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Abstract

To overcome the shortcomings of the weakly compressible material point
method (WCMPM) for modeling the free surface flow problems, an incom-
pressible material point method (iMPM) is proposed based on operator split-
ting technique which splits the solution of momentum equation into two steps.
An intermediate velocity field is first obtained by solving the momentum
equations ignoring the pressure gradient term, and then the intermediate
velocity field is corrected by the pressure term to obtain a divergence-free
velocity field. A level set function which represents the signed distance to
free surface is used to track the free surface and apply the pressure bound-
ary conditions. Moreover, an hourglass damping is introduced to suppress
the spurious velocity modes which are caused by the discretization of the
cell center velocity divergence from the grid vertexes velocities when solving
pressure Poisson equations. Numerical examples including dam break, oscil-
lation of a cubic liquid drop and a droplet impact into deep pool show that
the proposed incompressible material point method is much more accurate
and efficient than the weakly compressible material point method in solving
free surface flow problems.
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1. Introduction

Fluid flow with free surface has been playing an important role in ship
hydrodynamics, aerospace, hydraulic engineering, mechanical engineering,
petrochemical, civil engineering and so on. As it involves unsteady frag-
mentation and merging processes that pose some challenges for the existing
numerical methods in terms of fluid model, accurate position description of
interface, tracking of moving interface, coupling with structure and imple-
ment of boundary conditions, which are still focuses in computational fluid
dynamics and hydrodynamics.

To address above mentioned issues, researchers had done a lot of work.
The PIC (particle-in-cell) method [1] was one of the early attempts to use par-
ticles to define the moving boundaries and the finite difference method was
used to solve the governing equations. Subsequently, an analogous method,
MAC (marker-and-cell) [2] was proposed by Harlow. PIC and MAC have been
widely applied in free surface fluid flows though two methods have an inher-
ent defect of expensive computational cost especially for three-dimensional
cases and fuzzy interface [3]. Some variants of MAC such as VOF (volume
of fluid ) [4], GENSMAC [5,6] have also been used widely to solve complex
computational fluid dynamic problems including reactive flows, generalized
Newtonian flows, multi-material flows, multi-phase flows.

In the 1980s, a surface tracking technique named Level set method based
on dynamic implicit surfaces became extremely popular [7]. The free surface
is described by the field of scalar function like signed distance function. The
greatest advantage of the level set method is its simplicity, especially for com-
puting the curvature of a moving surface. On the other hand, its drawback
is that it needs to solve an additional reinitialization equation besides the
conservation equations on Eulerian grid.

Recently, growing interests have been focused on the so-called mesh-
less methods as alternatives of traditional grid-based methods. The Fluid-
implicit-particle (FLIP) method based on PIC was proposed by Brackbill [8]

to simulate the fluid. Shortly afterwards this method was extended to incom-
pressible fluid flow by Kothe and Brackbill [9]. Nowadays, a hybrid version
PIC/FLIP is widely used in physically-based fluid animation [10–12]. The hy-
brid PIC/FLIP combines the PIC and FLIP to update the particle velocity,
and is almost free of numerical dissipation and more stable, but its stag-
gered grid needs complicated data structure and expensive computational
cost. Smoothed particle hydrodynamics (SPH) is another popular particle
method, whose major advantage over Eulerian methods is the ability to cap-
ture very complex interfaces without any special front tracking treatment.
Several versions of SPH have been developed for free surface flow such as the
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weakly compressible form [13], the fully incompressible form based on solving
pressure Poisson equations [14,15], and the fully incompressible form based on
density prediction [16]. There are also some other meshfree methods applied
in free surface flows, such as the moving particle semi-implicit (MPS) [17–19]

and the finite point method(FPM) [20,21].
In this contribution, we focus on the material point method (MPM) pro-

posed by Sulsky et al. [22] in 1994, which is an extension of FLIP method
from fluid mechanics to solid mechanics. The material point method takes
advantages of both Eulerian and Lagrangian methods, so it is promising in
handling large deformation problems, such as impact/contact, penetration,
cracks and fracture [23–36]. Furthermore, material interfaces can be tracked
easily as in Lagrangian method. The MPM has also been applied in fluid me-
chanics to solve the compressible gas dynamics [37–43] and weakly compressible
flow [44–46]. To model fluid-structure interaction(FSI) problems, the MPM has
been coupled with other methods, such as finite-volume method [43,47], hybrid
immersed boundary method (HIBM) [48], the finite difference method [49], and
the finite element method for modeling fluid-structure interaction [26,28,45]. For
handling a wider range of material behaviors, an augmented MPM [50] was
also presented with dilational/deviatoric splitting of the constitutive model
for heat transport, melting and solidifying materials.

For modeling the dynamic behavior of sloshing liquid in a moving con-
tainer, Li et al. [44] first proposed a weakly compressible material point method
(WCMPM) by employing a weakly compressible equation of state (EOS) .
Though the numerical results are in good agreement with experimental data,
and it has also encountered the following issues. (1) The weakly compress-
ible EOS relates pressure to density of the fluid by an artificial sound speed,
which is normally taken as 10 times higher than the maximum fluid velocity
in order to reduce the density fluctuation down to 1% [51]. Thus the critical
time step size of the explicit time integration is very small and the compu-
tational cost is considerably high. (2) The material surface is not explicitly
tracked in MPM, so it is difficult to accurately impose the pressure boundary
conditions on the free surface. (3) The weakly compressible EOS leads to
significant pressure oscillations of the fluid particles.

In order to fix the aforementioned issues associated with WCMPM, an in-
compressible material point method (iMPM) is proposed in this paper based
on the operator splitting scheme. The solution of the momentum equation is
split into two steps. In the first step, the pressure gradient term is ignored,
and the intermediate velocities are obtained by solving the momentum equa-
tion whose critical time step size depends only on the speed of shear wave.
Generally speaking, the speed of compression wave in a fluid is several orders
of magnitude higher than that of the shear wave. Thus, this step can be
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solved efficiently by using an explicit integration scheme. In the second step,
the pressure gradient term is used to correct the intermediate velocities, and
the corrected velocities must be divergence free. Applying the divergence free
condition on the corrected velocities results in a set of pressure Poisson equa-
tions. After solving the Poisson equations, the cell pressures are obtained,
and then the grid nodal velocities are updated.

