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We report on the first y-ray spectroscopy of low-lying states in neutron-rich *3'%Kr isotopes obtained
from **191Rb(p, 2 p) reactions at ~220 MeV /nucleon. A reduction of the 2| state energies beyond N = 60
demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper
transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations
using the Gogny D1S interaction predict level energies in good agreement with experimental results. The
identification of a low-lying (05, 27) state in **Kr provides the first experimental evidence of a competing
configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape

coexistence picture suggested by theory.
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Sudden variations of nuclear properties as a function of
nucleon number lie at the heart of our understanding of
atomic nuclei. The nuclear-shell model was itself motivated
by the discontinuities observed in two-nucleon separation
energies and radii at specific (magic) nucleon numbers
[1,2]. Similarly, the presence of a rapid onset of deforma-
tion and change of equilibrium shape when adding only one
or a few nucleons drives the modeling of collectivity as it
highlights the interplay between macroscopic properties
and microscopic degrees of freedom. Related to the
competition between the sphericity-favoring pairing
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interaction and the deformation-driving neutron-proton
interaction [3], such a rapid growth of collectivity can
be described in different frameworks. In the context of
shape coexistence [4], an abrupt change of ground-state
properties can be interpreted as stemming from the crossing
of two distinct quantum configurations of nucleons coex-
isting at low excitation energy. An intruder configuration,
such as a multiparticle-multihole excitation above a closed
shell or subshell, can, for example, profit from residual
interactions with other nucleons to become energetically
favorable. Another interpretation consists of describing this
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drastic shape change as a quantum phase transition [5], and
transitional nuclei as critical points described using
dynamical symmetries [6,7]. The differences between
these two mechanisms of shape change are subtle [8],
and debates persist on the modeling of transitional
regions [9,10].

Across the nuclear chart, one of the most drastic and
rapid shape transitions appears in the A = 100 region at
neutron number N = 60 for neutron-rich zirconium and
strontium isotopes [4,11]. The main experimental signa-
tures for this shape change come from ground-state proper-
ties, namely, a discontinuity in binding energies [12] and an
increase in charge radii [13], but also from the spectroscopy
of low-lying 2/ states showing a sudden drop in energy
[14]. In addition, the shape change is accompanied by the
gradual lowering of an excited 0" state [15,16], interpreted
as the bandhead of a deformed configuration finally
crossing with the spherical ground-state band at N = 60.
As opposed to other regions of shape coexistence, all the
detailed studies of transition amplitudes between low-lying
states in “8Sr [17-19] and '9Zr [20-22] point to a weak
mixing (< 20%) between the two unperturbed configura-
tions in the 01 states, compatible with the picture of a
sudden structural change. Recently, shape coexistence was
also directly established away from the N = 60 transition
in %4%7Zr [23,24], pointing to a more widespread phe-
nomenon in the region and to the importance of the Z = 40
subshell closure in this respect. More specifically, large-
scale Monte Carlo shell-model predictions [25] suggested
that the deformed 07 states in °%1%Zr isotopes arise from a
sizable excitation of protons to the Ogy/, orbital across the
Z = 40 subshell closure together with a close grouping of
neutron effective single-particle energies, both mediated by
the tensor and central forces. Interestingly, the sudden onset
of deformation at N = 60 in the zirconium and strontium
chains was not observed for 2°Kr [26]. Instead, a smooth
reduction of E(2]) energy and the rise of B(E2,0] — 27)
excitation strength suggest a gradual development of
collectivity. Moreover, no low-lying intruder states have
been observed yet around N = 60 for krypton isotopes; i.e.,
no clear evidence of shape coexistence exists. Mass
measurements of **’Kr [27], and °%!%Rb [28] isotopes
together with charge radii studies [29,30] also demon-
strated that this abrupt N = 60 shape transition extends
down to Z = 37 and not to Z = 36 in °Kr. However, in the
unexplored N > 60 region for krypton isotopes, one cannot
exclude that a few additional neutrons could trigger a shape
transition between prolate and oblate deformed configura-
tions, predicted to compete at low excitation energies
[28,31-34]. In this Letter, we present the spectroscopy
of very neutron-rich °*!%°Kr nuclei and characterize for the
first time the evolution of collectivity beyond N = 60 in
krypton isotopes.

The experiment was performed at the Radioactive
Isotope Beam Factory at the RIKEN Nishina Center.

