Abstract
Wedevelop a semidefinite programmingmethod for the optimization of quantumnetworks,
including both causal networks and networkswith indefinite causal structure. Ourmethod applies to
a broad class of performancemeasures, defined operationally in terms of interative tests set up by a
verifier.We show that the optimal performance is equal to amax relative entropy, which quantifies the
informativeness of the test. Building on this result, we extend the notion of conditionalmin-entropy
fromquantum states to quantumcausal networks. The optimizationmethod is illustrated in a number
of applications, including the inversion, charge conjugation, and controlization of an unknown
unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the
maximization of thewinning probability in a non-causal quantum game.

1. Introduction

Advances in quantum communication [1–3] and in the integration of quantumhardware [4–8] are pushing
towards the realization of networked quantum information systems, such as quantum communication
networks [9–13] and distributed quantum computing [14–16]. Networks of interacting quantumdevices are
attracting interest also at the theoretical level, providing a framework for quantumgames [17] and protocols
[18–20], insights on the foundations of quantummechanics [18, 21–23], a starting point for a general theory of
Bayesian inference [24–31] and for the development ofmodels of higher-order quantum computation [32–34].

The network scenariomotivates a new set of optimization problems, where the goal is not to optimize
individual devices, but rather to optimize howdifferent devices interact with one another. Inmany situations,
the devices operate in awell-defined causal order—this is the case, for example, in the circuitmodel of quantum
computing, where computations are implemented by sequences of gates [35, 36]. Recently, researchers have
started to investigatemore general situations, where the causal order can be in a quantum superposition
[20, 33, 34, 37–39] or can be indefinite in othermore exotic ways, in principle compatible with quantum
mechanics [34, 40–45]. In these new situations, optimizing quantumnetworks is important, for at least three
reasons: First, in order to establish an advantage, one has tofirst find the optimal performances achievable in a
definite causal order. Second,finding themaximumadvantage requires an optimization over all non-causal
networks. This is an essential step for assessing the power of the new, non-causalmodels of information
processing. Third, identifying the ultimate performances achieved in the absence of pre-defined causal structure
is expected to shed light on the interplay between quantummechanics and spacetime.

In this paperwe develop a semidefinite programming (SDP) approach to the optimization of quantum
networks.We start by analyzing scenarios with definite causal order, choosing an operationalmeasure of
performance, quantified by howmuch the network scores in a given test. The test consists in sending inputs to
the devices, performing local computations, andfinallymeasuring the outputs. Tests of this type are also
important in the theory of quantum interactive proof systems [46], wherein they are used tomodel the
interaction between a prover and a verifier. The input-output behavior of a quantum causal network is described
in the framework of quantum combs [18, 47] (also known as quantum strategies [17]), which associates a positive
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operator to any given sequence of quantumoperations. In this framework, the optimization is a SDP.Wework
out the dual optimization problem, showing that themaximum score is quantified by a one-shot entropic
quantity that characterizes the informativeness of the test. This quantity extends to networks the notion ofmax
relative entropy [48–51] (see also themonograph [52]). Building on the connectionwith themax relative
entropy, we define ameasure of the amount of correlations that a causal network can generate over time. This
quantity is based on the notion of conditional min-entropy [50, 51], originally defined for quantum states and
extended here to quantum causal networks.

After discussing the causal case, we turn our attention to quantumnetworks with indefinite causal order.
Some of these networks arise whenmultiple quantumdevices are connected in away that is controlled by the
state of a quantum system [18, 20, 38]. Some other networks are not built by linking up individual devices [41].
They are ‘networks’ in a generalized sense: they are spatially distributed objects that can interact with a set of local
devices. The description of these generalized networks is trickier, becausewe cannot specify their behavior in
terms of the behavior of individual quantumdevices. Instead, wemust characterize them through theway they
respond to external inputs.More specifically, a general quantumnetwork is specified by amap that accepts as
input the operations taking place in local laboratories and returns as output an operation, asfigure 1.Maps that
transformquantumoperations are known as quantum supermaps. Theywere originally introduced in the causal
scenario [18, 53] and later generalized to the case of networks with indefinite causal structure [18, 34, 41]. These
maps can be represented by positive operators, subject to a set of constraints that guarantee that valid operations
are transformed into valid operations. Again, the formof these constraints leads to SDPs. In this case, wefind
that themaximum score can be expressed in terms of amax relative entropy, here named themax relative entropy
of signaling, which quantifies the deviation from the set of no-signaling channels. In addition, we characterize the
max relative entropy between twonon-causal network, showing that it is equal to themaximumof themax
relative entropy over all the states that can be generated by interactingwith the two networks. This result opens
theway to the definition of hypothesis testing protocols to probe the fundamental structure of spacetime, by
testing the possibility of exotic non-causal networks against the null hypothesis that events have awell-defined
causal structure.

To illustrate the generalmethod, we provide a number of applications to concrete tasks, involving the
optimization of both causal and non-causal networks. For the optimization in the causal setting, we consider the
tasks of inverting an unknownunitary dynamics, simulating the evolution of a charge conjugate particle, and
adding control to an unknownunitary gate. Looking at these tasks in terms of network optimization is a
relatively new approach and herewe provide thefirst optimized solutions. For the optimization in the non-
causal setting, we illustrate ourmethod by analyzing the non-causal game introduced byOreshkov et al [41]. In
this case, we fix the operations performed by the players (as in [41]) andwe search for the non-causal network
that offers the largest advantage for these operations. Using the SDP approach, we obtain a simple proof of the
optimality of the network presented in [41]. Optimality can also be derived froma recent result of Brukner [54],
who considered amore general scenario where the players’ operations are notfixed, but rather subject to
optimization.When the operations arefixed as in [41], however, our SDP technique yields a significantly shorter
optimality proof. The simplification in this restricted scenario suggests that SDPmay prove useful also for the

Figure 1.Generalized network (in blue) interactingwith two sequences of local devices inAlice’s laboratory (orange boxes) and in
Bob’s laboratory (green boxes). Devices acting in the same laboratory are applied in awell-defined causal order, corresponding to the
direction from left to right in the picture.However, no causal order is assumed between the devices in the two laboratories.
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broader scope of identifying a non-causal analogue of the Tsirelson bound, whichwas themotivating problem
of [54].

The paper is organized as follows. In section 2we introduce the framework of quantum combs and the
characterization of quantum causal networks. In section 3we review the basic facts about SDP and establish a
general relationwith themax relative entropy. The general result is applied to quantum causal networks in
section 4 and is then used to define a suitable extension of the conditionalmin-entropy (section 5) and of the
max relative entropy (section 6). In sections 7 and 8we extend the results to quantumnetworkswithout
predefined causal structure. Our techniques are illustrated in section 9, wherewe present applications to the
tasks of inverting unknown evolutions, simulating charge conjugation, controlling unitary gates, and
maximizing thewinning probability in a non-causal quantum game. Finally, the conclusions are drawn in
section 10.

2. The framework of quantum combs

In this sectionwe introduce the concepts required for the optimization of quantum causal networks. First of all,
we review the connection between quantum channels and operators. Then, we present the basics of the
framework of quantum combs.

2.1.Quantumoperations, quantum channels, and theChoi isomorphism
Quantumoperations [55] describe themost general transformations of quantum systems, including both the
reversible transformations associated to unitary gates and the irreversible transformations due to
measurements. A quantumoperationwith input systemA and output systemB is a completely positive trace
non-increasingmap  , transforming operators on the inputHilbert spaceA into operators on the output
Hilbert spaceB.Wewill often use the diagrammatic notation

ð1Þ

We say that the quantumoperation  in the above diagram is of type A B.
When systemA is trivial—that is,when itsHilbert space is one-dimensional—the quantumoperation 

corresponds to the preparation of a state of systemB, diagrammatically represented as When system

B is trivial, the quantumoperation  in equation (1) corresponds to ameasurement effect on systemA and is
represented as Measurement effects are positive (semidefinite) operators P satisfying P I , where

I is the identity operator on the systemʼsHilbert space. Effects are associated to the outcomes ofmeasurements
and the probability of the outcome corresponding to the effect P is given by the Born rule

ð2Þ

where ρ is the state of the systembefore themeasurement. In the special case where P is the identity operator, we
represent the corresponding effect as

In general, quantummeasurement processes are described by quantum instruments. A quantum instrument
with inputA and outputB is a collection of quantumoperations XÎ{ }x x of type A B, subject to the condition
that the sum Xå Î x x is trace-preserving. Each quantumoperation corresponds to one alternative outcome x
and the probability that the quantumoperation x takes places on a given input state ρ is given by

ð3Þ

When the instrument XÎ{ }x x has a single outcome, say x0, the corresponding process is deterministic, meaning
that one can predict in advance that the outcomewill be x0. In this case, the quantumoperation x0

is trace
preserving. Trace preserving quantumoperations are also known as quantum channels.

Completely positivemaps can be represented by positive operators. Let Lin( ) be the space of linear
operators on theHilbert space and let  be a completely positivemap transforming operators in Lin( )0 into
operators on Lin( )1 . Then, themap  can be represented by a positive operator LinÎ Ä( ) C 1 0 , defined as

= Ä( )( ∣ ⟫⟪ ∣) ( ) C I I , 40

where 0 denotes the identitymap on Lin( )0 and ∣ ⟫I is the unnormalizedmaximally entangled state
= å ñ ñ Î Ä∣ ⟫ ∣ ∣  I i ii 0 0. The operatorC is known as theChoi operator [56].
Quantumoperations and quantum channels can be characterized in terms of their Choi operators: a positive

operator LinÎ Ä( ) Q 1 0 corresponds to a quantumoperation if and only if it satisfies the condition
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[ ] ( )Q ITr , 51 0

where Tr1denotes the partial trace over theHilbert space1, I0 denotes the identity operator on theHilbert
space0, anddenotes the standard operator order: A B iff j j j já ñ á ñ∣ ∣ ∣ ∣A B , j" ñ Î∣ 0. A positive
operator LinÎ Ä( ) C 1 0 corresponds to a quantum channel if and only if it satisfies the condition

=[ ] ( )C ITr . 61 0

2.2. The link product
Twoquantumoperations can be connectedwith each other, as long as the output of the first operationmatches
the input of the second. At the level of Choi operators, the connection is implemented by the operation of link
product [47], denoted as *. To define the link product, it is convenient to introduct the following shorthand
notation: ifA is an operator on Ä X Y andB is an operator on Ä Y Z , thenwe use the notationAB for the
product

Ä Ä≔ ( )( ) ( )AB A I I B . 7Z X

With this notation, the link product ofA andB is the operator *A B defined as

* ≔ [ ] ( )A B A BTr , 8Y
TY

where BTY denotes the partial transpose ofBwith respect to theHilbert spaceY . Note that the definition of the
link product presupposes that theHilbert spaces have been labeled: in order to compute the link product, one
needs to take the partial transpose and the trace on theHilbert space in commonbetweenA andB.
Mathematically, the partial transpose in the rhs of equation (8) is essential to guarantee that the link product of
two positive operators is a positive operator [47]. As a counterexample, think of the case whereX ,Y , andZ

are two-dimensional andA andB are projectors on amaximally entangled state: in this case, removing the partial
transpose results in a non-positive *A B). Physically, the role of the partial transpose can be understood in
terms of entanglement swapping [57, 58]. Thanks to the partial transpose, the link product can be expressed as

* = Ä Ä Ä¢ ¢[( ) ( ∣ ⟫⟪ ∣ )] ( )A B A B I I I ITr Tr , 9Y Y XY Y Z X Z

where å ñ ñ=∣ ⟫ ≔ ∣ ∣I n nn
d

1
Y is the unnormalizedmaximally entangled state on Ä ¢ Y Y , ¢Y being an identical

copy ofY . Thismeans that, up to normalization, the link product *A B is the state obtainedwhen a Bell
measurement, performed on the states A ATr and B BTr , yields the outcome corresponding to the projector
∣ ⟫⟪ ∣I I dY . At the fundamental level, the possibility of representing operations as states and their composition as
entanglement swapping follows from the Purification Principle—the property that every state can be obtained as
themarginal of a pure state, unique up to reversible transformations [59].