Furthermore, an implicit level set function is adopted to track the free
surface, which is helpful to accurately impose pressure boundary conditions
induced by surface tension or atmosphere by means of ghost fluid method.
In order to suppress the spurious velocity modes associated with the semi-
staggered grid employed in the iMPM, an hourglass damping is implemented.
Additionally, a calculation scheme for the pressure gradient at grid nodes is
presented to stabilize iMPM result.

The remaining part of the paper is organized as follows. The weakly
compressible material point method is briefly reviewed in Section 2. Then the
new fully incompressible material point method is presented in Section 3. The
surface tracking method and surface tension model employed in the iMPM
are described in Section 4. The pressure gradient discretization scheme,
the spurious velocity modes suppressing scheme and particle velocity update
scheme are developed in Section 5. The numerical implementation of iMPM
is summarized in Section 6, and several numerical examples are shown in
Section 7 to validate the proposed method. Conclusions are drawn in Section
8.

2. Weakly compressible material point method

MPM is a hybrid method with Eulerian-Lagrangian description in which a
material domain is represented by a collection of Lagrangian particles moving
through a Eulerian background grid, as shown in Fig.1. The particles carry
all state variables such as the position, the velocity, the acceleration, the
stress. whereas the grid carries no permanent information. At each time
step, the background grid is rigidly attached to the particles and deforms
with them so that the grid can be viewed as a finite element discretization to
the material domain. The momentum equations are solved on the grid, and
the nodal solution is used to update the particles. At the end of each time
step, the deformed background grid is reset to its initial state for the next
time step.

In the updated Lagrangian framework, the governing equations for the
material domain Ω as shown in Fig.1 consist of

ρ̇ = 0 (1)
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Figure 1: MPM discrete configuration.

ρüi − σij,j = ρbi (2){
(njσij)|Γt

= t̄i
vi|Γv

= v̄i
(3)

where ρ is the density of current state, t is the time, σij is the Cauchy stress,
bi is the body force per unit mass, ui is the displacement, the subscripts i
and j denote the components of the spatial coordinates, and nj is the unit
outward normal of the boundary. Γt and Γv stand for the prescribed traction
boundary and velocity boundary conditions of Ω , respectively. Taking the
virtual velocity δvi as a test function, the weak form of Eq.(2) reads∫

Ω

ρüiδvidΩ +

∫
Ω

σijδvi,jdΩ−
∫
Ω

ρbiδvidΩ−
∫
Γt

t̄iδvidΓ = 0 (4)

In each time step, the background grid is attached rigidly to the particles
and deforms with them. Consequently, the velocity vi can be approximated
through

vi =
n∑

I=1

NIviI (5)

where the subscript I denotes the background grid node, NI is the corre-
sponding grid shape function, n is the total number of grid nodes in a back-
ground cell, and viI is the velocity of node I in ith component of velocity.
Taking the eight-node brick element as an example, the grid shape functions
are given by

NI =
1

8
(1 + ξξI)(1 + ηηI)(1 + ζζI), I = 1, 2 · · · , 8 (6)

where (ξI , ηI , ζI) are the natural coordinates of element node I in the refer-
ence coordinate system (ξ ∈ [−1, 1], η ∈ [−1, 1], ζ ∈ [−1, 1]).

Since the whole domain is discretized by np particles, the mass density
can be approximated as follows

ρ(x) =

np∑
p=1

mp
χ(x− xp)

Vp
(7)
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where χ(x−xp) is the particle characteristic function which defines the space
occupied by the particle. According to discretization of weak form Eq.(4), a
function S̄ used to map information between particles and background grid
is given as

S̄ip =
1

Vp

∫
Ωp∩Ωi

χ(x− xp)Ni(x)dx (8)

In the original MPM, the Dirac delta function represents the particle char-
acteristic function as follows

χ(x− xp) = δ(x− xp)Vp (9)

This version with Dirac delta function was called the standard MPM. Bar-
denhagen [52] presented an alternative scheme in which Heaviside function
replaces the Dirac delta function

χ(x− xp) = H(x− (xp − lp))−H(x− (xp + lp)) (10)

where lp is half of particle characteristic length associated with the size of
sub-domain by the particle p, H(x) stands for Heaviside function. This new
scheme was named as the generalized interpolation material point method
(GIMP).

Substituting Eq.(5) and Eq.(7) into Eq.(4) yields

ṗiI = fiI (11)

where piI = mIviI is the grid nodal momentum,

mI =

np∑
p=1

S̄Ipmp (12)

is the lumped masses,

fiI = f ext
iI + f int

iI (13)

is the grid nodal force,

f int
iI = −

np∑
p=1

S̄Ip,jσijp
mp

ρp
(14)

is the internal grid nodal force, and

f ext
iI =

np∑
p=1

NIpt̄iph
−1mp

ρp
+

np∑
p=1

mpS̄Ipbip (15)
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is the external grid nodal force, h is the artificial thickness of the boundary
layer to calculate the integral along traction boundary.

Eq.(11) can be integrated using a leapfrog scheme to update the velocity
and the position of particles as

v
n+1/2
ip = v

n+1/2
ip +∆tn

ng∑
I=1

fn
iI

mn
I

S̄n
pI (16)

xn+1
ip = xnip +∆tn+1/2

ng∑
I=1

p
n+1/2
iI

mn
I

S̄n
pI (17)

where pn+1/2
iI = p

n−1/2
iI +fn

iI∆t
n, tn+1 = tn+∆tn+1/2 , tn+1/2 = tn+∆tn+1/2/2 =

tn−1/2 +∆tn and ∆tn = (∆tn−1/2 +∆tn+1/2)/2.
Based on the newly updated grid nodal velocity field, the strain increment

of particle is calculated by

∆εijp =
△tn+1/2

2
(S̄n

pI,jv
n+1/2
iI + S̄n

pI,iv
n+1/2
jI ) (18)

and then a corresponding constitutive law is used to update the particle
stress state. For weakly compressible fluid model, an artificial equation of
state (EOS) is usually used to update pressure. Monaghan et al. [51] proposed
the following EOS

p = p0 ((ρ/ρ0)
γ − 1) (19)

where p0 = c2ρ0/γ with γ = 7 for water, c is the numerical sound speed which
is much lower than the real sound speed of compressible wave to increase the
critical time step. Another artificial EOS is proposed by Morris [53] as

p = c2ρ (20)

In this paper, Morris’s EOS is implemented in the weakly compressible
material point method with the numerical sound speed 50m/s.

