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Abstract

Employing matrix formulation and decomposition technique, we theoreti-
cally provide essential conditions for the existence of general analytical solu-
tions for ase N-dimensional damped compressible Euler equations arising in

fluid mechanics. We also investigate the effect of damping on the solutions,
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- density and pressure. There are two merits of this approach: First, this kind

of solutions can be expressed by an explicit formula/ u= b(t) + A(t)z and

no additional constraint on the dimension of the damped compressible Euler
equations is needed. Second, we transform analytically the process of solving
the Euler equations into algebraic construction of an appropriate matrix A(t).
Once the required matrix A(t) is chosen, the solution u is obtained directly.
Here we overcome the difficulty of solving matrix differential equations by
utilizing decomposition and reduction techniques. In particular, we find two
important solvable relations between the dimension of the Euler equations and

the pressure parameter: v = 1 — 2/N in the damped case and vy = 1 + 2 /N

for no damping. These two cases constitufe a full range of solvable parameter

0 < v < 4o00. Special cases of our results also include several interesting con-
clusions: 1. If the velocity field u is a linear transformation on the Euclidean
spatial vector € R, then the pressure p is a quadratic form of z.. 2. The
damped compressible Euler equations admit the Cartesian solutions if A(t)

is an anti-symmetric matrix. 3. The pressure p possesses Eedtl symmetric
forms if A(t) is an anti-symmetricalfy orthogonal matrix. . Q
MSC: 35Q31, 35C05, 76B03, 76M60‘\ r‘emove',Q\,' mleQ 3
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1 Introduction

We consider a general system of N-dimensional damped compressible Euler equa-
tions (or compressible Euler equations with damping) [1]-[13]

+ div(pu) = 0,
Pt (pu) (1.1)

plus + (u- V)u] + Vp + 20pu = 0,
where & = (71,23, -+ ,on)" € RV, w= (ug, up, - ,un)T, p(,t) and p(w,t) denote
respectively the velocity, density, and pressure of the fluid at a position @ The
damping apu is proportional to the momentum and o > 0 is a frictional constant.

For a = 0, o # 0 the system (1.1)@called compressible and damped compressible

LS



N-dimensional damped compressible Euler equations | 3

Euler equations respectively. Here we take the coefficient as 2a in order to give
convenient expression. forw S
S/—E;n;mmpressible and incompressible Euler equations, the damped
compressible Euler equations (1.1) also model important physical phenomena. For
example, the system describes compressible gas ﬂgw passing through a porous medi-
um with friction force proportional to the linear momentum in the opposite direction
1, 4, 9]. For the one dimensional case, the system can be written in the Lagrangian

coordinates as follows

Ve —Uy =0, u+p()y = —au, (1.2)

where v = 1/p is the specific volume. It was shown that the system (1.2) was S
asymptotically equivalent to the porous media equation [1]. In many situation”In
gas dynamics, we may consider the case where the density p and pressure p satisfy

a relation

o uth plo) = Ko, (13)

xeiyove [ > 0 and the constant v = ¢,/c,, where ¢, ¢, are the specific heat capac-

ities wmimibmisens under constant pressure and constant volume respectively. In TL\
e

particular, whesa—=—t-the-fuid-is~eatted-isothermal. & Tan be used for constructing
models with non-degenerate isothermal cores, which have a -ssbssise connection with _F— ' oW

the so-called Schonberg-Chandrasekhar model [14]. For “= 2, the system is mathe-

matically equivalent to the classical shallow water equations of water waves theory Y
[15], where the amplitudé is allowed to be fully nonlinear and dispersion is neglect-

ed. For = 5/3 or 7/5, the system then describes the dynamics of monoatomic and
diatomic gases respectively [16, 17].

The compressible Euler equations (1.1) ( & = 0) have been extensively inves- _— A
tigated in the term of both weak solutions and exact solutions. Ressesk on the remaor
existence results of global solutions of compressible Euler equations will be relevant
for the present discussion. The existence and explicit structure of global solutiohs
with antisymmetry continuous initial data was constructed in [18]. Chen proved the '

existence of global weak solution with symmetry outside of a circular core with the

‘For Y =1 dnd the Q%ua:ﬁcm of S‘“"a’te)
the —FILLLd —P(ow (S then iSo+hermo—Q.
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center at the origin [19]. Li studied global solution of an initial-value problem for
two-dimensional compressible Euler equations [20]. Zelik’s work gave details of the
existence of weak solutions for the unbounded domain [21, 22].