The link product is associative, namely

* * = * *( ) ( )A B C A B C,

for all operatorsA,B, andC.Moreover, the link product is commutative, up to re-ordering of theHilbert spaces:
in formula,

* *A B B A,

having used the notation * *A B B A tomean SWAP SWAP* = *( )A B B AXZ XZ , whereSWAPXZ is the
unitary operator that swaps the spacesX andZ . Fromnowonwewill omit the swaps, implicitly
understanding that theHilbert spaces have been reordered in the right waywherever needed.

Using the above notation, we have the following

Proposition 1 [47]. Let be a quantum operation transforming operators on0 to operators on1, let  be a
quantum operation transforming operators on1 to operators on2, and let =  be the quantum operation
resulting from the composition of and  . Then, one has

*≔C A B,

where A B, , and C are the Choi operators of A B, , and C , respectively.

In the next paragraphwewill use the link product to construct the Choi operator of quantumnetworks
consisting ofmultiple interconnected quantumoperations.

2.3.Quantum causal networks andquantum combs
Aquantumnetwork is a collection of quantumdevices connectedwith each other.Wewill call the network
causal if there are no loops connecting the output of a device to the output of the same device.Mathematically, a
quantum causal network can be represented by a direct acyclic graph, where each vertex of the
graph corresponds to a quantumdevice—see figure 2. For everyDAG, one can always define a total ordering of
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the vertices, through a procedure known as topological sorting [60]. Using this fact, one can always represent the
a quantum causal network as an ordered sequence of quantumdevices, such as

ð10Þ

where Aj
in (Aj

out) denotes the input (output) systemof the network at the jth time step.
We say that a network is deterministic if all devices in the network are deterministic,i.e.if they are described

by quantum channels. Using the link product, we associate a Choi operator to the network: specifically, if the
individual channels in the network have Choi operators C C C, ,..., N1 2 , then the network has Choi operator

= * * * * ( )C C C C C . 11N1 2 3 

TheChoi operator of a deterministic network is called a quantum comb [18, 47], or also a quantum strategy
[17]. The quantum combC is a positive operator on Ä=⨂ ( ) j

N
j j1
out in , where j

in ( j
out) is theHilbert space

of system Aj
in (Aj

out). Quantumcombs can be characterized as follows:

Proposition 2 [17, 18, 47].Apositive operator C is a quantum comb if and only if it satisfies the linear constraints

= Ä " Î ¼-[ ] { } ( )( ) ( )C I C n NTr 1, , , 12A
n

A
n 1

n n
out in

where TrA is the partial trace over theHilbert spaceA, ( )C n is a suitable operator on Ä=≔ ⨂ ( )  n j
n

j j1
out in ,

≔( )C CN , and ≔( )C 10 .

The constraints in equation (12) are a direct consequence of the normalization condition of quantum
channels, expressed by equation (6). Physically, the positive operator ( )C n represents the subnetwork
transforming thefirst n inputs to thefirst n outputs.We denote by

Comb   ( )A A A A A A, ,..., N N1
in

1
out

2
in

2
out in out

the set of positive semidefinite operators satisfying the constraint (12).When there is no ambiguity, wewill
simplywrite Comb.

2.4.Quantum testers and the generalized Born rule
So farwe considered deterministic networks, resulting from the connection of quantum channels. However, it is
also useful to consider networks containingmeasurement devices, whichmay generate randomoutcomes.We
call such networks non-deterministic. Non-deterministic quantumnetworks can be thought as the quantum
version of classical electric networks containingmeasurement devices, such as voltmeters and ammeters. Like
these classical relatives are useful for testing the behavior of electrical circuits, quantumnon-deterministic
networks are useful for testing the behavior of quantum circuits, or, slightlymore broadly, physical processes
consisting ofmultiple time steps.

An example of non-deterministic network is the following

ð13Þ

where ρ is a quantum state, -( ) ,..., N1 1 is a sequence of quantum channels, and XÎ{ }Px x is a positive operator-
valuedmeasure (POVM), describing a quantummeasurement on the last output system.Networks of the type
(13) can be used to probe quantumnetworks of the type (10), as follows

Figure 2.Aquantum causal network is a directed acyclic graph, whose nodes (orange boxes in the picture) represent quantumdevices
andwhose directed edges indicate the input/output direction.
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ð14Þ

When the two networks arewired together, the finalmeasurement produces one of the outcomes in the set X.
Using proposition 1, the probability of the outcome x is can be computed as

r

r

= * * * * * * * *

= * * * * * * * * *
= *
=

-

-( ) ( )

[ ]

( )

p C D C D D C P

D D D P C C C

T C

T CTr ,

15

x N N x
T

N x
T

N

x

x
T

1 1 2 2 1

1 2 1 1 2



 

whereC is theChoi operator of the tested network,CT is the transpose ofC, and XÎ{ }Tx x is the collection of
operators defined by

r * * * * *-≔ ( )T D D D P 16x N x
T

1 2 1

(here the transpose ofPx is needed because, according to definition 4, the Choi operator of the quantum
operation =(·) [ · ] PTrx x is Px

T instead ofPx).
We call the set of operators X= Î{ }TT x x a quantum tester and equation (15) the generalized Born rule

[18, 61, 62]. The quantum tester T describes the response of the non-deterministic network (13)when
connected to external devices. Quantum testers are a useful abstraction inmany applications, such as quantum
games [17] and cryptographic protocols [19, 20], quantum interactive proof systems [46], quantum learning of
gates [63–65], quantum channel discrimination [61, 66, 67], incompatibility ofmultitime quantum
measurements [68], tomography of quantum channels [62, 69], non-Markovian processes [70, 71], and causal
models [28].

Quantum testers can be characterized as follows:

Proposition 3 [61]. Let T be a collection of positive operators on Ä=⨂ ( ) j
N

j j1
out in . T is a quantum tester if and

only if

X
å = Ä G

G = Ä G = ¼

G =

Î
-

-
[ ]

[ ] ( )

( )

( ) ( )

( )

T I

I n NTr , 2, ,

Tr 1, 17

x
x A

N

A
n

A
n

A

1

1

N

n n

out

in
1

out

1
in

where each G( )n , = ¼n N1, , is a positive operator on Ä Ä=
-[⨂ ( )]  n j

n
j j

in
1
1 out in .

2.5. Assessing the performance of a quantumnetwork
Suppose thatwe are given black box access to a quantumnetwork, whose internal functioning is unknown to us.
Our goal is to assess howwell the network fares in a desired task, such as solving a desired computational
problem [72], estimating an unknown parameter [64, 65], emulating a sequence of gates [63, 73], or replicating
the action of a desired gate [74–78].

For example, suppose that amanufacturer provides uswith a special-purpose computer, designed to
implement a quantum search algorithm.How canwe test the performance of our device? Since the computer is
claimed tofind the location of an item in a list, a natural approach is to place the item in a set of randompositions
and then to checkwhether the answer provided by the computer is correct. A simplemeasure of performance is
given the number of inputs onwhich the computer gives the right answer.More generally, one can assign
different scores depending on the distance between the correct answer and the output of the computer. Let us
consider this example inmore detail, as a concrete illustration of what itmeans to test a quantumnetwork.
Suppose that the computer attempts at reproducingGrover’s algorithm [79], by interactingwith unitary gates

= ñá -∣ ∣U i i I2i that encode the position of an item i in a list ofK items. A possible test, illustrated infigure 3, is
as follows:

(i) Prepare a ‘position register’ in themaximallymixed state r = I K .

(ii) Upon receiving an input from the computer, apply the control-unitary gate = å ñá Ä= ∣ ∣W i i Ui
K

i1 to the
position register and the input.

(iii) Repeat the previous operation until the computer returns an output. In this way, the input provided by the
computer is processed by a gateUi, with i chosen at random.
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(iv) Compare the output with the actual position, by performing a joint measurement to the position register
and the output register. Themeasurement is described by the POVM =-{ }Px x K

K with operators given by

å= ñá Ä + ñá +
= -

-

∣ ∣ ∣ ∣
{ }

{ }
P i i i x i x .x

i x

K K x

max 0,

min ,

In this way, themeasurement outcome returns the deviation x from the correct position

(v) If the deviation is x, assign score w = - ∣ ∣x K1x .

Mathematically, the test is represented by the quantum tester =-{ }Tx x K
K with

r= * * * *∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣T W W W W P .x x
T

The sequence of operations performed by the computer is represented by the quantum comb

f f= ñá * * *∣ ∣C C C ,N1 

and the probability offinding a deviation x is given by

= *p T C .x x

The average score obtained by the computer can be expressed as

å

å

w = -
-

= - *

= W *

=
-

=-

∣ ∣

∣ ∣⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

i j

K
p

x

K
T C

C

1

1

,

i j

K

i j

x K

K

x

, 0

whereΩ is the operator W å -( )≔ ∣ ∣ T1x
x

K x.

Generalizing the above example, we assess the performance of an unknown quantumnetwork by referring
to experiments where the unknownnetwork is connected to a ‘testing network’, containingmeasuring devices.
The testing networkwill return an outcome x, to which one can assign a ‘score’ wx. In this way, the expected
score serves as an operationalmeasured of performance. Specifically, letC be the quantum combdescribing the
tested network and let X= Î{ }T xT ,x be the quantum tester describing the testing network. Then, the average
score is given by

å

å

w w

w

= *

= W * W

( )

≔ ( )

T C

C T . 18
x

x x

x
x x

Note that the performance of the networkC is completely determined by the operatorΩ, whichwe call the
performance operator.

For a given performance operatorΩ, themaximumexpected score is given by

Comb

Comb

Comb

w W *

= W

= W

Î

Î

Î

≔

[ ]

[ ] ( )

C

C

C

max

max Tr

max Tr . 19

C

C

T

C

max

The third equality comes from the fact that the set of quantum combs is closed under transposition and,
therefore, we can omit the transpose in equation (15). Using the notation

Figure 3.A computer is designed to implement Grover’s algorithm. The action of the computer (in orange) is tested by a testing circuit
(in blue), consisting in the preparation of randomly chosen input (encoded in the state r = I K of a ‘position register’), followed by
the application of the control-unitary gateW, which, depending on the input, performs one of the unitariesUi. In the end, the
computer outputs an outcome j (encoded in the output of the channel N ), which is comparedwith the position register through a
suitable quantummeasurement (POVM { }Px ), which outputs the deviation = -x i j .

7

New J. Phys. 18 (2016) 093053 GChiribella andDEbler



á ñ ≔ [ ] ( )A B AB, Tr , 20

we express themaximum score as

Comb
w áW ñ

Î
≔ ( )Cmax , . 21

C
max

The above equation shows that the search for themaximum score is a SDP. The basic tools needed to address
it will be reviewed in the next section.

3. SDP and themax relative entropy

3.1. Basic facts about SDP
Herewe review the background about SDP. For further details, we refer the reader toWatrous’ lecture
notes [80].

Let and  be two aHilbert spaces and letHerm( ) be the space ofHermitian operators on and  ,
respectively.