At the end of the time step, the deformed background grid is discarded
and a new regular background grid is used in the next time step. Readers
may refer to Ma’s paper [54] for more details.

3. Incompressible material point method

3.1. Governing equation
Decomposing the stress σij into the sum of deviatoric stress sij and hy-

drostatic pressure p, i.e. σij = −pδij + sij, Eq.(2) can be written as

ρüi = −p,i + sij,j + ρbi (21)
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For fully incompressible fluid model, the velocity field must satisfy the
divergence free condition

vi,i= 0 (22)

3.2. operator splitting
Based on the operator splitting method, the computations of velocity

and pressure fields can be decoupled. As a result, the integration of Eq.(21)
consists of two steps [55,56]. In the first step, the pressure gradient term is
ignored in Eq.(21) to compute an intermediate velocity field v∗i as

v∗i = vni +
∆t

ρ
(sij,j + ρbi), v∗i |Γv

= v̄i (23)

where vni is the velocity at time tn. For Newtonian fluid, the deviatoric stress
is updated by

sij = 2uε̇′ij (24)

where coefficient of dynamic viscosity µ is constant, and ε̇′ is the tensor of
deviatoric strain rate.

In the second step, the intermediate velocity v∗i is corrected by the pres-
sure gradient term to yield the final solution vn+1

i as

vn+1
i = v∗i −

△t
ρ
pn+1
,i , vn+1

i

∣∣
Γv

= v̄i (25)

which must satisfy the divergence free condition, i.e. Eq.(22).
Eq.(23) is almost identical to Eq.(2), so it can be solved via the explicit

material point method as presented in Section 2. Thus, the intermediate grid
nodal velocity v∗iIcan be obtained as

v∗iI = vniI +
∆t

mI

(f ext
iI + f int,s

iI ) (26)

where the external grid nodal force f ext
iI is given in Eq.(15), and

f int,s
iI = −

np∑
p=1

S̄Ip,jsijp
mp

ρp
(27)

is the internal grid nodal force contributed by deviatoric stress only.
It should be noted that the critical time step size only depends on the

speed of shear wave when integrating Eq.(23) explicitly. Since the speed of
compression wave in a fluid is usually several orders of magnitude higher than
that of the shear wave, the critical time step in iMPM can be much larger
than that of WCMPM.
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3.3. Pressure Poisson equations
Substituting Eq.(25) into Eq.(22) yields the pressure Poisson equation

v∗i,i =
△t
ρ
∇2pn+1 (28)

In WCMPM, all state variables including the pressure are stored at par-
ticles. Because the number of particle is much greater than that of cells,
it is much more efficient to store the pressure at cell centers rather than at
particles, which is equivalent to assuming a piecewise constant pressure field
in the grid.

Traditionally, the staggered grid [2] shown in Fig.2(a) has been employed
successfully to solve the Eq.(32), where the pressure p is stored at the cell cen-
ters, and the velocities are located at face centers to avoid even-odd pressure
modes. However, we applied the semi-staggered grid as shown in Fig.2(b),
since it can be naturally incorporated into MPM. The pressure is stored at
each cell center rather that at particle, and the grid nodal velocities are used
to approximate the divergence of the intermediate velocity field v∗ at cell
center (i, j, k) by

v∗i,i(xi,j,k) =
∑ ∂NI(xi,j,k)

∂xi
v∗iI (29)

p u v ( , )u v

(a) Staggered  grid (b) Semi-staggered grid

Figure 2: The staggered grid and semi-staggered grid in two dimension.

The second order derivative of pressure p with respect to x can be ap-
proximated at the cell center (i, j, k) using the central difference method as(

d2p

dx2

)
i,j,k

=
pi+1,j,k + pi−1,j,k − 2pi,j,k

∆x2
(30)
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where ∆x is the length of cell in the x-direction, and cubic cells are used with
setting of ∆x = ∆y = ∆z = h. The Laplacian ∇2p can be approximated at
the cell center (i, j, k) using the seven-point stencil finite difference method(
∇2p

)
i,j,k

=
pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k

h2
(31)

Substituting Eq.(31) and Eq.(29) into Eq.(28) yields a system of linear
equations as

Ap = b (32)

where A is the coefficient matrix, p is a vector consisting of pressures at all
cell centers, b is a vector consisting of the negative divergence of the inter-
mediate velocity at each cell center. This symmetric positive semi-definite
linear systems can be solved efficiently by the preconditioned conjugate gra-
dient (PCG) solver.

4. Surface tracking and surface tension model

4.1. Level set function
Another important issue is to track the topology changes such as the

breaking waves, droplet or spray on the free surface. For free surface flow
problems, the free boundary can not be determined in advance due to two
types of boundary conditions - the kinematic boundary condition and dy-
namics boundary condition. These characteristics in free surface flow result
in numerical difficulties.

In many Lagrangian particle methods, an isocontour of an implicit func-
tion is used to represent the fluid surface [57,58] . As shown in Fig.3(a), each
particle can be viewed as an sphere with the center of xp and radius of r
which at least can cover over a cell. Then the implicit function centered at
the particle xp is defined as [57]

ψp(x) = ||x− xp|| − r (33)

which equals zero on surface of the sphere represented by particle xp. Con-
sequently, the fluid interface is obtained as an assemble of spherical patches,
which are shown as solid lines in Fig.3(a).

To determine the fluid interface implicitly, a signed distance function
φ(x) is defined over the domain Ω, which is negative inside the fluid domain
Ω− and positive outside the fluid domain Ω+, as shown in Fig.3(b). Then
φ(x) = 0 represents the fluid interface which is constructed based on the
value of signed distance function at each cell center given by

φC = min
p
(ψp(xC)) (34)
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(a) (b)

�( ) 0
p

ψ =x ( ( ) 0)Γ ϕ =x

Ω
+

Ω
−

Figure 3: Isocontour of an implicit function and signed distance function. Solid dots
denote fluid particles, Γ denotes material interface, Ω+ denotes non-fluid domain, and
Ω− denotes fluid domain.