Exact solutions of the Euler equations for inviscid flow are very important for
understanding how a real fluid will flow. In 1995, Zhang and Zheng obtained spiral
solutions for the 2D compressible Euler equations with p = Kp? and v =2 [16] In
2003, Gibbon, Moore and Stuart obtained infinite energy, blow-up solutions for 3D (]
Euler equations [23]. Recently, Li found Lax pairs for 2D and 3D Euler equations
[24, 25]. Lou et al proposed Backlund transformation, Darboux transformation
and exact solutions for the 2D Euler equations in vorticity form [26, 27]. Yuen
constructed a class of exact solutions with elliptical symmetry by using the new
characteristic method [28]. In 2011, Yuen further obtained a class of exact and

rotational solutions for the incompressible and compressible 3D Euler equations,,
raspmmiiadyi (29, 30]. Recently, Yuen found a kind of vortical and self-similar flows emove
of the 2D compressible Euler equations [31]. ?
It is noticed that the existing exact solutions of the velocity function u mentioned
above are in a linear form of spatial coordinates . Such Jsmmwef solutions have a long
history in fluid flows, especially for the Euler and Navier-Stokes equations [32]-[40].
One of the important results in this direction is the work of Craik and Criminale [40]
wherein a comprehensive analysis of solutions to the incompressible Navier-Stokes

equations was given. Hence it is natural to enquire whether the compressible Euler /

Navier-Stokes equations admit similar nonlinear form of solution in Spatial variables ’ t h e
xf@ and whether they admit the general analytical solutions in Cartesian coordinates,
s /;. To answer these two questions, we constructed several novel nonlinear exact
solutions for the 2D incompressible Euler equations by using the Clarkson-Kruskal
reduction method [41]. Based on matrix theory and decomposition technique, we

theoretically show the existence of the Cartesian rotational solutions

.

u=Db(t) + Ax (1.4)

for the general N-dimensional compressible Euler equations (1.1) [42].

Regarding the damped compressible Euler equations (1.1) (« # 0), there are
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several well-known mathematical results on weak solutions in Sobolev space. As an
illustrative example, Huang and Pan et al studied the large-time asymptotic behav-
ior for the solutions in vacuum. In fact, they showed that the L*™ weak-entropy
solutions in vacuum for the Cauchy problem converged to the Barenblatts profile
of the porous medium equation strongly in L? [4, 6, 7]. Sideris et al studied the
effect of damping on the large-time behavior of solutions to the Cauchy problem

for the three-dimensional compressible Euler equations. It is proved that damping

prevents the development of singularities in ‘small amplitude classical solufions, us-

ing an equivalent reformulation of the Cauchy problem to obtain effective energy

+the

estimates [3]. Wang and Yang studied the #@asymptotic behavior of solution-
s for the isentropic Euler equations with damping in multi-dimension/ [2]. Exact
solutions @ usually more useful and serve as better model for practical application-
s and physics than weak solutions in Sobolev space. However, exact solutions of
damped compressible Euler equations (1.1) have not been investigated fully to our
knowledge.

Based on these considerations alwwwe the goals of our present paper can be
explained: SyS-\;em of

First, we extend our previous results [42] to a general,{iamped compressible Euler
equations. Based on algebraic and decomposition techniques on vectors, matrices
and curve integration, we theoretically show the existence of the analytical solutions
(1.4) for the general N-dimensional damped compressible Euler equations  &——

Second, we investigate the effects of damping on the solution and pressure pa-

rameter . In the absence of [42], we found an important relation

d&mp‘\ng v = 1—|——2— (1.5)

N

between the dimension of equations and the pressure parameter which implies that
v2>1 for N > 2. In fact, the importance of the relation (1.5) provides a general rule
for different physical phenomena and solvable cases where v =2,y =15/3, v=17/5
for example, see a series of papers [15, 16, 17]. In our present paper, we obtain
another important relation

rémove
!/
“Yme-
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between the dimension of equations and the pressure parameter, which implies that
0<~vy<1 for N>2. Forthe damped case, we can thus construct exact solutions
for v < 1. Relations (1.6), (1.5) cover all real positive values of the ratio of specific
heat capacities parameter<~ .-‘§ N LS ‘!'O-kQY\. as o real Y\u\m\)er

Third, we show explicitly that damping will have a dramatic influence on the
properties of the exact solutions. This feature is also demonstrated in the work of
Sideris et al, where damping will alter the dynamics of the Cauchy problem for the
three dimensional damped compressible Euler equation [3].