Definition 1.ASDP is a triple f( )A B, , , where A and B are operators inHerm( ) andHerm( ) , respectively,
andf is a linearmap fromHerm( ) toHerm( ) .

A SDP is associated to an optimization problem in the standard form

f
á ñ

=( )
( )

A X

X B

X

maximize ,

subject to

0. 22

This problem is known as the primal. The dual problem is

Herm

f
á ñ

Î
( )

( ) ( )

†




B Y

Y A

Y

minimize ,

subject to

, 23

where f† is the adjoint off, namely the linearmap defined by the relation

Herm Hermf fá ñ = á ñ " Î " Î( ) ( ) ( ) ( )†  X Y X Y X Y, , , , .

The optimal values of the primal and dual problems, denoted as

w wá ñ á ñ≔ ≔A X B Ysup , and inf , ,primal dual

are related by duality: for every SDP, one has theweak duality w wprimal dual. The strong duality w w=primal dual

holds under suitable conditions, provided by Slater’s theorem [81]. In this paper wewill use the following.

Proposition 4. Let f( )A B, , be a SDP. If there exists a positive operator X satisfying f =( )X B and anHermitian
operator Y satisfying f >( )† Y A, then w w=primal dual.

For the proof, see e.g. [80].

3.2. Themax relative entropy
An important quantity in one-shot quantum information theory is themax relative entropy, introduced byDatta
in [82]:

Definition 2. Let A and B be two positive operators on . Themax entropy ofA relative to B is given by

-( ) ≔ { ∣ } ( )D A B w w A Blog max , 24max 

with the convention -¥≔log 0 .

Themax relative entropy provides oneway to quantify the deviation ofA fromB.More generally, it is useful
to consider the deviation betweenA and a set of operators:

Definition 3. Let A be a positive operator on and let S HermÌ ( ) be a set of positive operators. Themax
entropy ofA relative the set S, denoted as S( )D Amax  , is the quantity defined by

S
SÎ

( ) ≔ ( ) ( )D A D A Binf . 25
B

max max 

Themax relative entropy between a quantum state and a set of quantum states plays a central role in
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entanglement theory [83], where relative entropies are used to quantify the deviation from the set of separable
states, and in quantum thermodynamics [84, 85], where relative entropies are used to quantify the deviation
from the set of Gibbs states. In this paperwewill extend the application of themax relative entropy to dynamical
scenarios, where S represents a set of quantumnetworks. This extension is promising,e.g.for applications to
hypothesis testing. Indeed, it is natural to consider scenarios where one has a null hypothesis on the input-
output behavior of a quantumnetwork and onewants to test the null hypothesis against an alternative
hypothesis. In the case of quantum states, theminimumprobability of a type II error (failing to accept the
alternative hypothesis) can be estimated in terms of themax relative entropy [86]. In the case of quantum
networks, it is natural to expect that themax relative entropy defined herewill yield similar bounds—a result in
this directionwill be provided in sections 6 and 8.

3.3. FromSDPs to themax relative entropy
In this sectionwe provide a general bound on the primal value of an arbitrary SDP. The bound can always be
attained and its value can be expressed in terms of amax relative entropywhenever the operatorA in the SDP
f( )A B, , is positive. To state the result, we need some basic notation, provided in the following:

For a vector space  , we denote by * the dual space,i.e.the space of linear functionals on  . Given a
subset S Í  , we define the dual affine space S as

S SG Î áG ñ = " Î≔ { ∣ }* X X, 1, .

Regarding  as a subspace of ** , one has the inclusion S SÍ .When  isfinite dimensional and S is an affine
set, one has the equality S S= .

Given a SDP f( )A B, , , we define the primal affine space as

S Herm fÎ =≔ { ( ) ∣ ( ) } ( )X X B . 26

Simply, S is the set of operators that satisfy the equality constraint of the primal problem. The dual affine space is
given by

S Herm S= G Î áG ñ = " Î{ ( ) ∣ } ( ) X X, 1, , 27

having used the identification ofHerm( ) with its dual space.With this notation, we have

Theorem1. Let f( )A B, , be a SDP. The optimal solution of the primal problem is upper bounded as

S
w l lÎ G

GÎ
{ ∣ } ( )   Ainf min , 28primal

where S is the dual affine space defined in equation (27). If S contains a positive operator and S contains a strictly
positive operator, then equation (28) holds with the equality sign. If, in addition, the operatorA is positive, then one
has the expression

w = + ( )( )2 , 29D A S
primal

max 

where S+ is the dual convex set S SG Î G+ ≔ { ∣ } 0 .

The proof can be found in appendix A.
We call the quantity S+( )D A  themax divergence from normalization. This quantitymeasures howmuch

the operatorA deviates from the set of positive functionals that are normalized on every element of the
primal set.

The connection between SDP and themax relative entropy has previously appeared in the special casewhere
the task is to optimize quantum channels [51, 87]. A related result was obtained by Jenčová in the framework of
base norms [88]. In the next sectionswewill elaborate on the physicalmeaning of theorem 1,whichwill be
applied to the optimization of quantumnetworks, bothwith definite and indefinite causal structure. Before
specializing ourselves to quantumnetworks, however, it is worth emphasizing a simple connection between the
max relative entropy arising in generic SDPs and themax relative entropy of quantum states.

Proposition 5. Let C0 and C1 be two elements of the convex set

S Herm f= Î =+ { ( ) ∣ ( ) } X X B X, 0 .

Then, one has the bound

SG G G G "G Î +( ) ( )D C C D C C , .max 0 1 max 0 1 

The bound holds with the equality if the dual convex set S+ contains a full-rank operator.
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The proof can be found in appendix C.Note that, by construction the operators G GC ,i =i 0, 1are
densitymatrices: indeed, they are positive and G G = G =[ ] [ ]C CTr Tr 1i i , since, by definitionΓ is a positive
function normalized on the primal set S. Propositionwill be used to show that the relative entropy of two
quantumnetworks is equal to themaximum relative entropy between the output states generated by the
networks.

4.Optimizing quantumcausal networks

Herewe consider the scenario where a network of quantumdevices, arranged in a definite causal order, is
required to perform a desired task, such as implementing a distributed algorithm.What is themaximum
performance that the network can attain? In this sectionwe answer the question,measuring the performance
through the score obtained in a suitable test (depending on the task at hand) and providing a close form
expression for themaximum score.

4.1. The dual networks
Following section 2.5, themathematical description of the test is provided by a performance operatorΩ, acting
on theHilbert spaces of the input and output systems of the tested network. Themaximumperformance
achieved by an arbitrary causal network is determined by the following

Theorem2. Let W be an operator on Ä=⨂ ( ) j
N

j j1
out in and let wmax be themaximumof áW ñC, over all operators

C representing quantum networks of the form

ð30Þ

Then, wmax is given by

DualComb
w l l= Î G W

GÎ
{ ∣ } ( ) min min , 31max

whereDualComb denotes the set of dual combs, that is, positive operatorsΓ representing networks of the form

ð32Þ

where s is a quantum state, ¼ -( )  , , , N1 2 1 is a sequence of quantum channels, and TrAN
out represents the trace over

the last system. Explicitly,DualComb is the set of all positive operators G satisfying the linear constraint

G = Ä G

G = Ä G = ¼

G =

-
-

[ ]

[ ] ( )

( )

( ) ( )

( )

I

I n NTr , 2, ,

Tr 1, 33

A
N

A
N

A
N

A

1

1

N

n n

out

in
1

out

1
in

for suitable positive operators G( )n acting on Ä Ä=
-[⨂ ( )]  n j

n
j j

in
1
1 out in .When W is positive, themaximum

performance can be expressed as

DualCombw = W ( )( )2 . 34D
max

max 

The proof can be found in appendix B.

Theorem 2has an intuitive interpretation. The dual networks (32) and the primal networks (30)
‘deterministically complement each other’: when two such networks are connected, one obtains the closed
circuit

ð35Þ

which yields no information about the primal network andmakes any such information inaccessible to further
tests. Hence, the dual networks represent the non-informative tests. Themax relative entropy quantifies how
much the test with performance operatorΩ deviates from the set of non-informative tests.

10

New J. Phys. 18 (2016) 093053 GChiribella andDEbler



4.2. The case of binary testers
Consider a binary test, described by the tester { }T T,yes no and assume that the test is passed if and only if the
testing network yields the outcome ‘yes’. Binary testers have applications in the theory of quantum interactive
proof systems [46], where they can be used to compute the probability that the verifier accepts the token
provided by the prover through a sequence of operations. In this scenario, the performance operator is given by
W = Tyes and the probability that the prover passes the test, optimized over all possible quantum strategies, is

DualComb
= G

GÎ

-( { }) ( )p w Tmax max , 36max yes
1

having used equation (31)withλ replaced by its inverse l=w 1 . Inwords, the problem is tofind the
maximumweight for which one can squeeze the tester operator Tyes under some dual combΓ.

Thismaximization has an intuitive interpretation:

Corollary 1.Themaximumprobability that a quantum causal network passes the test defined by the operatorT1 is
equal to the inverse of themaximumweightw for which there exists a two-outcome tester ¢ ¢{ }T T,yes no

satisfying ¢ =T w Tyes 1.

Proof. Suppose that the relation GwT1 holds for someweightw and some dual combΓ. Then, define
¢ ≔T wTyes yes and ¢ G - ¢≔T Tno no. By construction, the operators ¢ ¢{ }T T,yes no form a tester: they are positive and

their sum satisfies equation (17). ,

In other words, the dual problem amounts tofinding the binary tester { }* *T T,yes no that assigns themaximum

possible probability to the outcome 1, subject to the condition that *Tyes is proportional toTyes. The content of the
duality is that themaximum is attainedwhen there exists a primal network that triggers deterministically the
outcome 1:

Corollary 2. Let { }* *T T,yes no be the optimal tester for the dual problem and let *C be the optimal quantum comb for
the primal problem. Then, one has

á ñ =* *T C, 1.yes

Proof. Let *w be the optimal weight in the dual problem, Then, one has =* *T w Tyes yes and á ñ =* *T C w, 1yes .

Combining these two equations, one gets á ñ = á ñ =* * * *T C w T C, , 1yes yes . ,

5. The conditionalmin-entropy of quantumcausal networks

Theorem2 allows us to extend the notion of conditionalmin-entropy [50] fromquantum states to quantum
causal networks. Let usfirst review the basic properties of the conditionalmin-entropy of quantum states: For a
quantum state Str Î ( )AB , the conditionalmin-entropy of systemA, conditional on systemB, is defined as [50]

St
l l g r- Î Är

gÎ
( ∣ ) ≔ [ { ∣ ( ) }] ( )

( )
 H A B Ilog min min . 37

B
A B ABmin

König et al [51] clarified the operationalmeaning of r( ∣ )H A Bmin in terms of the following task: given the state
rAB,find the quantum channel  that produces the best approximation of themaximally entangled state

Fñ å ñ ñ¢ =∣ ≔ ∣ ∣n n dAA n
d

A1
A , by acting locally on systemB. Here the quality of the approximation ismeasured by

thefidelity, namely the probability that the output state passes a binary test with POVM { }P P,yes no , defined by
FñáF≔ ∣ ∣Pyes . Overall, we can jointly regard the preparation of the state ρ and themeasurement of the binary

POVM { }P P,yes no as a test performed on the channel  . Diagrammatically, the successful instance of the test is
represented by the network

ð38Þ

whoseChoi operator is given by

r

r

*

=

≔T P

d ,

T

A

yes yes

(with a slight abuse of notation, in the second equality we regard ρ as an operator on ¢A B, instead ofAB). Hence,
the probability that the channel passes the test is
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r

= *

=
[ ]

p T C

C

d

Tr
,

T

A

yes

whereC is theChoi operator of  . König, Renner, and Schaffner showed that themaximumprobability over all
possible channels is

=
- r

( )
( ∣ )

p
d

2
. 39

H A B

A
max

min

Wenow extend the notion of conditionalmin-entropy from states to networks with a definite causal structure.
This can be done in two slightly different ways, illustrated in the following subsections.