The fluid interface φ(x) = 0 constructed from φC is not a smooth sur-
face, as shown in Fig.3(a). To obtain a smooth interface as illustrated in
Fig.3(b), the signed distance function φ(x) is smoothed using the fast sweep-
ing method [59] from the initial guess of φ(x) defined by Eq.(34).

The interface φ(x) = 0 can be advected directly with the motion of fluid
particles, in which a new signed distance function is reconstructed in the same
way in next time step. This method is very simple, but it requires adequate
particles to construct the surface during the computational process. Some
non-physical interface may appear if too sparsely particles are used to track
the fluid field [57].

The evolution of the free surface φ(x) = 0 can be more accurately tracked
by solving the level set equation

φ̇ = φ,t + v · ∇φ = 0 (35)

Eq.(35) can be solved by using the third order WENO scheme in space and
the explicit RK3-TVD in time. To make the values of φ to satisfy properties
of the signed distance function , i.e. let |∇φ| = 1, a reinitialization must be
conducted by solving 

∂φ

∂τ
= sgn(φ0)(1− |∇φ|)

φ(x, 0) = φ0(x)
(36)

with forward Euler method in fictitious time τ . The first-order subcell fix
scheme [60] is used to discretize the gradient ∇φ in Eq.(36).
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4.2. Curvature of the interface
The unit outward normal of the interface φ(x) = 0 is obtained from the

gradient of the level set function φ(x) as

n =
∇φ
|∇φ|

(37)

and the mean curvature is calculated by

κ = ∇ · n (38)

The first-order and second-order derivatives of φ are required to calculate
the curvature in Eq.(38). Due to the low accuracy of the signed distance
function φ obtained from the low-order reinitialization scheme, the second-
order derivatives of φ may be oscillating. To obtain an accurate curvature,
an alternative quadratic polynomial function φ̃(x, y, z) is constructed using
the local least-squares fitting

φ̃(x, y, z) = a0+a1x+a2y+a3z+a4x
2+a5y

2+a6z
2+a7xy+a8yz+a9xz (39)

A 3×3×3 stencil with 27 sample points is used to determine the unknown
coefficients a1, a2, · · · , a9. φ̃ is then used to calculate the mean curvature by
Eq.(38).

4.3. Pressure boundary conditions
When solving the pressure Poisson equation Eq.(28), two kinds of bound-

ary conditions regarding pressure need to be imposed. One is the prescribed
pressure on the free surface, the other is normal pressure gradient imposed
along the interface between the solid and fluid to guarantee the continuity of
normal velocity.

The ghost fluid method [61–63] is used to impose the prescribed pressure
boundary condition on the free surface. Take two dimensional pressure Pois-
son equation as an example. If the free surface is located between the centers
of fluid cell (i, j) and air cell (i + 1, j), a ghost pressure pGx

i+1,j is defined at
the center of cell (i+ 1, j) which leads to(

∂2p

∂x2

)
i,j

=
pGx
i+1,j + pfi−1,j − 2pfi,j

∆x2
(40)

where

pGx
i+1,j =

pfs + (θ − 1)pfi,j
θ
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is the ghost pressure of cell (i + 1, j) in the x-direction, pfs is the surface
pressure, and θ = |(xfs − xi)/∆x|. The surface pressure pfs is equal to the
air pressure pair or pair + σfs

κ if the surface tension is taken into account.
Substituting pGx

i+1,j into Eq.(40) yields(
∂2p

∂x2

)
i,j

=
1
θ
pfs + pfi−1,j − (1 + 1

θ
)pfi,j

∆x2
(41)

4.4. Surface tension model
The surface tension will lead to a pressure jump σfs

κ between the two fluids
proportional to the mean curvature, i.e.

σfs
κ = γκ (42)

where γ is the surface tension coefficient, which is 0.073N/m for the inter-
face between water and air at room temperature, κ is the mean curvature
calculated by Eq.(38). In Eq.(23), the viscous force is added in the term
of intermediate velocity, so the pressure boundary condition is modified as
follows

pfs = pair + σfs
κ + sijninj (43)

where pair = 0 in this paper, and Eq.(32) will become complicated due to
the contribution of deviatoric stress to the boundary pressure at free surface.
A decoupled scheme [64] using the constant extrapolation of velocity nearby
the free surface is applied in the iMPM code, so that the contribution of
deviatoric stress sij to the surface pressure pfs is eliminated and Eq.(43)
can be simplified as pfs = σfs

κ . The extrapolation of velocity benefits for
decreasing the complexity of pressure boundary condition [65]. For the most
of meshfree methods applied in incompressible fluid, the numerical instability
will happen at the free surface, so the constant extrapolation of velocity not
only gives a smoother motion of the implicit free surface, but is helpful to
improve the numerical stability.

For the solid boundary condition, it is assumed that the solid is static
and its boundary is in parallel with the grid line with no cell cutting. Hence,
on the interface between solid and fluid, ∇p ·n = 0 is imposed when solving
Eq.(28).

5. Velocity update

5.1. Pressure gradient calculation
It should be noted that the pressure gradient ∇p is required to update

the velocity vn+1
i using Eq.(25). In the MAC staggered grid, vn+1

i is updated
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at face centers, so that the pressure gradient ∇p is also evaluated at face
centers which can be obtained by the finite difference method as(

∂p

∂x

)
i+ 1

2
,j

=
pi+1,j − pi,j

∆x
,

(
∂p

∂y

)
i,j+ 1

2

=
pi,j+1 − pi,j

∆y
(44)

At the free surface, pi+1,j and pi,j+1 in Eq.(44) should be replaced with the
ghost values pGx

i+1,j and pGy
i,j+1 respectively to impose the pressure boundary

condition using the ghost fluid method if both cells are outside the fluid
domain.