This paper is arranged as follows. In section 2, we show that the damped com-
pressible Euler equations admit the Cartesian solutions if A satisfies appropriate
matrix equations. Two solvable cases of the matrix equations are considered in sec-
tion 3 and section 4. In section 3, if A is a special anti-symmetric constant matrix,
then the damped compressible Euler equations admit Cartesian solutions. We es-
tablish the relation v =1 —2/N between the dimension of equations and pressure
parameter. In section 4, to ﬁnd n¥ore general solutions, decomposition technique
is used to reduce the matrix equations into solvable ones, where wg¢ find another
important relation v = 1 + 2/N between the dimension of equations and pressure
parameter. We also provide some illustrative examples for two solvable cases in

section 3 and section 4. In section 5, we give some conclusions and remarks.

2 Existence of the Cartesian solutions

Before deriving the exact solutions, we change the damped compressible Euler equa-
tions (1.1) into a more convenient form. From the gas law of (1.3), it is easy to see
that we may take K = 1 without loss of generality by using a simple transformation
p— K. Let
In p, or v=1, exp(p), for ~v=1,
p,  for p(p), for 7

p: p=

2.1)
S5p7Y for v #1, upt, for y#1,
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with y = (%1)7_51, the compressible Euler equations (1.1) can then be written in

the form
p: + div(pu) = 0, (2.2)
w+ (u- V)u+ Vp+ 20u = 0. (2.3)

The challenge is to deduce an appropriate function p(z), where we can establish
exact solutions for the velocity linear in the Cartesian coordinates for the damped

compressible Euler equations (2.2)-(2.3)
u = b(t) + Az,

where the N-dimensional vector function b(t) and N x N matrix function A are

defined by
bt) = (b1(2), ba(t), -+ ,bn(8)". A= (ai(®))nxn, O“:

Elements b;(t) and ay(t) (3,7 = 1,2,+--,N) are functions sieset. Due to the
equivalence between p and p defined by (2.1), we mainly deal with D in solving the

compressible equations (2.2)-(2.3).
Theorem 1 We define B as part of a matriz Riccati equation
B = (A;+ A*+ 2a4) /2. (2.4)
If A and B satisfy the following matriz differential equations
BT = B, (2.5)
B;+ (y—1)tr(A)B+ BA+ ATB =0, (2.6)
then the compressible Euler equations (2.2)-(2.8) have explicit solutions in the form
u= b(t) + Az, (2.7)
p=—a (b + Ab+ 2ab) — 2" Bz + c(t), - (28)

where the vector function b(t) and scalar function c(t) satisfy ordinary differential

equations

(b + Ab+2ab); + [(y — 1)tr(A)] + AT)(b, + Ab+20b) + 2Bb=0,  (2.9)
¢+ (v — 1)tr(A)e — b7 (b, + Ab + 2ab) = 0. (2.10)



N-dimensional damped compressible Euler equations 8

Proof. We first prove that the proposed solution (2.7) will lead to (2.8) through
the equation (2.3). Substituting (2.7) into (2.3) produces

w4+ (u- V)u+ Vp+ 2au
= b+ A+ [(b+ Az) - V](b+ Az) + Vp + 20(b + Ax), 211)
=b+Ax+ (b V)Ax+ (Az- V)Az+ Vp + 20b + 20 Az '

= b, + Ab+ 2ab+ (A + A? + 20A)z+ Vp = 0.

For convenience, we introduce an auxiliary matrix

N
1 1
B = (by)nxn = E(At + A% + 20A4), bij = 5 <aij,t + 2045 + E aik“icj) 5
k=1

and re-write the equation (2.11) into component form

N

Qi(xl, e ,.’Z’N) = _"bit — 2C¥bZ — Z(aikbk -+ 2bzkxk) =
k=1

Op
8332' ’

i=1,2,--- N.
(2.12)

In order to solve for p(x) from (2.12), these N equations skiould be compatible
with each other, that is, the vector functions (Qq,Qs, - - - , @n) should constitute a
potential field of p(x). The sufficient and necessary conditions are

an(xl,"' ,xN) _ 3Qi($1,"' 737N)
ox; 0x; ’