The in-flight fission of a 233U beam with a mean intensity
of 27 pnA accelerated to 345 MeV /nucleon was induced
by the collision with a 3-mm-thick °Be primary target at the
object point of the BigRIPS separator [35]. Purification of
the secondary beam was performed using Al degraders at
the F'1 and F'5 dispersive planes (5- and 2-mm thick). The
secondary cocktail beam containing 6.4% of °°Rb and
0.4% of '"IRb at respective averaged rates of 220 and
16 s~ impinged for 29 hours on a 99(1)-mm-thick liquid
hydrogen target of 73.22(8) kg/m? density cooled to 20 K.
Event-by-event identification of projectiles and reaction
residues in atomic number (Z) and mass-over-charge (A/Q)
ratio was achieved using the TOF-Bp — AE method [35] in
both BigRIPS and ZeroDegree spectrometers. Radioactive
isotopes of *8190Kr were produced via the (p, 2p) direct
reactions from *%!°'Rb at energies ranging from ~260 to
~170 MeV /nucleon, respectively, at the entrance and exit
of the target.

The MINOS time-projection chamber [36] surrounding
the target cell was used to reconstruct the reaction vertex
position using the measured tracks of the outgoing protons.
The reconstructed vertex was defined as the middle of the
segment of closest approach between two trajectories,
either from the two outgoing protons or from one proton
and the beam particle tracked through two upstream
position-sensitive parallel-plate avalanche counters [37].
The detection efficiency of at least one proton was
simulated at 95% with a vertex position resolution of
5 mm (FWHM) along the beam axis [36]. The DALI2
high-efficiency gamma spectrometer [38] surrounded the
MINOS device to detect in-flight deexcitation y rays of
98.100Kr It was composed of 186 Nal(TI) crystals calibrated
using 38Y, 99Co, 13*Ba, and '*’Cs sources down to 356 keV.
Add-back was applied when the centers of hit detectors
were less than 15 cm apart. A full simulation of the array
was performed with the GEANT4 toolkit [39] to extract
response functions. The simulations included (i) individual
crystal thresholds set at 100 keV on average, (ii) individual
energy resolutions obtained using the calibration sources,
(iii) experimental velocity distributions of projectiles from
BigRIPS, and (iv) the lifetime of the decaying state. This
simulation resulted in a full-energy peak detection effi-
ciency of 41% for 500-keV y rays emitted in flight along
the target at relative velocity f = v/c ranging from 0.62 to
0.54. Other beam-energy losses through materials along the
line were taken into account for the beam velocity deter-
mination and benchmarked using an empty target meas-
urement (relative agreement of 0.2%). Moreover, the full
analysis procedure including Doppler correction and life-
time effects in the simulated response functions was
validated on **Kr for which the 2] — 0 transition energy
was extracted with a 2-keV deviation from published
values [26,40], well within experimental uncertainties.

Doppler-corrected y-ray spectra of *81%Kr are presented
in Fig. 1 together with least-squares fits including simulated
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FIG. 1. Doppler-corrected y spectrum of *Kr (top) and '®Kr

(bottom) produced from %19'Rb(p,2p) reactions. For each
spectrum, the global fit (solid black line) includes individual
simulated responses (red dashed lines) and a two-component
exponential background (red dotted line). Add-back was applied
and y multiplicities below 6 were considered. The inset of the top
panel shows background-subtracted y-y coincidence spectra
for “8Kr.

response functions of identified transitions and a
two-component exponential background. This background
was folded with a step function to account for the low-
energy cutoff. Starting with *Kr in Fig. 1(a), four peaks are
visible on the energy spectrum and each one was fitted
using a set of response functions assuming different
energies and lifetimes. This procedure led to transition
energies of 216(10), 329(7), 498(13), and 638(25) keV.
Uncertainties are dominated by systematic errors from
lifetime effects estimated using upper limits from y?
profiles but also include a statistical contribution from
the fit and a calibration error (4 keV) in the considered
energy range. With respect to the 329-keV transition, the
intensity of the 216-keV y ray extracted from the peak
shape is significant but uncertain (between 50% and 120%)
due to the ambiguity induced by the unknown shape of
the low-energy background. Background-subtracted y-y
coincidence spectra gated on the peaks corresponding to
the 216- and 498-keV transitions are shown in the inset of
Fig. 1(a). These two transitions are in coincidence with the
329-keV transition but not between themselves. Based on
these coincidences and in line with y-ray intensities, the
329-keV transition was assigned to the 2] — 0] deexci-
tation with its two coincident y rays on top as shown in the
proposed level scheme in Fig. 2(b). The weak 638-keV
transition, enhanced in the '"Rb(p, 2pn)*®Kr channel, was
not seen in coincidence with any of the other y rays.

r (a) _:'Q*-A =—a (this work)| (D)
1.5+ . »—a Kr (Z=36) @, +)7&7(20)
I : a--a Sr (Z=38) 638(25)
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FIG. 2. (a) Systematics of experimental data for E(2]). Data
points from this Letter are highlighted in red. Error bars are
smaller than the marker size. (b) Experimental level schemes for
98,100y