5.1. The conditionalmin-entropy of a quantum causal network
Thefirst way to generalize the conditionalmin-entropy from states is to regard r( ∣ )H A Bmin as ameasure of the
correlations that can be extracted from the state rAB by acting on systemB alone. A natural generalization to the
network scenario arises if we consider a quantumnetwork of the form

ð40Þ

and ask howmuch correlation can be generated by interactingwith the network in thefirst -N 1 time steps. To
generate the correlations, we can connect the network (40)with a second network that processes all input/
output systems before BN

out. Graphically, the second network can be described as

ð41Þ

where ¢BN
out is a quantum systemof the same dimension as BN

out.When the two networks are connected, they
generate the bipartite state

ð42Þ

Ameasure of the correlations generated by the interaction of the two networks is then provided by the fidelity
between the state (42) and themaximally entangled state.

Explicitly, the fidelity is given by

s= áF * * * * * * Fñ

=

- -∣( ) ∣
[ ] ( )

F D E D E D

D E

d

:

Tr
, 43

N N N

T

B

1 1 1 1

N
out



with

s* * * * * -≔ ≔D D D E E EandN N1 1 1 

(with a little abuse of notation, in the second equality we regard E as an operator on
Ä Ä Ä Ä   B B B BN N1

in
1
out in out instead of Ä Ä Ä Ä ¢   B B B BN N1

in
1
out in out ).

Themaximumof thefidelity over all networks of the form (41) can be computed via theorem2, which yields
the expression

l l
=

Î Ä GG - -{ ∣ ( ) }
( )

 
F

I R

d

min min
, 44

t t t

B
max

...t tN N N

N

1 ... 1 1 1

out

where G -t t... N1 1
is a generic element of Comb  - -( )B B B B, ..., N N1

in
1
out

1
in

1
out and Ä≔I I It B BN N N

out in.
Equation (44)motivates the following.

Definition 4. Let CombÎ  ( )D B B B B,..., N N1
in

1
out in out be a quantum comb and let ≔t B Bj j j

in out be the
type corresponding to the jth time step. The networkmin-entropy of theNth time step, conditionally on thefirst

-N 1 time steps is the quantity
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l l- Î Ä G
-

G -
-

( ∣ )
≔ [ { ∣ ( ) }] ( ) 

H t t t

I Dlog min min , 45
N N D

t t t

min 1 1

...
t tN

N N

1 ... 1

1 1



where thefirstminimum is over the elements of Comb  - -( )B B B B, ..., N N1
in

1
out

1
in

1
out and Ä≔I I It B BN N N

out in.

The above definition is a compelling generalization of the conditionalmin-entropy for states. First of all, it
comeswith a natural operational interpretation, as themaximumamount of correlations between the last
output of the network and all the system involved in the previous history.Moreover, the conditionalmin-
entropy of quantumnetworks is consistent with the conditionalmin-entropy of quantum states: Concretely,
one can interpret the conditionalmin-entropy (45) as themaximum conditionalmin-entropy of the output
state of the network, conditionally on an external reference system generated through the intermediate time
steps. This interpretation is based on the following.

Proposition 6. For a causal network with Choi operator CombÎ  ( )D B B B B,..., N N1
in

1
out in out , themin-

entropy -( ∣ )H t t tN N Dmin 1 1 is equal to themin-entropy of the output state Str Î Ä ¢( ) B BN N
outout in

equation (42)maximized over the input stateσ and over the sequence of intermediate operations ¼ - , , N1 1.

The proof is given in appendixD.We expect that the networkmin-entropy defined in equation (45)will play
a role in the study non-Markovian quantum evolutions, along the lines of the entropic characterization of
Markovianity provided in [89, 90]. Intuitively, the idea is that one can evaluate how the correlations build up
fromone step to the next and use this information to infer properties of the internalmemory used by the
network.

5.2. The conditionalmin-entropy of a test
An alternative way to extend the notion of conditionalmin-entropy is to regard r( ∣ )H A Bmin as a quantity
associated to a test—specifically, the test depicted in equation (38). From this point of view, it is natural to extend
the definition to tests consisting ofmultiple time steps, as follows

Definition 5. LetTyes be a positive operator associated to a test of the form

ð46Þ

The conditionalmin-entropy of the output system AN
out, conditionally on all the previous systems is

l l- Î Ä G
G

( ∣ ) ≔ [ { ∣ ( ) }] ( )( )
( )

 H A A A A A I T... log minmin , 47N N T A
N

min
out

1
in

1
out

2
in in

yesN Nyes
out

where G( )N is a generic element of Comb   -( )I A A A A A, ..., N N1
in

1
out

2
in

1
out in , corresponding to a network

of the form

ð48Þ

The conditionalmin-entropy for ‘states’ (or,more precisely, for tests of the form (38)) can be retrieved as a
special case of this definition, by setting =N 1, =A B1

in , =A A1
out , and r=T dAyes . The appeal of the above

definition is that it extends the definition ofmin-entropy to a class of probabilistic operations.
The conditionalmin-entropy can be interpreted operationally as the (negative logarithmof the)maximum

probability that a quantum causal network passes the testTyes. This interpretation follows from theorem2,
which yields the following.

Corollary 3.Themaximumprobability that a quantum causal network of the form

passes the test with operatorTyes is

= - ( ∣ )p 2 .H A A A A A
max

...N N Tmin
out

1
in

1
out

2
in in

yes

This result secures an operational interpretation for the conditionalmin-entropy defined in equation (47). Quite
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intuitively, the conditionalmin-entropy of the test is ameasure of howof the first -N 1 time steps can be used
to predict the outcome of themeasurement performed in the last step.

6. Themax relative entropy of causal networks

Weconclude our study of causal networkswith a result relating themax relative entropy of quantumnetworks
to themax relative entropy of quantum states:

Proposition 7. Let ( )C 0 and ( )C 1 be the Choi operators of two networks

ð49Þ

and let E be the Choi operator of a network of the form

ð50Þ

where S is a generic quantum system. Then, one has

=( ) ( ) ( )( ) ( ) ( ) ( )* *D C C D C E C Emax . 51
E

max
0 1

max
0 1 

where themaximum runs over all networks of the form (50), with arbitrary system S.

The proof is provided in appendix E. Inwords, equation (70) states that themax relative entropy between
two quantumnetworks is equal to themax relative entropy between the output states one can generate from
them.Diagrammatically, the output states are

ð52Þ

Proposition 7 has an application to problems of hypothesis testingwhere the task is to distinguish between two
quantumnetworks. Here one has access to an quantumnetwork, that is promised to have quantum comb ( )C 0

or ( )C 1 . In order to determinewhich of these two hypotheses is correct, one has to interact with the network, by
sending inputs to it and processing its outputs. In the end, these operations will result in the preparation of a
quantum state, as in equation (52). At this point, the problem is to distinguish between two states r( )0 and r( )1

corresponding to the two hyoptheses. One-shot hypothesis testing of quantum states has been studied byDatta
et al in [86], where they provided bounds on the type II error probability in terms of themax relative entropy.
Proposition 7 then allows to relate themax relative entropy of the output states to themax relative entropy of the
networks, opening a route to adapting the results of [86] to the study of hypothesis testing to themore general
scenario.

7.Non-causal networks

In the previous sections we restricted our focus to causal networks.Wewill address the general scenario,
concerning networks that are not compatible with any pre-defined causal order [33, 34, 37–42, 44]. Some of
these networks arise whenmultiple quantumdevices are connected in away that is controlled by the state of a
quantum system [33, 38]. Some other networks are not built from individual devices [34, 41] butmay possibly
arise in exotic quantumgravity scenarios. These generalized quantumnetworks are characterized by theway in
which they interact with external quantumdevices.

7.1. A bipartite example
The characterization of the non-causal networks is not as simple as in the case of causally ordered networks.We
first illustrate the idea in a simple example, inspired by thework ofOreshkov et al [41]. Imagine two laboratories,
A andB, where two parties, Alice and Bob perform local experiments. In each laboratory, ordinary quantum
theory holds and, in particular, one can describe the time evolution by quantum channels. Specifically, let and
 be the quantum channels describing the evolution of the systems in laboratoriesA andB, respectively. Now,
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one canmodel the interactions between one laboratory and the other by a generalized quantumnetwork, which
describes the background structure of spacetime.

Concretely, suppose that, at some earlier time, system A1
in in thefirst laboratory has been prepared jointly

with system B1
in in the second laboratory, and that, at a later time, system A1

out and system B1
out are discarded.

Indulging into a bit of science fiction, one could imagine a scenariowhere systems A1
in and B1

in emerge from a
wormhole at time t0 and system A1

out and B1
out enter the samewormhole at time t1. Between times t0 and t1 the

systems A1
in and B1

in can interact with the other systems inAlice’s andBob’s laboratories, here denoted as
A A,2

in
2
out and B B,2

in
2
out, respectively. The interaction is controlled locally byAlice and Bob, who implement the

channels and  , as illustrated infigure 4. The connection of Alice’s and Bob’s laboratories through the
background spacetime structure can be described as amap

Ä Ä( ) ( )     : , 53

which transforms the quantum channels and  into a newquantum channel Ä( )   .Maps that
transform channels into channels are known as quantum supermaps [18, 53]. The basic requirements for
quantum supermaps are linearity, complete positivity, and normalization. In this setting, linearitymeans that
one has

Figure 4.The quantum channels  and  in Alice’s and Bob’s laboratory interact through a quantumnetwork  , describing the
interactionsmediated by the background spacetime.Here,  ( ) is a bipartite channel transforming the input systems A A1

in
2
in

(B B1
in

2
in) into the output systems A A1

out
2
out (B B1

out
2
out). The connection between the channels take places only through the systems

A A B, ,1
in

1
out

1
in and B1

out, while systems A A B, ,2
in

2
out

2
in and B2

out do not interact directly.

Figure 5. Schematic of a test for probing two different hypotheses of quantum spacetime. The two hypotheses are described by the
(possibly non-causal)network (in blue) connecting systems Ain and A1

out in Alice’s laboratorywith systems Bin and Bout in Bob’s
laboratory. The test consists in applying a quantum channel  (in orange), acting on systems A A B, ,in

1
out in, and Bout , plus an

additional system S. The channel  has the property that, once system S is discarded, the evolution of the remaining systems is no-
signaling.We stress that the abovemodel represents themost general way—in principle—to discriminate between two hypotheses of
causal structure. However, depending on the situation, theremay be constraints on the channel  , such as the ability to implement 
with local interactions, or the presence of conservation laws that further limit the set of available channels.
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å åÄ = Ä( ) ( )     
⎛
⎝⎜

⎞
⎠⎟p p , 54

i
i i i

i
i i i

for every choice of coefficients { }pi . The standardmotivation for linearity comes from the requirement that
convex combinations of input channels (generated byAlice and Bob by sharing randombits) bemapped into
convex combinations of the corresponding outputs.