Since the semi-staggered grid shown in Fig.2(b) is used in iMPM, vn+1
i is

updated at grid node, so that the pressure gradient should also be evaluated
at grid node. If all cells connected to a grid node are fluid cells as illustrated
in Fig.4(a), ∇p can be evaluated at the grid node (i+ 1

2
, j + 1

2
) as(

∂p

∂x

)
i+ 1

2
,j+ 1

2

=
1

2

[(
∂p

∂x

)
i+ 1

2
,j

+

(
∂p

∂x

)
i+ 1

2
,j+1

]
(
∂p

∂y

)
i+ 1

2
,j+ 1

2

=
1

2

[(
∂p

∂y

)
i,j+ 1

2

+

(
∂p

∂y

)
i+1,j+ 1

2

] (45)

where(
∂p

∂x

)
i+ 1

2
,j

=
pi+1,j − pi,j

∆x
,

(
∂p

∂x

)
i+ 1

2
,j+1

=
pi+1,j+1 − pi,j+1

∆x(
∂p

∂y

)
i,j+ 1

2

=
pi,j+1 − pi,j

∆y
,

(
∂p

∂y

)
i+1,j+ 1

2

=
pi+1,j+1 − pi+1,j

∆y

(46)

are the pressure gradient components evaluated at face centers. Note that
(∂p/∂x)i+ 1

2
,j+ 1

2
is the average of ∂p/∂x at face centers (i + 1/2, j + 1) and

(i+1/2, j), (∂p/∂y)i+ 1
2
,j+ 1

2
is the average of ∂p/∂y at face centers (i, j+1/2)

and (i+ 1, j + 1/2).
If a grid node is nearby the free surface as illustrated in Fig.4(b), the pres-

sure pi+1,j+1 in Eq.(45) is replaced with a ghost pressure to impose the pres-
sure boundary condition on the free surface. Namely, (∂p/∂x)i+1/2,j+1 is cal-
culated from the pressure pi,j+1 and ghost pressure pGx

i+1,j+1, and (∂p/∂y)i+1,j+1/2

is calculated from the pressure pi+1,j and ghost pressure pGy
i+1,j+1. The ghost

pressure pGx
i+1,j+1 is extrapolated from pi,j+1 and the free surface pressure

pfsj+1 in the x-direction, while pGy
i+1,j+1 is extrapolated from pi+1,j and the free

surface pressure pfsi+1 in the y-direction.
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Figure 4: Pressure gradient calculation.

The weights of pressure gradient at face centers in Eq.(45) are all equal to
1/2, which is only valid if at least one adjacent cell center of each face center
is located within the fluid domain. Cases (a), (b) and (d) in Fig.4 satisfy this
requirement, but cases (c), (e) and (f) do not. For case (c), both adjacent cell
centers of face center i+1, j+1/2 are not in the fluid domain, so the weight
of (∂p/∂y)i+1,j+1/2 should be zero. Similarly, the weight of (∂p/∂x)i+1/2,j+1

should also be zero. Thus, Eq.(45) could be generalized as(
∂p

∂x

)
i+ 1

2
,j+ 1

2
= wi+ 1

2
,j

(
∂p

∂x

)
i+ 1

2
,j + wi+ 1

2
,j+1

(
∂p

∂x

)
i+ 1

2
,j+1 (47)(

∂p

∂y

)
i+ 1

2
,j+ 1

2

= wi,j+ 1
2

(
∂p

∂y

)
i,j+ 1

2

+ wi+1,j+ 1
2

(
∂p

∂y

)
i+1,j+ 1

2

(48)

where {
wi+ 1

2
,j = βi+ 1

2
,j/(βi+ 1

2
,j + βi+ 1

2
,j+1)

wi+ 1
2
,j+1 = βi+ 1

2
,j+1/(βi+ 1

2
,j + βi+ 1

2
,j+1)

(49)

in which βi+ 1
2
,j = 1 if φi,j < 0 or φi+1,j < 0, βi+ 1

2
,j+1 = 1 if φi,j+1 < 0

or φi+1,j+1 < 0. Otherwise, they equal zero. wi+ 1
2
,j and wi+1,j+ 1

2
can be

obtained in the same way. This technique can be readily extended to three
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dimensional problems. For example, (∂p/∂x)i+ 1
2
,j+ 1

2
,k+ 1

2
can be evaluated by(

∂p

∂x

)
i+ 1

2
,j+ 1

2
,k+ 1

2
= wi+ 1

2
,j+1,k

(
∂p

∂x

)
i+ 1

2
,j+1,k + wi+ 1

2
,j,k

(
∂p

∂x

)
i+ 1

2
,j,k

+ wi+ 1
2
,j,k+1

(
∂p

∂x

)
i+ 1

2
,j,k+1 + wi+ 1

2
,j+1,k+1

(
∂p

∂x

)
i+ 1

2
,j+1,k+1 (50)

where
wi+ 1

2
,j+1,k = βi+ 1

2
,j+1,k/(βi+ 1

2
,j+1,k + βi+ 1

2
,j,k + βi+ 1

2
,j,k+1 + βi+ 1

2
,j+1,k+1)

wi+ 1
2
,j,k = βi+ 1

2
j+1k/(βi+ 1

2
,j+1,k + βi+ 1

2
,j,k + βi+ 1

2
,j,k+1 + βi+ 1

2
,j+1,k+1)

wi+ 1
2
,j,k+1 = βi+ 1

2
,j+1,k/(βi+ 1

2
,j+1,k + βi+ 1

2
,j,k + βi+ 1

2
,j,k+1 + βi+ 1

2
,j+1,k+1)

wi+ 1
2
,j+1,k+1 = βi+ 1

2
,j+1,k/(βi+ 1

2
,j+1,k + βi+ 1

2
,j,k + βi+ 1

2
,j,k+1 + βi+ 1

2
,j+1,k+1)

(51)
This scheme for calculating pressure gradients at grid nodes is valid for

all cases in Fig.4, including those near the fixed solid boundary.

5.2. Spurious velocity modes
In iMPM, the divergence of velocity is calculated at cell centers when

solving the pressure Poisson equations. As a result, the velocity modes il-
lustrated in Fig.5 that are divergence free at cell centers do not contribute
to the pressure Poisson equations. That is to say, these spurious velocity
modes are not resisted, and will lead to spurious oscillation in velocity field.
These modes are the same as the hourglass modes in hexahedron element
with single-point Gauss quadrature in FEM, an hourglass damping scheme
is proposed to suppress the spurious velocity modes.