,Jj=1,2,--- N, (2.13)
which hold if and only if
b]Z:sza Z?JZ 1727"' 7Na

which implies that B is a symmetric matrix, i.e. the condition (2.5).
It follows from the condition (2.13) that the function 7(x) is a complete differ-
ential
N

) (), _ ¥
dp(x) = Y ~——da; = E Qi(z1, -+, zn)d;.
i=1

=l 83:2
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Hence the second kind of curvilinear integral of p(z) is independent of path. In

particular, we may take a special integration route and directly obtain

(w1,22, & N)
Z/ Qi(z1, 22, -, TN )d;

001'7

=/ Q1(21,0,--- ,0)dzy, + / Qa(x1, 22,0, ,0)dz,
0

TN
+"°+/ Qn(®1, 29, ,zN)dTy

N
S Z it + Z aikbi + 2ab;) Z bux -2 Z by + c(t)

i,k=1, i<k

= —z” (b, + Ab+ 2ab) — ' Bx + c(t).

Next, we prove that the functions (2.7)-(2.8) will satisfy the equation (2.2). For
v > 1, by using (2.6), (2.9) and (2.10), we have

p: + div(pw) = p; + ptr(A) + u- Vp

. £ - 71 HaT[B, + (v — 1)tr(A)B + 24T Ble (2.14)

+z7[(b, + Ab+ 2ab), + [(y — D)tr(A)] + AT](b, + Ab+ 20:b) + 2Bb]
— [et + (v = D)tr(A)c — b (b, + Ab + 20b)]} = 0,

where we have used the condition
zT[B; + (v — )tr(A)B + 2AT Bz = 0,
which is equivalent to
[B: + (v — Dtr(A)B + 2AT BT = —[B; + (v — 1)tr(A) B + 24T B,
or
Bi+ (v — 1)tr(A)B+ BA+ ATB = 0.

The case for v = 1 can be proved in a similar Way, just by replacing ,upvll by
V
exp(p) in the proof of equation (2.14). We have ostablished explicitly the solutions ’tk us
(2.7)-(2.8) for the N-dimensional Euler equations (2.2)-(2.3). [

The condition (2.6) is a matrix differential equation involving N? components.

In the next section, special solutions are identified for simple cases of the matrix A.
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3 First reduction: constant matrix A
We re-write (2.6) in the form

B+ (v = 1)tr(A)B + [B, Al + (A + AT)B = 0, (3.1)
where [B, A] = BA — AB denotes the Lie bracket between A and B.

Theorem 2 If A+ ol is an anti-symmetric constant matrixz, and the parameters

satisfy
[N(vy=1) +2]la =0, (3.2)
then the compressible Buler equations (2.2)-(2.3) admit a general solution

u = b(t) + Az, (3.3)
p=—a" (b + Ab+ 2ab) — &' Bx + c(t), (3.4)

where the vector function b(t) and scalar function c(t) are given by the following two

cases for different o,

(i) For o = 0, which corresponds to non-damped compressible Euler equatz’ons) <

b(t) and c(t) possess solutions in the form of polynomials wiEmEsreetien

b(t) = eyt + ¢y, (3.5)

1 1
ot) = zeiAat’ + S(cfer + A+ GAa) + fAest + 5, (3.6)

(it) For o # 0 and~y = 1—2/N, which corresponds to damped compressible Euler

equatz’ons, b(t) and c(t) possess solutions in the form of exponential function e

o
b(t) = c1e™ + ¢y, (3.7)

1
c(t) = —'2—046{14616—4“ + cie”® + el (A+ al)e (3.8)

+clAer + T (A+al)e; =0,

where ¢, and ¢y are arbitrary constant vectors, cs and ¢4 are arbitrary constants.
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Remark 1 In the case o # 0, we have

2
=1- =
7 N?

which implies that
0<y<1, for N>2.

Ify =0, then p is constant, which corresponds to the incompressible Euler equations.
We conclude that the damping coefficient o not only affects v, but also the form of
solutions as (3.7)-(3.8), which are different from solutions (3.5)-(8.6). This new
phenomenon, which was not discussed in our previous work [41], where we only
considered non-damped case of vy > 1. ~— 42 ???