Regarding complete positivity, it can bemotivated by the local formof the interactions. Since the interaction
betweenAlice’s and Bob’s laboratory takes place only through systemsA1 andB1, it is natural to assume that the
supermap  acts non-trivially only on these systems, as

Ä = Ä Ä Ä ( ) ( )( ) ( )        , 55A A B B2 2 2 2

where A A2 2
( B B2 2

) is the identity supermap, acting trivially on the channels with inputA2
in (B2

in) and output
A2
out (B2

out), and  is a supermap that annihilates channels with input A B1
in

1
in and output A B1

out
1
out. Physically,

themap  represents the piece of spacetime connecting A1
in andB1

in withA1
out and B1

out.

7.2. Choi operator formulation
Since all themaps  , , and  are completely positive, one can represent themwithChoi operatorsA,B, andC,
respectively. In terms of Choi operators, equation (55) can be expressed as

¢ = Ä Ä Ä Ä Ä[( )( )] ( )C I I C I I A BTr , 56A A B B A A B B
T T

, , ,1
in

1
out

1
in

1
out

2
out

2
in

2
out

2
in

where ¢C theChoi operator of the channel Ä( )   . Oreshkov et al refer to theChoi operatorC as a process
matrix [41]. For the supermaps that can be implemented by connecting quantumdevices in afixed causal
structure, Choi operatorsC are the same as the quantum combs considered in the previous sections.

Here the operatorC acts on the tensor productHilbert space Ä Ä Ä   A A B B
in out in out

1 1 1 1
. In order to be the

Choi operator of a valid quantumnetwork, the operatorCmust be positive semidefinite and satisfy a suitable
normalization condition—specifically,C should satisfy the condition

Ä =~[ ( )] ( )C A BTr 1 57A A B B, , ,1
in

1
out

1
in

1
out 

for every operators
~
A and B satisfying the conditions

= =~[ ] [ ] ( )A I B ITr and Tr . 58A A B B1
out

1
in

1
out

1
in

(See appendix F for the derivation). Physically, thismeans that the non-causal network  deterministically
annihilates every pair of local channels

~
A and B, acting on systems A1

in, A1
out and B1

in, B1
out, respectively.

Equivalently, the valid networks can be characterized as in the following:

Proposition 8.An operator C is the Choi operator of a non-causal network as in figure 4 if and only if C is positive
and =[ ]CDTr 1 for every operator D satisfying the conditions

= Ä =[ ] [ ] ( )D I B B ITr , Tr 59A A B B1
out

1
in

1
out

1
in 

and

= Ä =~ ~[ ] [ ] ( )D I A A ITr , Tr , 60B B A A1
out

1
in

1
out

1
in

with suitable operators
~
A and B.

For the proof, see theorem2 of [34]. The operatorD represents the Choi operator of a no-signaling channel
[91–93], that is, a channel that prevents the transmission of information fromAlice to Bob and fromBob to
Alice. The intuitive idea is that whenever a network can be connectedwith two local channels, it can also be
connectedwith a no-signaling channel.

In the followingwewill denote byNoSig  ( ∣ )A A B B1
in

1
out

1
in

1
out is the set of positive operators satisfying

the no-signaling conditions (59) and (60).With this notation, proposition 8 can be reformulated as

Corollary 4.An operatorC is the Choi operator of a non-causal network as in figure 4 if and only if

( )C 0 61

NoSigÎ  ( ∣ ) ( )C A A B B , 621
in

1
out

1
in

1
out

whereNoSig  ( ∣ )A A B B1
in

1
out

1
in

1
out is the dual affine space of the set of no-sinalling channels.

Wewill denote byDualNoSig  ( ∣ )A A B B1
in

1
out

1
in

1
out the set of operators satisfying conditions (61) and

(62). The setDualNoSig is the set containing all the Choi operators of the non-causal networks of actin on pairs
of local operatinos.
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7.3. Themax relative entropy of signaling
In some situations, such as the study of non-causal games [41], it is natural to search for the non-causal networks
thatmaximize a certain figure ofmerit. For example, consider an experiment where Alice and Bob probe a non-
causal network as in figure 4. In their local laboratories, Alice and Bobmeasure the output systems of the
networkwith the POVMs ={ }Pi i

K
1 and ={ }Qj j

L
1, respectively, and prepare inputs for the systems, say ρ andσ,

respectively. The outcomes i and j are assigned a score w ( )i j, , which quantifies the performance of the non-
causal network. For example, Alice and Bobmaywant to quantify howmuch the network correlates their
outcomes, corresponding to the score w d=( )i j, ij.More generally, Alice and Bob can probe the network by
preparing correlated states, applying local interactions, and performing localmeasurements.

Describing the test with a performance operatorΩ, themaximum score is achievable by quantumnon-
causal networks is

DualNoSig
w = áW ñ

Î  
( )

( ∣ )
Cmax , . 63

C A A B B
max

1
in

1
out

1
in

1
out

Finding the network that achievesmaximum score is similar tofinding the entangled state thatmaximizes the
violation of a Bell inequality. The optimization task can be tackledwith our theorem 1,which provides a dual
expression for themaximum score:

Proposition 9. Let HermW Î Ä Ä Ä( )   A A B B1
out

1
in

1
out

1
in be a generic performance operator a wmax be the

maximum score defined in equation (63). Then, one has

NoSig
w l l= Î G W

GÎ  
{ ∣ }

( ∣ )
 min min .

A A B B
max

1
in

1
out

1
in

1
out

WhenΩ is positive, themaximum score is given by

NoSigw = W   ( )( ( ∣ ) )2 . 64D A A B B
max

max 1
in

1
out

1
in

1
out

Inwords: themaximum score achieved by quantumnon-causal networks is determined by the deviation of the
performance operator from set of (Choi operators of)no-signaling channels.We call

NoSig( ( ∣ ))D A A A B B, ,max 1
in

1
out

1
in

1
out themax relative entropy of signaling, in analogywith the relative entropy

of entanglement of a state ρ [94–96].

7.4.Optimizingmultipartite non-causal networks
The results presented in the bipartite case can be easily generalized tomultipartite non-causal networks.
Consider a quantumnetwork that can interact with k local devices, by providing an input system to each device
and annihilating its output system. As in the bipartite case, the network can be represented by its Choi operator
C, whichwill have to satisfy the condition

Ä Ä Ä =~ ~ ~[ ( )]C A A ATr 1,k1 2 

for every set of Choi operators
~ ~ ~( )A A A, , , k1 2  representing local quantum channels. Equivalently, the

normalization condition can be expressed as

=[ ]C DTr 1,

for every Choi operatorD representing a k-partite no-signaling channel. Specifically, the set of Choi operators
representing k-partite no-signaling channels is defined as follows:

Definition 6.AnoperatorD, acting on Ä=⨂ ( ) i
k

A A1 i i
out in , is the Choi operator of a no-signaling channel iff

for every subset J Í ¼{ }k1, , one has

JJ J
= Ä[ ]D I DTr ,A A

cout in

where
J

TrA
out is the partial trace over theHilbert space JJ Î≔ ⨂ A i Ai

out out,
J

I A
in is the identity operator on the

Hilbert space J
J

Î≔ ⨂ A i Ai
in in, and JDc is theChoi operator of a quantum channel transforming density

matrices on JJ Î≔ ⨂ A i A
c in

i
, in into densitymatrices on JJ Î≔ ⨂ A i A

c
i

,out out.

We denote the set of k-partite no-signaling channels asNoSigk, keeping implicit the specification of the
Hilbert spaces.

Like in the bipartite case, it is natural to consider tasks where one has tofind the non-causal network that
maximizes a score of the form w = W[ ]CTr for some performance operatorΩ. Themaximum score is then
given by

NoSigw = W Î{ [ ] ∣ } ( )C Cmax Tr . 65kmax
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In general, characterizing the dual affine space of the set of no signaling channels is a rather laborious task.
Using theorem1we can circumvent the problem and express themaximum score as

NoSig
w l l= Î W

Î
{ ∣ } ( ) Dmin min , 66

D
max

k

or, whenΩ is positive

NoSigw = W ( )( )2 . 67D
max kmax 

Again, the performance is determined by the deviation of the performance operator from the set of (Choi
operators of)no-signaling channels.

8. Themax relative entropy of non-causal networks

Like in the case of causal networks, themax relative entropy between two quantumnetworks can be related to
themax relative entropy of their output states:

Proposition 10. Let ( )C 0 and ( )C 1 be the Choi operators of two non-causal networks inNoSigk and let E be the Choi
operator of a network of the form

ð68Þ

where S is a generic quantum system and the reduced channel

ð69Þ

is no-signaling. Then, one has

= *( ) ( ) ( )( ) ( ) ( ) ( )*D C C D C E C Emax , 70
E

max
0 1

max
0 1 

where themaximum runs over all networks of the form (69), with arbitrary system S.

The proof is the same as the proof of proposition 7. The above result shows that themax relative entropy
between two non-causal networks is equal to themax relative entropy between the output states generated by
connecting the networks to the ‘no-signaling part’ of a quantum channel, as in figure 5.

Like in the causal case, there is a nice connection to one-shot hypothesis testing. Here one can consider the
problemof distinguishing between two alternativemodels of spacetime, resulting into different ways to connect
the operations performed inN local laboratories. For example, ( )C 0 could describe a null hypothesis of space
timewhere all the events are causally ordered, while ( )C 1 could describe an exotic, non-causal space time.
Proposition 10 tells us that, in terms ofmax relative entropy, the distinguishability of twomodels of spacetime is
quantified by themax relative entropy of the corresponding non-causal networks.

9. Applications

In the followingwe apply our results to four optimization problems involving quantumnetworks.Wewill start
from the causal case, considering networks that approximately transform a given set of input channels into a
target set of output channels. Then, wewillmove the case of non-causal networks.

9.1. Transforming quantum channels
Consider the following scenario: A black box implements a quantum channel in the set XÎ{ }x x , where X is an
arbitrary index set. The task is to simulate another channel x using the channel x as a subroutine. For example,
the black box could implement a unitary gateUx and the task could be to build the control-unitary gate [97–100].

ctrl - = Ä ñá + Ä ñá∣ ∣ ∣ ∣U I U0 0 1 1 .x x

To simulate the desired channel x, we insert the input channel x into a quantum causal network, as in the
following diagram
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ð71Þ

where 1 and 2 are suitable quantum channels. TheChoi operator of the output channel ¢ x is then given by

¢ = * ( )E C E , 72x x

whereC is theChoi operator of the network and * denotes the link product.
Let us focus on the casewhere the target channel x is an isometry, namely = · † V Vx x x , with =†V V Ix x .

Tomeasure how close the channel ¢ x is to the target, we use the channel fidelity [101–103], given by

¢ ¢( ) ≔ ⟪ ∣ ∣ ⟫ ( ) F
d

V E V,
1

, 73x x x x x
0
2

where d0 is the dimension of the input systemA0 and the notation ∣ ⟫V denotes the unnormalized state

åÄ ñ ñ
=

∣ ⟫ ≔ ( ) ∣ ⟫ ∣ ⟫ ≔ ∣ ∣V V I I I n n, .
n

d

1

In this case, the fidelity can be interpreted as the probability that the network passes a test, where the channel ¢x

is applied locally on one part of an entangled state and the output is testedwith a POVMcontaining the projector
on the entangled state ∣ ⟫V d0 . Thefidelity can be expressed as

¢ Ä( ) ≔ [ ( ∣ ⟫⟪ ∣ )] F
d

C V V E,
1

Tr .x x x x x
T

0
2

Now, if the input channel x is givenwith prior probability ( )p x , the average channelfidelity is given by

å

å

= ¢

= W W Ä

( ) ( )

[ ] ≔ ( )( ∣ ⟫⟪ ∣ ) ( )

 F p x F

C p x V V E

,

Tr , . 74

x
x x

x
x x x

T

Thanks to theorem (2), themaximum fidelity can be expressed as

DualComb
l l= Î G W

GÎ
{ ∣ } ( ) F min , 75max

whereDualComb is the set of positive operators on Ä Ä Ä   3 2 1 0 satisfying the conditions

G = Ä
= Ä
=

[ ]
[ ]

( )
I T

T I T
T

,
Tr ,

Tr 1.
76

3 210

2 210 1 0

0

In the followingwe illustrate the use of this expression in a few examples.