3Γ 41Γ 2Γ Γ

Figure 5: Hourglass modes.

The velocity modes illustrated in Fig.5 can be expressed as
Γ1 = [1,−1, 1,−1, 1,−1, 1,−1]T

Γ2 = [1, 1,−1,−1,−1,−1, 1, 1]T

Γ3 = [1,−1,−1, 1, 1,−1,−1, 1]T

Γ4 = [−1, 1,−1, 1, 1,−1, 1,−1]T

(52)
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In three dimensions, there are totally 12 spurious modes, with four modes
listed in Eq.(52) for each direction. These spurious modes can be suppressed
by introducing a hourglass damping, i.e.

vi = vi − αh

4∑
k=1

ΓT
k viΓk (53)

where vi is the velocity vector consisting of velocity vi of grid nodes (m,n, p),
(m+ 1, n, p), (m,n+ 1, p), (m+ 1, n+ 1, p), (m,n, p+ 1), (m+ 1, n, p+ 1),
(m,n + 1, p + 1) and (m + 1, n + 1, p + 1), and αh is a coefficient, which is
chosen as 0.05 in this paper if not specified .

5.3. Particle velocity update
In WCMPM, the particle velocity is updated in Eq.(16) based on the grid

nodal acceleration, which is almost free of numerical dissipation. On the con-
trary, in PIC method, the particle velocity is updated by interpolating the
grid nodal velocity, which causes excessive numerical dissipation. To intro-
duce a little dissipation in iMPM scheme, the linear combination scheme [10]

is employed, i.e.

vn+1
ip = χ

ng∑
I=1

vn+1
iI S̄pI + (1.0− χ)(vnip +∆vip) (54)

where χ is a coefficient and 0 ⩽ χ ⩽ 1,

△vip =
ng∑
I=1

(vn+1
iI − vniI)S̄pI (55)

The coefficient χ is taken as 0.03 in this paper.

6. Implementation of incompressible material point method

The proposed iMPM scheme has been implemented in our three-dimensional
explicit material point method code MPM3D® [66] as a solver, which is suit-
able for low speed flow problems with free surface. The implementation of
iMPM in a time step is briefly summarized as follows.

1. Map the masses and momenta of particles to background grid to
initialize the grid nodal masses and momenta.

2. Calculate the intermediate velocities v∗i using Eq.(23), and impose the
velocity boundary conditions.
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3. Initialize the signed distance function and identify the fluid cell, the air
cell and the free surface either based on the isocontour of particle spherical
function or based on a user defined initial grid level set function.

4. Assemble the pressure Poisson equations Eq.(32) and solve it via a
PCG solver.

5. Update the corrected velocities vn+1
i via Eq.(25).

6. Suppress the hourglass modes of velocities vn+1
i via Eq.(53).

7. Update the particle velocities via Eq.(54).
8. Update the particle positions using RK3-TVD method with the up-

dated grid velocities vn+1
i , and next time step continues from step 1 to step

8 again.
Compared to the WCMPM, the fully incompressible condition is explicitly

imposed in the iMPM so that the pressure is solved from the pressure Poisson
equations instead of from the local particle strain increment, which avoids
the pressure oscillation inherent in WCMPM.

7. Numerical examples

Three numerical examples are studied in this section to validate the pro-
posed incompressible material point method, including the dam break, the
oscillation of a cubic liquid drop under surface tension and a water droplet
impact into a deep pool. In the following part, we denote WCMPM with
Heaviside function as density interpolation by WCGIMP, and iMPM with
Heaviside function by iGIMP.

7.1. Dam break
The dam break experiment performed by Zhou et al. [67] and Lobovsky et

al. [68] is studied to evaluate the performance of iMPM. A schematic of the
test is shown in Fig.6. At the beginning of the test, water was located in
the reservoir area on the left side of the flap with a depth of 0.60m. After
the flap was lifted quickly, the water crashes into the flow area due to the
gravity. The tank has a depth h0 of 0.60m, width w0 of 1.0m and length l0 of
3.22m. The density ρ, viscosity µ and gravity g are chosen as 1.0×103 kg/m3,
1.01× 10−3 Pa · s and 9.8m/s2, respectively. The water domain is discretized
by 5760000 particles, and a background grid consisting of 161×125×50 cells
with cell size of 0.02m is used.

In this problem, the viscosity is very low, and the free-slip boundary
condition is imposed on all solid walls, and surface tension is ignored. The
interface is advected directly with the motion of fluid particles, as stated in
Section 4.1. For comparison, this example is also simulated by using the
WCMPM/WCGIMP with the artificial equation of state Eq.(20) .
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Figure 6: 3D dam break schematic diagram.

The following non-dimensional parameters are applied to evaluate the
results

T = t

√
h0g

l20
, L(T ) =

l(T )

l0
, H(T ) =

h(T )

h0
, P (T ) =

p(T )

ρgh0

where t is the time measured since the start of the gate’s vertical motion, l
is the location of the wave front, h is the water level at a specified location,
and p is the pressure.

A sequence of snapshots obtained by using the WCMPM and iMPM are
compared in Fig.7. Although the free surface profiles obtained by both meth-
ods are very similar to each other before the second plunging wave impacts
on the right wall, there is a significant difference in terms of the pressure
distribution over the fluid domain. At the very beginning, hydrostatic pres-
sure obtained by both methods is close to the linear distribution along the
vertical direction. However, due to the weakly compressible equation of state
and crossing-cell noise, the pressure obtained by WCMPM soon shows high-
frequency oscillations when water flow develops along the deck. Eventually,
there are lots of non-physical sprays and splashes in WCMPM results at
T = 6.969. Although, the WCGIMP can indeed improve the accuracy of
solving the particle stress in a limited extent, it has little contribution to
eliminate the high-frequency pressure oscillation and non-physical spray over
time. Conversely, the pressure distribution obtained by iMPM/iGIMP is
smooth and stable during the whole process and the free surface profiles are
reasonable.