Proof. We just need to verify that the conditions (2.5), (2.6), (2.9) and (2.10)
are satisfied under the Theorem 2.
If A+ al is an anti-symmetric constant matrix, then we can rewrite B in the

form
B= %(AZ +204) = % [(A+al)? — 21, (3.9)

which implies that BT = B is a symmetric matrix. Moreover, direct calculation

shows that the Lie bracket between A and B is commutative, that is,
[A,B] = AB — BA = %A(Az + 20 A) — %(A2 +2aA)A = 0. (3.10)
On the other haﬁd, from the anti-symmetric condition
(A+al)T = —(A+ o),

we deduce that
AT = —A—20al. (3.11)

Noticing that tr(AT) = tr(A), we have
tr(A) = —tr (al) = ~Na. (3.12)
Finally by using (3.2), (3.10)-(3.12), we have
B+ (y —1)tr(A)B+ BA + ATB,
= —aN(y—-1)B+ BA— (A +2al)B
= —a[N(y—-1)+2|B+[B,A] =0,
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which shows that matrix equation (2.6) is satisfied.
By using (3.2) and (3.11), we swwsent 0bta L

(y = Dtr(A) + AT = 2ol + AT = -4, — (3.13)
Making use of (3.2), (3.9) and (3.13), equations (2.9) and (2.10) reduce to

(b; + Ab + 2ab); — A(b; + Ab + 2ab) + (A® + 20A)b
= btt —+ 2abt = 0, (314)
¢ + 2ac — b (b + Ab+ 2ab) = 0. (3.15)

We should have two cases to discuss $ & S

If o = 0, solving (3.14) leads to the solution (3.5). fubstituting (3.5) into (3.15)
and solving for ¢(t) give, Q_._(i)./.(remove s .

If a # 0, equations (3.14) and (3.15) admit solutions (3.7) and (3.8). O

The solution procedure is now complete. Illustrative examples are given.

Example 1 For the 2D damped incompressible Euler equations (y = 0) with N =
2, ¢y =0, cs = /2, we take anti-symmetric matriz with A+al and tr(4) = —2aq,

which is in the form

0 !
t
A:(——a a12)’ o‘,e L

—a12 —O&

where a1y is an arbitrary constant. Substituting ’z’nto (8.9) gives Kamb__ o rove

B = (—%(0‘2—6‘%2) 0

\

0 “%(0‘2 - “%2)

According to (3.7) and (3.8), we have

b
b(t) = 1 e_2at, c(t) = %[(b% + b§)6_4at + e—2at]’
2

where by and by are arbitrary constants.
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Finally, (3.8) and (8.4) give us the solution of the 2D Euler equation
Uy —Q Qg 1 by
Ug —Q1g —O Ty by
D= %(ozz — a3o) (2} + 23) — [(aby — a12b2)x1 + (ar2b7 + aby)zy]e™ 2
+ 5167+ B)em1ot + ¢t

Example 2 For the 3D damped compressible Euler equations with v = 1/3, ¢; =

0, cs =1, we get

-a 1 -1 1
A=| -1l-a 1 |, bt)=|1]e? ct)= 26_4‘” + 72
1 -1 -« 1
—a?f-2 1 1
B = % 1 —a?-2 1
1 1 —a?-2
An ezxact solution with vorticity is obtained
Uy —a 1 -1 T 1
u | =] -1-a1 zy |+ [ 1],
U3 1 -1 —q T3 1

P =(®+2)(23 + 23 + 22) — 2(m122 + 2175 + T23)

3

Example 3 For the N-dimensional damped compressible Euler equations, if we let
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b(t) = 0, c(t)=0, y=1-2/N, and take

14

—a 1 - 1
A= -1 -a--- 1 |
1 =] ... —
—0?—(N-1) ~(N-2) ~(N=2)
B:% ~(N-2) —a?=(N-1)--. —(N-2)
—(N -2) —(N —2) —a2 — (N —1)

another exact solution is

Up -1 - 1 T
U -1 —o- 1 )
Uy -1-1. -« TN

N
p_:_TBw_O! -I-N Z

+ (N -2) Z ZiTj.

3,7=1,i<j

Remark 2 The off-diagonal elements of the matriz A in Examples 2 and 3 can in

fact be chosen in an arbitrary manner, as long as conditions Qij = —0a45,% # J (

A+ 1 being anti-symmetric ) and ay; = —a (tr(A) =

—Na) are satisfied.