9.2.Optimal inversion of an unknownunitary dynamics
Unitary quantumdynamics is, by definition, invertible: given a classical description of a unitary gateU, in
principle one can always engineer the gate †U implementing the inverse physical process. However, the situation
is different when the gateU is unknown. Canwe devise a physical inversionmechanism, which transforms every
unknownunitary dynamicsU, given as a black box, into its inverse? Classically, the analogue of inverting a
unitary dynamics is inverting a permutation. Inverting a permutationwith a single evaluation is clearly
impossible, because evaluating the permutation allows us to know its action on one input atmost, and this
information is not sufficient to perform an inversion on the other inputs. In the quantumdomain, the situation
ismore interesting, because one use of a unitary gate is enough to store it faithfully into a quantummemory, by
applyingU on one side of amaximally entangled state. Afirst question is whether the information stored in the
memory can be extracted and used to implement the inverse gate †U . Interestingly, this possibility is barred by
Nielsen’s andChuang’s no-programming theorem [104], which states that only orthogonal states can be used to
programunitary gates deterministically andwithout error. As an alternative, one can try to think of protocols
that simulate †U with one use ofU, without storingU in a quantummemory. Protocols of this form are
implemented by quantumnetworks as in equation (71).We now show that even such protocols cannot
implement a perfect inversion.More specifically, we now show that the best way to generate the inverse of an
unknowndynamics is simply to estimate it and to use the estimate to implement an approximate inversion. Our
result highlights an analogy between the optimal inversion of an unknownunitary dynamics and the optimal
universal NOT (UNOT) gate [105, 106], the quantum channel that attempts to transform every pure quantum
state into its orthogonal complement. A known fact is that no quantum channel can approximate the ideal
UNOTgate better than a channel thatmeasures the input state and produces an orthogonal state based on the
measurement outcome [105, 106]. Considering this feature, one can think of the unitary inversion as the
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analogue of theUNOT: they are both involutions and they both are implemented optimally bymeasure-and-
prepare strategies.

Let us assume that the unknownunitary gateU is drawn at random according to the normalizedHaar
measure Ud . Then, the performance operator in equation (74) takes the form

òW = Ä∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣ ( )† †
d

U U U U U
1

d , 77
2 30 21

with = = = =d d d d d0 1 2 3. The evaluation of the fidelity is provided in appendixG,wherewe obtain the value

= ( )F
d

2
. 78max 2

Now, it turns out that themaximumfidelity can be achieved through the estimation of the gateU. Indeed,
the optimal strategy for gate estimation is to prepare amaximally entangled state, to apply the unknown gateU
on one side, and to perform the POVM = ∣ ⟫⟪ ∣P d U UU

  [107]. This strategy leads to the conditional probability
distribution

=( ∣ ) ∣ [ ]∣†p U U U UTr ,2 

normalizedwith respect to theHaarmeasure. Averaging the channelfidelity =( ˆ ) ∣ [ ]∣†F U U U U d, Tr 2 2 , we
then obtain the value

SU

ò=

=
º " Î

( ) ∣ [ ]∣

( ) ( )

†F U U U U d

d

F U d

d Tr

2

, . 79

est
4 2

2

max

 

The continuous POVMwith = ∣ ˆ ⟫⟪ ˆ ∣ˆP d U UU can also be replaced by a discrete Bellmeasurement, with d2

outcomes, without affecting the fidelity in theworst case scenario, or equivalently, the average fidelity over all
unitaries. Oneway or another, the above discussion proves that no quantumnetwork can invert a gate better
than a classical network that generates the inverse by using gate estimation as an intermediate step.

9.3. Simulating the evolution of a charge conjugate particle
In quantummechanics, complex conjugation implements the symmetry between particles and antiparticles. If
the evolution of a quantumparticle is described by the unitary transformationU, then the evolution of the
corresponding antiparticle will be described by the unitary transformationU , where eachmatrix element is
replaced by its complex conjugate. Consider the scenariowhere one is given a black box that performs a unitary
transformation on a certain particle. Canwe use this black box to simulate the evolution of the corresponding
antiparticle? Physically, themost general simulation strategy is described by a quantumnetwork as in
equation (71).

For the charge conjugation problem, the performance operatorΩ reads

òW= Ä

Ä
+

Ä+ +

+

- -

-

∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣

( )
⎛
⎝⎜

⎞
⎠⎟

d
U U U U U

d

P P

d

P P

d

1
d

1
, 80

2 30 21

2

,32 ,10 ,32 ,10

where +P and -P ( +d and -d ) are the projectors on (the dimensions of) the symmetric and antisymmetric
subspaces, respectively. In appendixHwe evaluate the dual expression equation (75), obtaining themaximum
fidelity

=
-( )

F
d d

2

1
.max

Note that thefidelity is equal to 1 in the case of two-dimensional quantum systems. This is consistent with the
fact that, for =d 2, thematricesU andU are unitarily equivalent—specifically, =U YUY , whereY is the Pauli

matrix -≔ ⎜ ⎟
⎛
⎝

⎞
⎠Y i

i
0

0
. Therefore, one can implement the complex conjugation by sandwiching the original

unitary between twoPauli gates.
For systems of large dimension, the fidelity converges to d2 2, the value achieved by gate estimation (see

equation (79) in the previous paragraph). Thismeans that gate estimation is asymptotically the optimal strategy,
but, remarkably, it is not the optimal strategywhen d isfinite. The optimal simulation of the charge conjugate
dynamics is achieved by the networkwithChoi operator
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= Ä-

-

-

-
C

d P

d

d P

d
.,32 ,10

It is immediate to verify that, indeed, the operatorC satisfies the normalization constraints and that one has
W = =-[ ]C d FTr 1 max . Physically,C represents a ‘disconnected network’ of the form

consisting of two subsequent uses of the channel withChoi operator - -≔K d P d .When the input gateU is
inserted in the open slot, the overall evolution from systemA0 to systemA3 is given by the channel ¢ =   ,
which optimally simulates the charge conjugate evolutionU .

It is interesting to further elaborate on the physicalmeaning of the operations in the network. Atfirst, one
may guess that the optimal way to conjugate an unknownunitaryU is to approximate the sequence of
transformations

r r r r⟶ ⟶ ⟶ ( )†U
U U U U

transpose transpose
. 81T T T

As the transpose is not a physical operation, onemay try to use the optimal transpose channel [108–112], which
hasChoi operator = + +T dP d . However, this choicewould be suboptimal, leading to thefidelity

= = + <+ [ ( )]F d d d F1 2 1 .transpose max

Instead, the optimal strategy is to approximate the transpose NOT,i.e.the impossible transformation thatmaps
every projector into its orthogonal complement. In theHeisenberg picture, the transpose NOTmaps every
observableA into the observable -I AT , allowing us to reproduce the charge conjugate dynamics as

NOT NOT
- -⟶ ⟶ ⟶†A I A

U
I U A U U AU

transpose transpose
.T T T

It turns out that the optimal approximation of the transpose NOT is exactly the channel used in our network:
in summary, the optimal simulation of the charge conjugate dynamics employs the optimal transpose NOT
instead of the optimal transpose. Some intuition to justify this bizarre fact comes from the observation that the
optimal transpose can be implemented via state estimation and, therefore, approximating the sequence (81)
would lead to a classical, estimation-based strategy. Instead, the transpose NOT cannot be achieved via state
estimation. For example, the transpose NOT for qubits is a unitary transformation, corresponding to the Pauli
matrixY.

9.4.Optimal controlization of unknown gates
Given a unitary gateU, the corresponding control unitary gate is

ctrl - Ä ñá + Ä ñá≔ ∣ ∣ ∣ ∣U I U0 0 1 1 ,

where ñ∣0 and ñ∣1 are the states of a qubit acting as control system. Controlization is the task of transforming an
unknown gateU, accessed as a black box, into the corresponding gatectrl - U .

WhenU is an arbitrary unitary, perfect controlization is impossible, as it was recently shown in [97, 98]. Like
the no-cloning Theorem, this ‘no-controlization’ result establishes the impossibility of a perfect functionality.
Butwhat about approximate controlization?Apriori, nothing forbids that one could engineer an approximate
controlization protocol that achieves high-fidelity, almost circumventing the no-go Theorem. In the following
we show that this is not the case. For a completely unknownunitary gateU, we show that not only is perfect
controlization impossible, but also that every quantum strategy for controlizationwill be atmost as good as a
classical strategy thatmeasures the control qubit and performs the gateU or the identity depending on the
measurement outcome.

For the controlization task, the performance operatorΩ reads

ctrl ctrlòW = - ññáá - Ä ññáá∣ ∣ ∣ ∣ ( )
d

U U U U U
1

2
d . 82

2

The evaluation of themaximumfidelity, carried out in appendix I, yields the optimal fidelity

=F
1

2
.max

By direct inspection, one can check that this is the same fidelity achieved by a network thatmeasures the control
qubit in the computational basis ñ ñ{∣ ∣ }0 , 1 and applies the unknown gateUwhen the outcome is 1. Specifically,
such strategy turns the input gateU into the classically-controlled channel U defined by

r s s r s rÄ á ñ + á ñ( ) ≔ ∣ ∣ ∣ ∣ † U U0 0 1 1 ,U

where ρ is an arbitrary state of the system andσ is an arbitrary state of the control qubit. It is immediate to check
that the fidelity between the classically-controlled channel U and the control-unitary gate is 1/2 for every
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unitary. The above argument shows that no quantum circuit can performbetter than a classical circuit where the
control qubit is decohered by ameasurement.

9.5.Maximization of the payoff in a non-causal quantumgame
Herewe consider the non-causal game introduced byOreshkov et al in [41]. The game involves two spatially
separated parties, Alice and Bob, and a referee, who sends inputs to and receives outputs from the players.
Specifically, the referee sends an input bit a to Alice and two input bits b and ¢b to Bob. Then, the referee
demands one output bit x fromAlice and one output bit y fromBob. The referee assigns a score w ¢( ∣ )x y a b b, , , ,
given by

w w=
=
¹

=
=
¹

( ∣ ) ( ∣ ) ( )
⎧⎨⎩

⎧⎨⎩x y a b
x b
x b

x y a b
y a

y a
, , , 0

1 ,
0 ,

and , , , 1
1 ,

0 .
83

In this game, Alice and Bob are not subject to the no-signaling constraint. In principle, Alicemay be able to
communicate to Bob, or vice-versa. The only constraint is that Alice and Bob can interact only through afixed
network, which allows for communication atmost in one-way: either fromAlice to Bob, or fromBob toAlice.

It is interesting to see howquantum resources can help Alice and Bob. Themost general quantum resource is
described by a network that connects Alice’s operations to Bob’s operations. The networkwill provide inputs Ain

and Bin toAlice and Bob, respectively. Alice andBob then perform local operations, transforming systems Ain

and Bin them into systems Aout and Bout. The local operations depend on the inputs a and ¢( )b b, andwill
generate the outputs x and y, respectively. Diagrammatically, this scenario is depicted infigure 6.