In Fig.8, the non-dimensional displacements of the wave front from the
gate along the dry horizontal bed obtained by WCMPM/WCGIMP, iMPM/iGIMP
are compared with the experimental data of Lobovsky [68]. Since the hydro-
static pressure plays a dominant role in the low-viscosity flow, the numerical
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Figure 7: Dam break configurations obtained by (a) WCMPM and (b) iMPM.
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result can be improved by using of the generalized interpolation which bene-
fits in solving of EOS for WCGIMP or divergence calculation in the fluid cell
for iGIMP, the results by WCGIMP and iGIMP are a litter better than that
by WCMPM and iMPM, respectively. The difference between experimen-
tal data and numerical results may be possibly due to several factors in the
experiment, such as the velocity of flap removal and development of turbu-
lence near the water front which causes the delay of moving of downstream.
Meanwhile, the numerical results obtained by ISPH [69] and WCSPH are also
listed in Fig.8 as reference.

WCSPH

iMPMWCMPM

ISPH

WCGIMP iGIMP

Exp. data [Lobovsky, 2014]

L
(T

)

T
0.0 0.5 1.0

1

2

3

Figure 8: Time evolution of the water-front toe.

The pressures at P1 obtained by iMPM/iGIMP, WCMPM/WCGIMP and
two-phase SPH [70] are compared with the experimental data by Zhou [67] in
Fig.9. The results in iMPM/iGIMP are in good agreement with the experi-
mental data, whereas the WCMPM result shows severe numerical oscillation.
When the WCGIMP was used to simulate this problem, the high-frequency
component of pressure is effectively suppressed, the result from the curve
of pressure time-history with WCGIMP is superior to that with WCMPM.
For iGIMP, its curve of pressure time-history almost coincides with iMPM’s
curve except in the second peak. The delay of the second pressure peak in
the numerical methods is due to the air in the cavity which is not taken into
account in the simulations.

Moreover, the water levels at pointsH1 andH2 obtained by WCMPM/WCGIMP,
iMPM/iGIMP and two-phase SPH are compared in Fig.10. In the initial
stage before the rebounding wave reaches H1 or H2, the numerical results
obtained by all these methods agree well with the experimental results. How-
ever, at the second stage when a steep increase in height is observed due
to the overturning wave, the water levels obtained by iMPM/iGIMP and
WCMPM/WCGIMP are higher than the experimental results. Although
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Figure 9: Time evolution of the pressure at location P1.

the two-phase SPH had taken the air-cushion effect into account, it still can
not give reasonable results in the second stage.
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Figure 10: Time history of the wave heights measured at location H1 and H2.

In this example, iMPM not only gives better results, especially in terms
of the pressure distribution, than WCMPM/WCGIMP, but also is 3.1 times
faster than WCMPM and is 1.81 times faster than iGIMP in computational
efficiency.

7.2. Oscillation of a cubic liquid drop
The formation of a spherical liquid drop from a 0.01m × 0.01m × 0.01m

cubic liquid drop due to surface tension ignoring the gravity is simulated.
The density ρ, viscosity µ and surface tension coefficient γ are chosen as
1.0× 103kg/m3, 0.05Pa · s and 2.4× 10−3N/m, respectively. With the given
parameters, the drop will become a sphere of radius R0 = 6.2035mm (or a
mean curvature of κ = 2/R0) with pressure pdrop = 0.773756Pa at equilib-
rium.
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This test has been investigated by other numerical methods including CSF
(continuum surface force) [71], SPH [72], GIMP-CSF [73]. In GIMP-CSF [73], the
surface tension is modeled approximately as a body force within an assumed
transition zone at the interface. GIMP-CSF is a kind of weakly compressible
MPM, and it employed GIMP interpolation scheme to suppress the crossing-
cell noise.

Fig.11 illustrates the snapshots with velocity distribution at different
times obtained by iGIMP with cell size of 0.5mm and 4 × 4 × 4 particles
per cell (PPC).

(a) (c)(b)

(d) (f)(e)

Figure 11: Configurations of the liquid drop and velocity distribution at time (a) t = 0.02s;
(b) t = 0.06s; (c) t = 0.10s; (d) t = 0.12s; (e) t = 0.16s; (f) t = 1.00s.

Initially, the cubic droplet is driven by surface tension concentrated at
the corners where the mean curvatures are the largest, as shown in Fig.11(a).
After that, the eight round corners of liquid drop continue to contract and
non-equilibrium sphere at time t = 0.1s, as shown in Fig.11(c). Because of
liquid viscosity, the droplet shape tends to be sphere at equilibrium state due
to the dissipation of kinetic energy, as shown in Fig.11(f). As illustrated in
Fig.11, several characteristic shapes of the liquid drop during the formation,
such as dumbbell, non-equilibrium sphere, diamond, sphere at equilibrium
in our method can be observed that are consistent with Zhang’s analysis [72].

Furthermore, six cases, including two different cell sizes 1.0mm and 0.5mm
with 1×1×1, 2×2×2 and 4×4×4 PPC for each cell size, have been studied
by using both iMPM and iGIMP. To investigate the accuracy of iMPM and
iGIMP, the non-dimensional average pressure p∗ and the root-mean-square
relative error L2

[71,73]
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p∗ =

1
Nd

∑
i,j,k

pi,j,k

pdrop
, L2 =


∑
i,j,k

(pi,j,k − pdrop)
2

Ndp2drop


1/2

(56)

are calculated when the droplet reached an equilibrium state at t = 0.25s [73],
where Nd is the number of grid cells occupied by the liquid. Tab.1 compares
p∗ and L2 obtained by iMPM and iGIMP for different cases. The accuracy of
both methods increases with the number of PPC increasing and the cell size
decreasing, moreover, the increasing rate is faster from PPC = 1 to PPC = 2
than from PPC = 2 to PPC = 4. The accuracy of iMPM is lower than iGIMP
owing to smoother interpolation function used in iGIMP method. Compared
with CSF-GIMP [73], iMPM with coarse grid 20× 20× 20 gives better results
than CSF-GIMP with refined grid 30×30×30. This shows that the accuracy
of iMPM in modeling 3D liquid drop with surface tension is higher than CSF-
GIMP. iMPM is also more efficient than CSF-GIMP because the time step
is limited by the numerical sound speed in CSF-GIMP but by fluid particle
velocity in iMPM.