Therefore, it may be a transition to the ground state as
indicated by the dashed line in Fig. 2(b). For the 545-keV
state, two spin-parity hypotheses are compatible with the
nonobservation of a transition to the ground state and with
a 216-keV transition short-lived enough to be measured
in this experiment: (i) either a 0; state with a large
B(E2,05 —2{) or (i) a 2] state decaying via a
M1-dominated transition to the 2f state. In addition, a
47 spin-parity has been discarded for this state because it
would lead to a E(4])/E(2]) ratio of ~1.6 typical of rigid
spherical nuclei, very unlikely in such a midshell region.
For the 827-keV state, a 4] tentative assignment is favored
by this experiment based on the nonobservation of a
decay to the ground state and on relative intensities of the
47 — 2] and 2] — 0] transitions populated by (p, 2p)
reactions to other nuclei studied in the same conditions
[41-43]. Following the same procedure for '®Kr
[Fig. 1(b)], only one transition at 309(10) keV was
observed and assigned to the 2] — 0] transition.

Our results extend the E(2]) trend shown in Fig. 2(a) up
to N = 64 for the krypton isotopes. While a rather flat
behavior persisted up to N = 60 with previously measured
values, our work indicates a significant drop in energy of
40% at N = 62 and a stabilization afterwards. Compared to
Sr and Zr, the overall trend behaves more smoothly and a
reduced but marked decrease in energy is shifted to
N = 62. In addition, the identification of a (05, 27) state
at 545(17) keV in ®®Kr close to the 2| state is the first
experimental evidence for a coexisting band intruding at
low energy in neutron-rich krypton isotopes. These obser-
vations point to structural changes around N = 62. Are
they manifestations of an underlying shape transition
somehow analogous to the ones observed in strontium
and zirconium isotopes?

To gain insight into this subtle evolution, we used the
five-dimensional collective Hamiltonian (SDCH) [33]
beyond-mean-field model with the Gogny DI1S effective
interaction [44,45] to calculate energy levels of neutron-
rich krypton isotopes and to investigate the weight of
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FIG. 3. Comparison between experimental and theoretical low-

lying states in *®!%Kr isotopes from this work.

different deformations in the composition of their collective
wave functions. Such features may be anticipated, based on
topology displayed by the potential energy surfaces which
show deformed oblate and prolate minima separated by
triaxial barriers ~2.1 and ~1.6 MeV high for *®Kr and
100Ky, respectively. Note that the SDCH model successfully
described the shape transition from an oblate ground state
in 7?Kr to prolate in "°Kr and revealed the key role played
by the triaxial degree of freedom [46].

In Fig. 3, the calculated levels for *®1%Kr are compared
to experiment. For both nuclei, the predicted ground-state
band levels are in very good agreement with experiment
(differences within 60 keV). More importantly, two excited
levels 05 and 27 are predicted to lie between the 2] and 4]
states. Our observation of a (05,2]) state in *Kr at
545(17) keV matches well with this prediction. SDCH
probability densities in the $ and y quadrupole deformation
coordinate space are plotted in Fig. 4 for the 0, 21,4, 05,
and 27 states. As shown in this figure for **Kr, the yrast
band is predicted to start from triaxial-oblate-dominant 0}
and 2 collective wave functions, evolving toward a
stabilized prolate profile in the 4] and higher-spin states
(not shown). For '“Kr, the same transition is already
foreseen from the 2 state. Such an oblate-to-prolate shape
evolution inside a band structure closely resembles those
studied on the proton-rich side in ?Kr [47] and 7*72Se [48].
Furthermore, the 05 and 27 excited states intruding below
the 4 state in **Kr are predicted to originate from a prolate
shape competing at low energy with that for the oblate
ground state as illustrated in top panel of Fig. 4. The shape-
coexistent 05 state persists at N = 64 in '%Kr but the 25
state becomes even more triaxially spread with a collective
wave function dominated by a K = 2 projected angular-
momentum component. More quantitatively, our calcula-
tions point to a rather smooth shape evolution starting in
%Kr and going to 'Kr, reflected by (i) the progressive
sign inversion of spectroscopic electric-quadrupole
moments (Q,,) from +20 to —62 ¢ fm? for the 2 state
and from —49 to +27 e fm? for the 2; state, (ii) the large

FIG. 4. Probability densities in the -y deformation space for
low-lying 07, 27, 47, 03, and 27 collective states in *>1%Kr from
5DCH calculations (see text for details).

interband B(E2,05 — 2]) values reaching 1653 and
2637 ¢ fm* in %Kr and '°Kr, respectively, and (iii) a
significant mixing of angular-momentum projected com-
ponents (K = 0 and K = 2) in the 27 states collective wave
functions. Going back to the krypton isotopic chain from
N =56 to 64 shown in Fig. 5, the calculated E(2]) energy
trend shows a smooth and moderate decrease, in overall
good agreement with experimental data. The marked
energy decrease observed at N = 62 in the experiment is
somewhat smoothed in the calculations as also noticed for
Sr and Zr isotopes [33], a feature attributed to the lack of
projection on good particle number in the SDCH theory.
Concerning nonyrast states, the 05 state is predicted to dive
in energy continuously from N = 54 to 60, faster than the
27 state, so that both states lie significantly below the 4]
state at N = 62.