Mathematically, the operations are described by two quantum instruments ={ }x
a

x 0,1 and
¢

={ } y
b b

y
,

0,1.
With these settings, the probability distribution of the outputs is given by

¢ = Ä ¢( ∣ ) [( ) ]p x y a b b M N C, , , Tr ,x
a

y
b b,

where ={ }Mx
a

x 0,1 and
¢

={ }Ny
b b

y
,

0,1 are theChoi operators of Alice’s and Bob’s instruments, respectively, andC is
the Choi operator of the network thatmediates the interaction.

With this settings, the average score is given by

åw w= ¢ ¢

= W
¢

( ∣ ) ( ∣ )

[ ]

x y a b b p x y a b b

C

1

8
, , , , , ,

Tr ,
a b b x y, , , ,

whereΩ is the performance operator

å wW ¢ Ä
¢

¢≔ ( ∣ )( ) ( )x y a b b M N
1

8
, , , . 84

a b b x y
x
a

y
b b

, , , ,

,

Themain result byOreshkov et al is that the average score is upper bounded as w  3 4 whenever the
networkC has a definite causal order, whereas there exists a non-causal network *C and local operations

={ }
*

x
a

x 0,1 and
¢

={ }
*

 y
b b

y
,

0,1 that achieve score

w = + ( )*
⎛
⎝⎜

⎞
⎠⎟

1

2
1

1

2
. 85

Specifically, the score w* is achieved by choosing systems A B A B, , ,in in out out to be qubits and by choosing the
local operationswith Choi operators

Figure 6.The quantumoperations x
a and ¢ y

b b, in Alice’s and Bob’s laboratory interact through a non-causal network  . The
operations act on theHilbert spaces A A,in out and B B,in out respectively. The network creates the input systems Ain and Bin and
annihilates the output systems Aout and Bout .
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,

in out
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whereÅ denotes the additionmodulo 2 and rBout is afixed quantum state onBob’s output, which can be chosen
to be themaximallymixed state without loss of generality.

The scoreω can be regarded as ameasure of the non-causality of the networkmediating the interactions
betweenAlice and Bob. An interesting question is whether w* is themaximum score attainable whenAlice’s and
Bob’s instruments (86) are connected by an arbitrary non-causal network. This question has been indirectly
answered by Brukner [54], who considered amore general scenario, wherein Alice’s and Bob’s local operations
are also subject to optimization. Brukner showed that the payoff w = +( )* 1 1 2 2 ismaximumover all
non-causal networks and over a certain class of two-outcome instruments onAlice’s and Bob’s side, allowing
Alice’s and Bob’s systems to have generic dimensions.WhenAlice’s and Bob’s operations are fixed to the qubit
operations (86)used in the original paper [41], we nowpresent an alternative (and comparatively shorter)
optimality proof for the value w = +( )* 1 1 2 2. This result serves as an illustration of the SDPmethod,
which provides here a nice and straightforward solution.

Inserting equation (86) into equation (84)we obtain the performance operator

åW = ñá Ä ñá Ä W Ä ñá∣ ∣ ∣ ∣ ∣ ∣i i j j k k ,
i j k

A A ijk B
, ,

in out out

where Wijk are operators acting onB1 and are defined as

W = +ñá+ + ñá W = -ñá- + ñá
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Now, the dual optimization problem is tofind theminimumλ such that l G W , for someChoi operator
Γ representing a no-signaling channel. The key observation is that all the Wijk have the samemaximum

eigenvalue, equal to = +( )e 1 8 1 1 2max . As a result, we can satisfy the dual constraint by setting
l = +( )1 2 1 1 2 and G = I 4A A B Bin out in out . Note thatΓ is the Choi operator of a no-signaling channel, as it
satisfies equations (59) and (60). Hence, we obtain the bound

w + ( ) ⎛
⎝⎜

⎞
⎠⎟

1

2
1

1

2
, 87

valid for every non-causal network. The bound can be achieved, since r.h.s.matches the value in equation (85).

10. Conclusions

Wedeveloped a SDPmethod for the optimization of quantumnetworks. Themethod can be applied to causal
networks as well asmore general networkswith indefinite causal structure. For a large class of optimization
problems, we observed that themaximumperformance can be expressed in terms of amax relative entropy.
Building on this fact, we extended the notions of conditionalmin-entropy andmax relative entropy from
quantum states to quantumnetworks. Specifically, the relative entropy between two networks can be
characterized as themaximumof the relative entropy between the states that can be generated by the two
networks. Similarly, themin-entropy of a quantum causal network can be characterized as themaximummin-
entropy that the network can build up by interacting over timewith a sequence of quantumdevices. Intuitively,
the networkmin-entropy can be regarded as ameasure of the amount of quantum correlations generated over a
sequence of time steps.

Our results have applications to a number of scenarios, includinge.g.the optimization of algorithms for
quantum causal discovery [28], tomography of quantum channels and causal networks [18, 69, 113, 114], and
quantummachine learning [115–117]. Another stimulating avenue of future research is on the quantum
engineering side, where ourmethod can be adapted to deal with optimization tasks in the presence of limited
energy resources. For example, it is interesting to explore the causal networks that can be implemented at zero-
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energy cost, extending to the network scenario the results obtained in [118] for individual state transitions. The
interesting aspect here is the possibility to borrow energy resources at a certain time and to return them at later
times, resulting in an overall zero energy balance. As a further step, the extension fromquantumnetworks
working in the zero-energy regime to network using bounded energy resources is evenmore compelling in view
of future applications. Exploring how energy and coherence across energy eigenstates can be optimally allocated
within a distributed system is expected to unveil newquantum advantages, leading to anew layer of
optimization in the design of quantum technologies.
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AppendixA. Proof of theorem1

Proof.By definition, the value of the primal problem is given by

S

S

S

w = á ñ Î

= á ñ Î

= á ñ áG ñ = "G Î

{ ∣ }

{ ∣ }
{ ∣ }





A X X X

A X X X

A X X X

sup , 0,

sup , 0,

sup , 0, , 1, ,

primal

having used the relation S S= . Now, let us pick an affine basis for S, say G =( )i i
K

1 and re-write the value of the
primal problem as

w = á ñ áG ñ = " Î ¼{ ∣ { }}A X X X i Ksup , 0, , 1, 1, , .iprimal

Weak duality then yields the relation

å åw l l lÎ G
=

∣ ( )  
⎧⎨⎩

⎫⎬⎭Ainf , A.1
i

K

i i
i

i iprimal
1

å å ål l l lÎ G ¹
=

∣ ( )  
⎧⎨⎩

⎫⎬⎭Ainf , , 0 A.2
i

K

i i
i

i i
i

i
1

S
l l= Î G

GÎ
{ ∣ } ( )  Ainf min , A.3

having defined l lå≔ i i and l lG å G≔ i i i .
Now, suppose that S contains a positive operatorX0 and S contains a strictly positive operator G0, then

Slater’s theorem implies the equality: indeed, one can choose the affine basis G =( )i i
K

1 to contain the operator G0.
Since G0 is strictly positive, one can find strictly positive coefficients l =( )i i

K
1 such that lå G  Ai i i . Thismeans

that the dual problem in the rhs of equation (A.1) admits a strictly positive solution.Hence, proposition 4 implies
the equality in equation (A.1). The equality holds also in equation (A.2), because every solutionwith lå = 0i i

can be replaced by a new solutionwith lå ¢ = i i , by substituting l1with l + 1 , > 0. Since ò can be
arbitrarily small, this substitution does not change the value of the infimum. IfA is positive, then one has the
lower bound w á ñ A X, 0primal 0 . Equation (A.3) then implies that everyλ satisfying lG  A, SG Î must
be non-negative. Ifλ is strictly positive, the operatorΓmust be positive. If l = 0, the operatorΓ can be chosen
to be positive without loss of generality. In conclusion, the infimum in equation (A.3) can be restricted to S+.
Setting l≔w 1 onefinally obtains the desired expression. ,

Appendix B. Proof of theorem2

Proof.Themaximumperformance is given by equation (21). The expression can be re-written as

Sw áW ñ Î≔ { ∣ } ( )C C Cmax , , 0 , B.1max
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where S is the affine space of all the operators on Ä=⨂ ( ) j
N

j j1
out in that areHermitian and satisfy the linear

constraint (12). Note that S contains the strictly positive operator

= Ä Ä Ä - -( ) ( )C I I I d d d... B.2N N0 0 1 2 1 1 3 2 1

and the dual affine space S contains the strictly positive operator

G = Ä Ä Ä - -( ) ( )I I I d d d... . B.3N N0 0 1 2 1 0 2 2 2

Since the sets S and S contain strictly positive operators, the expression in theorem1holds with the equality.
Moreover, one can choose the performance operatorΩ to be positive without loss of generality: ifΩ is not
positive, one can define W¢ = W + Gc 0, where c is a positive constant and G0 is the operator in equation (B.3).
This substitution only shifts the primal and dual values by the constant c, while preserving the optimal solutions.
For the shifted problem, theorem1 guarantees that the dual optimization can be restricted to the positive
operators in S+, namely

S
w l l¢ = Î G W¢

GÎ +

{ ∣ } inf min .max

Now, the set S+ has been characterized in [18]: precisely, S+ is the set of all positive operatorsΓ satisfying the
linear constraint

G = Ä G

G = Ä G = ¼

G =

-
-

[ ]

[ ] ( )

( )

( ) ( )

( )

I

I n NTr , 2, ,

Tr 1, B.4

A
N

A
N

A
N

A

1

1

N

n n

out

in
1

out

1
in

for suitable positive operators G( )n acting on Ä Ä=
-[⨂ ( )]  n j

n
j j

in
1
1 out in . Observing that IN

Aout

is the Choi
operator of the trace channel TrAN

out and comparing equation (B.4)with equation (12)we then obtain that every
operatorΓ in S+ is theChoi operator of a network of the form (32). Hence, S DualComb=+ . Finally, note that
the setDualComb is compact and therefore the infimum is aminimum. ,

AppendixC. Proof of proposition 5

Proof.By definition, themax relative entropies are given by W= -( )D C C log maxmax 0 1 and

WG G G G = - G( ) ( )D C C log maxmax 0 1 , with

W

W

Î

G Î G G G G

≔ { ∣ }
( ) ≔ { ∣ }

 
 

w wC C

w w C C

,

.

0 1

0 1

By construction, one hasW WÍ G( ) for everyΓ, and therefore

G G G G( ) ( )D C C D C C .max 0 1 max 0 1 

On the other hand, if S+ contains a full-rank element G*, thenW WG =( )* . ,

AppendixD. Proof of proposition 6

Proof. Let us compute the conditionalmin-entropy of the output state

Str s= * * * * * * * Î Ä-
¢( )D E D E E D BN N N N1 1 2 2 1

out out

(See equation (42)). By the operational characterization of the conditionalmin-entropy (equation (5)), we have

r
=r

¢

= ¢

( ∣ ) [ ] ( )
[ ]


H B B
C

d
max

Tr
, D.1N N

C
C I

T

B
min

out out

0,
TrBN BN

N
out out

out

whereC is theChoi operator of a recovery channel  , which attempts to turn ρ into themaximally entangled
state Fñ∣ . Substituting the expression for ρ andmaximizing over the sequence s -( )E E, ,..., N1 1 , we then obtain

s

s

=
* * * * * * *

=
* * * * * * * *

s
r

s

s

¢

-

-

-

-

-

( ∣ )

[( ) ]

( ) ( )

H B B
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D E D E E D C

d

max

max
Tr ...
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...