Table 1: Accuracy comparison between iMPM and iGIMP
cell size PPC method p∗ L2

1.0

1× 1× 1
iMPM 1.0201 2.54× 10−2

iGIMP 1.0090 1.13× 10−2

2× 2× 2
iMPM 1.0091 1.06× 10−2

iGIMP 1.0012 3.55× 10−3

4× 4× 4
iMPM 1.0037 5.78× 10−3

iGIMP 0.9999 3.20× 10−3

0.5

1× 1× 1
iMPM 1.0083 9.51× 10−3

iGIMP 1.0045 5.08× 10−3

2× 2× 2
iMPM 1.0047 5.23× 10−3

iGIMP 1.0023 3.39× 10−3

4× 4× 4
iMPM 1.0032 3.77× 10−3

iGIMP 1.0017 3.21× 10−3

7.3. Droplet impact into a deep pool
The whole process of a liquid droplet impact onto a liquid surface up to

the formation of the Worthington jet is simulated by iMPM/iGIMP with
surface tension model. The parameters are chosen based on the experiment
by Nishio et al. [74], as listed in Tab.2. The fluid used in the experiment was
a mixture of water and glycerin.
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Table 2: Parameters used in the droplet impact simulation
Density ρ(kg/m) 1.1× 103

Dynamic viscosity µ(Pa · s) 3.5× 10−3

Surface tension coefficient γ(N/m) 0.067

Droplet diameter R0(mm) 4

Impact velocity U0(m/s) 2.42

Pool depth h(mm) 10

Pool length and width Lx × Ly (mm) 40× 40

Corresponding free falling height (mm) 300

Weber number We 385

Reynolds number Re 3042

Hourglass damping coefficient αh 0.01

The background grid used in this simulation is a 40mm× 40mm× 40mm
regular grid with a cell size of 0.4mm and 2 × 2 × 2 PPC . The bottom of
the liquid pool is aligned with the bottom of the grid, on which the non-slip
condition is imposed. The top boundary of the grid is unrestricted so that
any particles beyond it are removed from the simulation. The droplet and
liquid pool are discretized by 2003912 fluid particles.

The experimental snapshots obtained by Nishio et al. [74] are shown in
Fig.12. It is clear that the droplet coalesced into the liquid surface with
small splashing spray and a hemispherical crater was growing with a crown-
like rim, as shown in Fig.12(b) and 12(c). The crater depth reached up to the
maximum value at about t = 20ms while the crater further extended along
the lateral direction, as shown in Fig.12(d). Owing to the rebound motion
concentrated toward the crater center, the crater turned into an inverted
conical at t = 30m, as shown in Fig.12(e) and continued to rise up to form a
central column called ’Worthington jet’ as illustrated in Fig.12(f).

The numerical results obtained by iMPM are shown in Fig.13. The pro-
cess of crater and crown formations can be observed in the simulation and
experiment results. The numerical crater rebound takes place at t = 27ms,
which occurs a little later than that in experiment result. When the Wor-
thington jet reaches to the peak, a new smaller droplet begins to detach
from the Worthington jet as shown in Fig.13(g) and Fig.13(h) (no experi-
ment data available after t = 60ms). Second droplet impact continues with
a lower velocity until the pool water calms.

In order to evaluate the accuracy of iMPM/iGIMP quantitatively, the
time history of the crater depth obtained by iMPM/iGIMP is compared
with those obtained by SPH and experiment in Fig.14, where the depth DC

is defined as the depth from the initial liquid surface to the deepest point
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(a) (c)(b)

(d) (f)(e)

Figure 12: Experimental snapshots of the droplet impact [74] at time (a) t = 0ms; (b)
t = 5ms; (c) t = 10ms; (d) t = 20ms; (e) t = 30ms; (f) t = 60ms.

(a) (b)

(i)(h)(g)

(f)(e)(d)

(a) (b) (c)

Figure 13: iMPM results of the droplet impact: (a) t = 0ms; (b) t = 5ms; (c) t = 10ms;
(d) t = 20ms; (e) t = 30ms; (f) t = 60ms; (g) t = 80ms; (h) t = 90ms; (i) t = 110ms .
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of the crater, thus it takes a negative value during the crater formation. As
shown in Fig.14, the crater depth obtained by iMPM/iGIMP agrees very
well with the experimental data before t = 15ms, but it has stagnated for a
longer time when it reached the bottom. The rebound velocity obtained by
iMPM/iGIMP starts to increase rapidly after t = 30ms, which is faster than
that in the experiment. A possible reason is that the initial shape of the
droplet in the experiment falling from the height of h0 to the pool surface
is non-spherical, and other factors such as cavitation under the crater is not
taken into account in iMPM simulation. Compared to curve from iGIMP as
shown in Fig.14, due to generalized interpolation which extends the support
domain of particle in iGIMP, the contraction of crater from iGIMP is ahead
of that from iMPM after t = 25ms. Meanwhile, the numerical result by
SPH is also shown in Fig.14 for comparison. By the overall comparison,
iMPM/iGIMP can reproduce the complex process of Worthington jet .
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Figure 14: Comparison of crater depths between simulation and experiment.

8. Discussions and Conclusion

In this paper, an incompressible material point method is proposed to
model the free surface flow. It distinguishes from the weakly compressible
material point method in following aspects: (1) The momentum equation
is solved by using the operator splitting technique, in which the pressure is
obtained from the pressure Poisson equations that satisfy the incompressible
condition. This key improvement avoids numerical oscillation that appeared
in WCMPM. Moreover, the critical time step size in iMPM can be much
larger than that in WCMPM method; (2) Level set function is used to track
the topology changes of free surface. The pressure boundary condition is im-
posed more accurately using the ghost fluid method. In addition to that, the
surface tension can be included; (3) When updating the grid nodal velocity,
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a pressure gradient calculation scheme is presented to calculate the pressure
gradient at face centers, which is suitable for all cases including inside the
fluid, nearby the interface between fluid and air, and interface between fluid
and solid; (4) A hourglass damping is employed to suppress the spurious
velocity modes appeared in the semi-staggered grid.

Numerical results demonstrate that the proposed incompressible material
point method can well simulate the free surface fluid flow, including the dam
breaking, the sloshing, the droplet oscillation and the Worthington jet.
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