To further investigate the robustness of our theoretical
interpretation, we performed another beyond-mean-field
calculation also using the Gogny D1S interaction but based
on a symmetry-conserving configuration-mixing method
(SCCM) as described in [34]. This approach relies upon the
generator coordinate method in (f, y) variables within a
space spanned by projected Hartree-Fock-Bogoliubov
states at good angular momentum and particle number.

2000 this work EXperimeqt
o 2
- [ ] 411
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— r o
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E 1000:____’\~ G Theory (5DCH)
e B e at
500 e A 4 }
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FIG. 5. Comparison between experimental and SDCH+DI1S

theoretical energies of the low-lying 27, 4, 05, and 25 states in
krypton isotopes. Open symbols are for states seen experimen-
tally for which spin-parity assignment is uncertain. Up to
N = 60, energies are taken from [26,40,49].
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The level schemes obtained are also displayed in Fig. 3 for
98.100Kr, Agreement with experimental level energies sim-
ilar to that achieved in the SDCH approach is reached and a
clear oblate-prolate shape-coexistence situation is also
predicted, with a 05 state calculated at 598 keV in *8Kr
close to the 545(17)-keV experimental value. Both calcu-
lations and experimental data indicate that shape coexist-
ence might drive the evolution of low-lying states in
neutron-rich krypton isotopes. Still, differences of configu-
ration mixing exists between the two models considered
and a dedicated benchmark study in the spirit of those
performed for neutron-deficient krypton isotopes [50,51]
would be relevant. For example, the SCCM calculations
predict coexisting bands in *®Kr with very little mixing
quantified by an interband B(E2,0; — 2{) value of only
19 ¢? fm*. It also predicts larger axial deformation in
general and a sharp shape transition between N = 62
and N = 64, with a crossing in energy of the two coexisting
configurations characterized by Q; p(21+) going from +72
to —83 e fm? for *Kr and '%Kr, respectively.

Finally, relative y-ray intensities with respect to the
2 — 0 transition indicate that the “*Rb(p, 2p) reaction
significantly populates the (05,27) state in *®Kr
[1(216) > 50%]. Based on recent studies of odd-even
rubidium isotopes [52,53] for N > 60, the ground states
of 979%10IRb are understood as coming from a
7gy/2[431]3/2* Nilsson-model configuration with a large
prolate deformation. The selectivity of the (p, 2p) reaction
thus indicates a significant overlap between the (05, 25)
state in ®Kr and the prolate-deformed ground state of
99RDb, consistent with calculations. The nonobservation of
such a (05, 27) state in the same energy range in '*°Kr
[< 40% of I(2] — 07) at a 95% confidence level] may
indicate a change in the structure of low-lying nonyrast
states with respect to *®Kr, requiring further experimental
investigations.

To conclude, we performed the first spectroscopy of
krypton isotopes beyond N = 60 and showed a significant
drop of E(2{) for *8Kr further stabilized for '"Kr.
In *8Kr, the additional identification of a (05, 27) state
only 216(10) keV above the 2] state provides the first
experimental evidence of the lowering of an excited band
coexisting with the ground-state one. Beyond-mean-field
calculations reproduce rather well the extracted energy
levels and link them to the coexistence of oblate and
prolate configurations competing at low energy, which
might cross around **!%Kr. These observations moderate
the previously established picture of neutron-rich krypton
isotopes as a sharp low-Z limit for the shape transition
region at N = 60 close to A = 100, and highlight that the
richness of collective behaviors observed for neutron-rich
zirconium and strontium isotopes extends to krypton. This
new step towards a delineation of the transitional region
calls for the search of excited bands in *+*°Kr to further

benchmark shape evolution scenarios, since extracting
intra- and interband transition probabilities via Coulomb
excitation of ?%19Kr represents a longer-term goal pre-
sumably requiring next-generation facilities.
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Note added.—Recently, the energy of the 4] state in *°Kr
was measured in [49]. The corresponding data point has
been added to Fig. 5 in this Letter after the review process.
Note that for *®Kr, our tentative (4]) state at 827(20) keV
leads to a Ry, = E(4])/E(2]) of 2.51(8), significantly
higher than the value of 2.12(1) obtained for *°Kr [49].
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