4 Second reduction: time-dependent matrix A

Theorem 3 Suppose that the matriz A can be decomposed into

A+al=D+E, DT =

-D, (4.1)
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where D = (A + ol)°/f denotes non-diagonal part of A, and E = (A + al)¥9 its

diagonal part. If D and E satisfy the following matriz differential equations

D+ DE+ ED =0, (4.2)

(B + D*+ E?); + (y — 1)(tx(E) — aN)(E; + D* + E* — o*1)

+(E;+D*+ E*~al®(E+D—al)+(E—-D —al)(E;+ D*>+ E*> - o*I) = 0.
(4.3)

then
B= %(Et + D? + E? — o2I) (4.4)

is symmetric matriz, and A, B satisfy the conditions (2.5)-(2.6) of Theorem 1.

/ Proof. By using (4.2), we have

o8

_1
2

[(E; + E* + D* — &®I) + (D; + ED + DE)]

B [A; + (A+al)® — o]

NN

(E; + D* + E? — &*I),

which together with (4.1) implies that B is a symmetric matrix since
1

BT = -Z—(Et +D*+ E? - o*I)T = B.

The condition (4.1) implies that

tr(A) = tr(D) + tr(E) — atr(I) = tr(E) — aN, (4.5)
and
AT =—-D+E—al. (4.6)

Substituting (4.1), (4.4),8& (4.5) and (4.6) into the equation (2.6), we then
obtain the equation (4.3). O

Further simplifications into scalar differential equations are now proposed.
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Theorem 4 By taking

E

f1, (4.7)

then equation (4.2) admits solution
D = e 2 fdg (4.8)
an

where C' iskd anti-symmetric constant matriz, that is,
C= (Cij)NxN, i =0, ¢y= —Cji, ©F ] (4~9)
Equation (4.8) reduces to

{fe+2ffi +[IN(Yy =D+ 2(f = )£+ [N(y = 1) + 2|(f — )*(f + &)}
+{N(y—1) +2)(f —a) —4f}e~*/ /02 = o (4.10)

or equivalently decomposing the damping parameter o part as the following form

(o + [N = 1) + 41 fo + [N(y = 1) + 23} + [N(y = 1) — 2 fe~t/ f D2
—o[N(y = 1) + 2J[(fs + af + f> — oA + 4/ 102 =, (4.11)

Proof. Substituting (4.7) into (4.2) yields the reduction
D,+2fD =0, (4.12)

which can be solved and leads to the solution (4.8). Again substituting (4.7) and

(4.8) into (4.3) directly leads to (4.10). O . )
“ W
= Temequation (4.10) is key issue. We discuss four cases. A"Q Q uS‘h’CL"" e

Case 1. In the case @ = 0 and y = 1 + 2/N, the system (4.10) reduce, to

\_\S
fu+6ffi+4f =0, (4.13)

vvhich has a solution
foo 1 (4.14)
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Substituting (4.14) into (4.8) gives

1 1
= C:
2t+63 2t+63

(cij) Nxnv, (4.15)

where constants c;; satisfy the relation (4.9). These results for non-damped com-
pressible Euler equation were given in our previous paper [42].

Case 2. For f = —a # 0 being a constant and v = 1, equation (4.10) is
automatically satisﬁe} &und (4.8) has an explicit expression

a . D= €2at(cij)NxN, Cii — O, Cji = —Cij, (416)
where ¢;; are arbitrary constants.

Example 4 For the 8D compressible Euler equations, we take v =1, ca =c4 =0

and
—a 62005 e20415
A= _e2at —o e2at ,
_e2at _e2at —a

then according to (3.7), (3.8) and (3.9), we get

1
3
b(t) — 1 e~2at7 c(t) — 56_4at,
1
. 042 -9 e4at . e4at _ 64at
1
B = 5 _e4at —o? — 2e4at —elot ° é\
_e4at _e4at _aZ _ 264at

w —a e2at e2at x 1

—20t
up | = | —e* —q e o |+ | 1 ,
Us —eat _p20t o T3 1

7= (0?2 +2e*) (22 + 22 + 22) + 2(z175 + 7173 + T273)e ™

3
+ oy + 2o + 23)e ™2 4 56_4‘“.
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Case 3. If C' = 0, the equation (4.10) reduce to

fa+ [IN(y=1) +4ffe+ [N(y— 1) + 2] f3
+a[N(y -1 +2)(—fi —af — 2+ ) =0. (4.17)

We get a general solution

A=(f=a), B=(fit f1~ad)L,

u=bt)+ (f - o)z, (4.18)

1
p=—a' (b +(f +a)b) — s’ (fi+ f* — aP)a+ c(t), (4.19)
where f is given by the equation (4.17), b(t) and c(t) satisfy