D.2

E E E
N N

E E E C

N N
T

B

E E E C

N N

B

, , ,...,
min

out out

, , ,..., ,

1 1 2 2 1

, , ,..., ,

1 1 2 2 1

N

N N

N N

1 2 1

1 2 1 out

1 2 1 out
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=
¢ *

s -

( )E R

d
max , D.3

E E E C B, , ,..., ,N N1 2 1 out

having defined

s¢ = * * * = *-E E E C R D Dand .N N1 1 1 
Now, note that ¢E is the Choi operator of a network of the formof equation (41).Moreover, since the channel 
can be chosen to be the identity, ¢E is the Choi operator of an arbitrary network of the formof equation (41).
Using equations (43) and (44)we finally obtain

=
s

r
¢

-
-

( ∣ ) ( ∣ )H B B H t t tmax ... .
E E E

N N N N R
, , ,...,

min
out out

min 1 1
N1 2 1

,

Appendix E. Proof of proposition 7

Proof.The proof is based on proposition 5. Take an operator DualCombG Î ( )   , ,..., ,A A A A
in out in out

N N1 1
and

diagonalize it as f fG = å ñá∣ ∣gi i i i . Choose S to be the composite system A A A AN N1
in

1
out in out and define the

vector f fYñ = å ñ ñ Î Ä Ä Ä Ä∣ ∣ ∣     gi i i i A A A A S
N N1

in
1
out in out . Then, the positive operator

= YñáY∣ ∣E is the Choi operator of a network of the formof equation (50), as one can check from equation (12).
Then, explicit calculation gives

* = G G( ) ( )C E C .x x

Using proposition (5)we then conclude the equality

= * *
G

( ) ( )( ) ( ) ( ) ( )D C C D C E C Emax .max
0 1

max
0 1 

,

Appendix F. Normalization condition for supermaps on product channels

Equation (56) gives us theChoi operatorC. In order forC to be theChoi operator of a channel, wemust have

= Ä[ ] ( )C I ITr . F.1A B A B,2
out

2
out

2
in

2
in

Inserting equation (56), we then obtain the condition
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whichmust be satisfiedwheneverA andB satisfy the conditions
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Now,we have the following

Proposition 11. For every operator N , the following conditions are equivalent:

(i) N satisfies the condition (F.2) for every operators A and B satisfying the condition (F.3)

(ii) N satisfies the condition

Ä =~[ ( ] ( )N A BTr 1 F.4A A B B, , ,1
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out 
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1
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out
1
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1
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1
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1
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Proof. Suppose that the operators
~
A and B satisfy the trace conditions (F.5). By defining the operatorsA andB
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~

A A I dA A A,2
in

2
out

2
in and = ÄB B I dB B B,2

in
2
out

2
in , we see that equation (F.3) is satisfied. Then,

equation (F.2) becomes
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The above equation holds if and onyl if condition (F.4) is satisfied. Conversely, if the operatorN satisfies
condition (F.4) and

~
A and B the trace conditions (F.5), we obtain

Ä Ä Ä Ä Ä

= Ä Ä Ä

= Ä Ä Ä
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wherewe defined =[ ]A ATrA2
out and =[ ]B BTrB2

out . Hence, equation (F.2) holds if and only if
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In turn, the above equation holds if and only if

St Str sÄ = " Î " Îr s[ ( )] ( ) ( ) ( ) N A BTr 1, , , F.9A A B B A B, , ,1
in

1
out
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where rA and sB are defined as

r rÄ Är s≔ [( ) ] ≔ [( ) ] ( )A I A B I BTr and Tr . F.10A A A B B B2
in

1
out

1
in

2
in

1
out

1
in

Now, the normalization condition (F.9) is nothing but equation (F.4). The condition is satisfied because the
operators rA and sB satisfy condition (F.5). ,

AppendixG.Maximumfidelity for the inversion of an unknowndynamics

The performance operatorΩ reads

ò

ò

W= Ä

= Ä Ä Ä Ä Ä Ä Ä

∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣

( )( ∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣ ) ( ) ( )
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U U U U U
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d
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d . G.1

2 30 21

2 3 0 2 1 30 21 3 0 2 1

Explicit calculation using Schur’s lemma yields the relations

W Ä Ä Ä =[ ] ( )I U I U, 0, G.23 2 1 0

W Ä Ä Ä =[ ] ( )U I U I, 0, G.33 2 1 0

required to hold for every unitaryU. Explicitly, the operatorΩ is given by

W =
Ä

+
Ä+ +

+

- -

-
( )

⎛
⎝⎜

⎞
⎠⎟d

P P

d

P P

d

1
, G.4

2

,31 ,20 ,31 ,20

+P and -P are the projectors on the symmetric and antisymmetric subspace, respectively.
The problem is tofind theminimumλ such that lG W , forΓ satisfying the conditions (76). Thefirst

condition requiresΓ to be of the form G = ÄI T3 210. Now, equation (G.3) implies that, without loss of
generality, the operatorT210 can be chosen to satisfy the condition

SUÄ Ä = " Î[ ] ( ) ( )T I U I U d, 0 G.5210 2 1 0

which in turn implies

= Ä ( )T Q I , G.6210 20 1

whereQ20 is some positive operator on20. Similarly, equation (G.2) implies that we can chooseT210 to satisfy
the condition

SUÄ Ä = " Î[ ] ( ) ( )T U I U U d, 0, . G.7210 2 1 0

Combinedwith equation (G.6), the above relation implies

SUÄ = " Î[ ] ( ) ( )Q U U U d, 0 G.820 2 0

and therefore

a b= ++ - ( )Q P P . G.920

Finally, the last condition in equation (76) gives =[ ]QTr 120 and, therefore,

a b+ =+ -d d d.

The dual constraint l G W then reads

l a bÄ + Ä
Ä
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+ +
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Pinching both sides with the projectors Ä+ +P P,31 ,20 and Ä- -P P,31 ,20, one obtains

l
a

l
a-+ +( )

( ) 
d d d d d

1
and

1
. G.11

2 2

By separately considering the cases a a-+ +( )d d d d d2 2 and a a< -+ +( )d d d d d2 2, wefind that the
minimumλ is l = d2min

2.

AppendixH.Maximumfidelity for the charge conjugation of an unknownunitary
evolution

Themaximization of the fidelity proceeds in the sameway as for gate inversion. The only difference is that now
the performance operatorΩ is given by equation (80), namely

W =
Ä

+
Ä+ +

+

- -

-
( )

⎛
⎝⎜

⎞
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P P

d
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2

,32 ,10 ,32 ,10

The formofΩ implies the relations

W Ä Ä =[ ] ( )U U I, 0, H.23 2 10

W Ä Ä =[ ] ( )I U U, 0, H.332 1 0

valid for everyU in SU( )d . Now, one has tofind theminimumλ such that l Ä W( ) I T3 210 , with someΓ
satisfying equations (76). Equation (H.2) implies that, without loss of generality, one has

SUÄ = " Î[ ] ( ) ( )T U I U d, 0 , H.4210 2 10

and therefore = ÄT I Q210 2 10.Moreover, the second condition in equation (76) reads

r= Ä[ ]T ITr2 210 1 0

and implies thatQ10 has the form r= ÄQ I d10 1 0 . Finally, equation (H.3) implies that one can choose
r = I d0 without loss of generality. Summing everything up,Γ can be chosen to be of the form
G = Ä =I T I d3 210 3210

2. The dual constraint lG W then becomes

l
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yielding theminimal value l = = -- ( )d d d1 2 1min .

Appendix I.Maximumfidelity for unitary controlization

The performance operator for the controlization problem is

ctrl ctrlòW= - - Ä

= W Ä ñá Ä ñá + W Ä ñá Ä ñá

¢

¢ ¢

∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )( ) ( )
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g U U U U
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4
d
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Q Q

Q Q Q Q

2 30 21

3210
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3210
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whereQ and ¢Q denote the control qubit before and after the interaction, respectively, and

W Ä≔ ( ) ( )( )

d
E I

1

4
, I.23210

0
2 30 21

W Ä +
Ä^ ^

^
≔ ( )( )

⎛
⎝⎜

⎞
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E E
E E

d

1

4
. I.33210

1
2 32 10

32 10

HereE denotes the projector on themaximally entangled state F ñ =+∣ ∣ ⟫I d , Ê is the orthogonal projector
-^

Ä≔E I E2 , and -^ ≔d d 12 . Note that the operators W( )
3210
0 and W( )

3210
1 satisfies the conditions

W Ä Ä =[ ] ( )( ) U I U, 0, I.43210
1

3 21 0

W Ä Ä =[ ] ( )( ) U U I, 0, I.53210
1

3 2 10

W Ä Ä =[ ] ( )( ) I U U, 0, I.63210
1

32 1 0

for every group element SUÎ ( )U d .
To solve the dual problem,we have tofind theminimumλ satisfying the relation l G W for some dual

combΓ. By equation (76), we have G = Ä ÄI I Tb a3 210 , for some suitable operatorT a210 satisfying the
conditions
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= Ä
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T ITr ,
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a a

a a

2 210 1 0

0 0

Without loss of generality,T a210 can be chosen of the form

= Ä ñá + Ä ñá∣ ∣ ∣ ∣ ( )( ) ( )T T T0 0 1 1 , I.7a Q Q210 210
0

210
1

with the operators ( )T210
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where r( )
0
0 and r( )

0
1 are two densitymatrices and p0 and p1 are probabilities. The dual constraint is then reduced

to

l Ä W " Î[ ] { } ( )( ) ( )I T k, 0, 1 . I.9k k
3 210 3210

At this point, equation (I.4) implies that, without loss of generality, one can choose ( )T210
0 to satisfy the relation

SUÄ = " Î[ ] ( )( )T I U U d, 0, ,210
0

21 0

which implies = Ä( ) ( )T Q I210
0

21
0

0 for some suitable operator ( )Q21
0 .Moreover, equation (I.2) implies that, without

loss of generality, one can choose ( )Q21
0 to be proportional to the identity, so that, eventually one has

=
Ä Ä ( )( )T p

I I I

d
. I.10210

0
0

2 1 0
2

Similarly, equation (I.3) implies that, without loss of generality, one can choose ( )T210
1 to satisfy the relations

Ä =[ ] ( )( )T U I, 0, I.11210
1

2 10

Ä Ä =[ ] ( )( )T I U U, 0, I.12210
1

2 1 0

for every unitary SUÎ ( )U d . Now, equation (I.11) implies that ( )T210
1 has the form

= Ä ( )( ) ( )T I Q I.13210
1

2 10
1

and equation (I.8) implies the condition

r

=

= Ä

[ ]
[ ]

( ) ( )

( )

d Q T

p I

Tr10
1

2 210
1

1 1 0
1

for some probability p1 and some quantum state r( )
0
1 . Combining equations (I.13) and (I.12) onefinally obtains

= Ä( )Q p I I d10
1

1 1 0
2, and therefore

=
Ä Ä ( )( )T p

I I I

d
. I.14210

1
1

2 1 0
2

Inserting the above relations into the dual constraint, we then obtain

l Ä( ) ( )p
I

d d
E I

1

4
I.150

3210
2 2 30 21

l Ä +
Ä^ ^

^
( )

⎛
⎝⎜

⎞
⎠⎟p

I

d d
E E

E E

d

1

4
, I.161

3210
2 2 32 10

32 10

having used equations (I.10), and (I.14). To satisfy the constraint, the parameters l p, ,0 and p1must satisfy
l p 1 40 and l p 1 41 , leading to theminimumvalue l = 1 2min .
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