(b + (f + )b)e + [N(y — 1) + 1](f — &) (b
+(f+a)b)+ (fi+ f?—?)b=0, (4.20)
.+ N(y—=1)(f —a)c— bT(b,+ (f + a)b) = 0. (4.21)

The damping o will affect the form of solution f(t) for equation (4.17), we discuss
two cases. '

(i) If & = 0, the equation (4.17) reduce to
fo +[IN(Y=1) +4ffe+ [N(y ~ 1) + 2> = 0, (4.22)

which has an explicit solution

_k
_t—|—C4’

f (4.23)

where k =1 or k = V(v—z_l)ﬁ It is obvious that there is no limit on N and y, which
is an extension of results given by our previous paper [42].

(ii) If o # 0, the equation (4.17) admits a special solution
f = atanh(at), (4.24)

which is bounded and its form is different from (4.23) due to damping o # 0.
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Noting that f; + f2 — o2 =0, from (4.20), we obtain
b, + a(tanh(at) + 1)b = by (| cos(at)|e~o)N =D+ (4.25)
where b, is an arbitrary vector. E‘urther integration yields
b(t) = | cos at|¢‘“t(52 +b /(| cos(at)|e"*H)NOVdt), (4.26)

where by is an arbitrary vector.

Substituting (4.25) and (4.26) into (4.21) and solving for ¢ gives
 c(t) = &(| cos(at)|em )N / b7 by (| cos(at)|e *)NO-DHgy, (4.27)

¢ is an arbitrary constant. Finally, we give a general solutions for N-dimensional

damped compressible Euler equations
u = b(t) + a(tanh(at) — 1)z,
7= —(| cos(at)[eyNODHE g 1 o(t),
where b(t) and c(t) are given by (4.26) and (4.27) respectively. We see that p is also .
(t) (t) are g y (4.26) and (4.27) resp y _which

linear with respect with z in this case. This is a new ekercheRe. thet did not arise

in no damping case [42].

_.H\ Case 4. If C'is an anti-symmetric and orthogonal matrix , then Phen omenoON
€ | CT=-C, C*C=1, C*=-C"C=-I, (4.28)
thonelemeids cquation (4.10) reducfto S
hence
fa+ IN(Y = 1)+ 4ffo+ [N(y = 1) +2f* = [N(y = 1) — 2] fe*/ 7%

+a[N(y = 1)+ 2/(=fi — af — f2+a? + e 4/ Wy = o « (4.29)
Making a transformation

Q/fdt =Ing, (4.30)

then (4.29) will give a differential equation

46°gus + [N (7 — 1) — 2](299:9% — 6} — 491)
+a[N(y — 1) + 2](2997 — 49°g1 — 4ag’g: + 80?g” + 8g) = 0. (4.31)
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In this way, we obtain a more general solution

u = b(t) + Az, (4.32)
p=—a" (b + Ab+ 2ab) — &’ Bx + (1), (4.33)

(b + Ab+ 2ab); + [(y — 1)tr(A)T + AT] (b, + Ab+ 2ab) +2Bb =0,  (4.34)
¢t + (v — 1)tr(A)e — b7 (b, + Ab+ 2ab) = 0, (4.35)

| 1
A=(f-a)I+D= —59‘1(% +2a9)I + g7C, (4.36)
1
B=l(fi+ f? = o)1+ D?
1
= —59 (209 — 267 + 40%g” - g} + ¢°C?), (4.37)

where C' = (c;j)nxn constitutes an anti-symmetrically orthogonal matrix and g
satisfies the equation (4.31).

We should explain the solvability of the equation (4.31) and existence of the
matrix (4.28). 4

Remark 3 C in the case 4 must be an even order anti-symmetric and orthogonal

matrix, since
CT = —C, det(C) = det(CT) = det(~C) = (—~1)Vdet(C),  (4.38)

which implies that a degenerate situation will occur for odd N, Illustrative examples

are
0 11-1
01 1011
- L o=L . (4.39)
~10 V3| —1-10-1 ] *=__
1 —-11 0

Remark 4 To obtain elementary solutions of the equation (4.81 ), we employ the

ansatz

g=e", (4.40)
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substituting (4.40) into (4.81), and noting e3¥ and ekt beews linear independent, we

obtain a algebraic system

k* — 20k — 402k + 8a° = 0, (4.41)
20[N(y=1)+2| —k[N(y—-1)-2] =0. (4.42)
The second equation (4.42) has a solution
_ _NOy-1)+2
k=208, B= NGy =1)—3
Again substituting (4.43) into the first equation (4.41) leads to

(4.43)

(B-1*B+1)=0,
which has a solution
B=-1

since B # 1 due to the relation (4.42). In this case, we have a constraint v =1

Fhessfere we get o special solution of e equation (4.31)

Cc'r\s uentl! _ 20t _ 9 _ 44
EC& e 7 g=e " f 2% a. (4.44)
Example 5 consider the 4D damped compressible Euler equations. For sim-

plification, we take b =0, c =0, two equations (4.32) and (£88) are automatically

satisfied. From (4.36) and (4.87), we construct \\L(-' 33 4929
Let _2a\/§e—2at 1 1 —1
us |
g2ot -1 ~2001/3e™ 20t 1 1
A="— (4.45)
V3 -1 1 —20/Be ?
1 —1 1 —2a1/3e~ 2o
1000
1 64at e4at 01 0 0
C==¢gC?"=—"—]=—-"_ : (4.46)
2 2 2 10010

0001
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We then get a solution

Uy —2a1/3e 204 1 1 -1 1
uy | g2at -1 —20/3e~ 20t 1 1 To
us V3 -1 ~1 —2a/3e 20 -1 x5 |
m 1 -1 1 —20a4/3e~20 T4
1
p= —Ee‘l"‘t(xf + 23 + 23 + z2).

Remark 5 An explanation on the anti-symmetric nature of matriz D is necessary.

Suppose that the matriz A can be decomposed into
A+al =D+ E, DT =D, (4.47)

where D = (A 4 ol)°!f denotes the non-diagonal part of A, with E = (A + ol)%as
being the diagonal part. If we take

E=fI, D=¢2/I®dc
then the equation (4.3) reduces to

{Fu+ 20 fo+ IN(y = 1)+ 2)(f = a) f + [N(y = 1) + 2|(f ~ 0)*(f + @)}
+{N(y = 1) +2(f - o) — 4f}e/ fOC2 (4.48)
+2(f, + f2 _ a2)6—2ff(t)dtcv +2e 8/ fBat3 0,

where C is a symmetric constant matriz. The last two terms arise due to (4.47)

comparing with (4.10). If we further ek CTC = I and s transformation

require 2 / fdt =Ing, tmplement the

then dm (4.48) will result in two equations

49%gu: + [N (v — 1) — 2)(299:9¢ — 9} — 49¢)
+a[N(y — 1) +2)(299; — 49°gn — 409’9 + 8a’g® + 8g) = 0, (4.49)
99u — g2 — do2g? + 4 = 0. (4.50)

This system is over-determined and further research is necessary.
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5 Conclusions and Remarks

By utilizing decomposition techniques and properties of special matrices, we have
found necessary and sufficient conditions for the existence of exact solutions of the
N-dimensional damped Euler equations in Cartesian coordinates. In many instances,
these exact solutions are calculated explicitly. Generally the velocity field is linear
in the spatial coordinates, while the pressure is expressed as a quadratic form.
Besides the intrinsic mathematical interests, these solutions will be applicable to
many physical disciplines, e.g. fluid mechanics and astrophysics. High speed flows
from the release of a localized amount of energy typically lead to a velocity field in
similarity variables for large time and large distance from the origin. These similarity
variable solutions usually match the form investigated in this paper. Despite the
progress made here and other works in the literature, many challenges still remain
ahead: | _— 'L’EOQLCA’ lq
(1) Handling a matrix differential equation for the unknown A defined by equa-

tion (2.6) is key to the process of solving the compressible Euler equations. However,

. - this step is difficult as N? (N = order of A) scalar equations are involved. Obviously
L‘(aQiGo * this obstacle is especially nontrivial if N goes beyond 2.

N A \—r(2) Using a decomposition technique to separate a matrix into the diagonal
portion and the anti-symmetric component may reduce the solution process to an
" investigation of a simpler system, but still highly nonlinear ordinary differential
equations might result, and only isolated special exact solutions have been identified
so far.

(3) A central theme of the present work is that the velocity field can be expressed
as a linear function of the spatial coordinates. We do not know if analogous solutions
in terms of quadratic, cubic or more general nonlinear function of the Cartesian
coordinates can exist in the compressible case. If such solutions do exist, finding the
corresponding pressure function will be an intriguing research project.

All these issues await efforts of researchers in the near future.
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