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Anomalous conductance of a strongly interacting Fermi gas through a quantum point contact
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In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point
contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by
both the fermionic atoms and the bosonic molecules using the Keldysh formalism. Focusing on the regime above
the Fermi superfluid transition temperature, we find that the fermionic contribution to the conductance is reduced
by interaction compared with the quantized value for the noninteracting case; while the bosonic contribution to
the conductance exhibits a plateau with nonuniversal values that is larger than the quantized conductance. This
feature is particularly profound at temperature close to the superfluid transition. We emphasize that the enhanced
conductance arises because of the bosonic nature of closed channel molecules and the low dimensionality of the
quantum point contact.
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I. INTRODUCTION

The quantized conductance for transport through a quantum
point contact (QPC) is one of the most prominent phenomena
in mesoscopic physics [1,2]. The quantization in units of
2e2/h is well understood in terms of the Landauer-Büttiker
formalism [3,4] for noninteracting electrons, where e is
the electric charge and h is Planck’s constant. Recently,
experimental advances in cold atom systems have made it
possible to engineer mesoscopic tunnel junctions between two
reservoirs of degenerate quantum gases. The advantage of this
novel system is that one can tune the interatomic interaction to
study the interaction and correlation effects in the mesoscopic
transport phenomena in a highly controllable manner. In 2015,
the quantized conductance of noninteracting neutral Fermi
atoms was observed by the ETH group where the conductance
is found to be quantized in units of 1/h [5]. Subsequently,
the transport properties of strongly interacting Fermi gases
through QPCs were also investigated experimentally for both
the superfluid state [6] and the normal state [7].

Of particular interest is the anomalous conductance discov-
ered in the normal state of a strongly interacting Fermi gas
through a QPC [7]. It is found that the height of the conduc-
tance plateau can be enhanced to a nonuniversal value, which
can be several times of 1/h, as the interaction strength in-
creases. This anomalous conductance is qualitatively different
from the conductance anomalies observed in solid state QPC,
where it is usually reduced. In this paper we put forward one
possible explanation for the enhanced conductance observed
experimentally. We show that the presence of molecular state,
or preformed pairs, in the strongly interacting Fermi gas can
contribute to a larger conductance due to the Bose statistics [8],
even above the superfluid transition temperature Tc.

In this work the bulk properties of the strongly interacting
Fermi gas in two reservoirs are described by an atom-molecule
coupled two-channel model, which takes explicitly into ac-
count both fermionic and bosonic degrees of freedoms [9–11].
We focus on the normal state transport through a QPC at
unitarity and adopt the Nozières and Schmitt-Rink (NSR)
scheme [11,12] to calculate the spectral functions of both
bosonic and fermionic components in the two reservoirs. Then
we employ a tunneling Hamiltonian to describe the particle

transport through a QPC, and calculate the current contribu-
tions from both the bosonic and fermionic components using
the Keldysh formalism [13,14]. We find that the conductance
still processes quantized plateaus. The conductance of the
fermionic component is reduced due to the strong interaction
effect, while that by bosons is enhanced, and this enhancement
becomes stronger as one approaches the critical temperature.

II. THE MODEL

In the realistic experiment setup the cigar-shaped trap is
split into two reservoirs using the repulsive potential of a
TEM01-like mode of a laser. A two-dimensional channel is
formed between the two reservoirs initially. Then, at the center
of the two-dimensional region a QPC is created by imaging
a split gate structure using high-resolution lithography [5–7].
The particles will be transferred from the three-dimensional
reservoirs to a two-dimensional region first, and then enters
the one-dimensional QPC. To model the tunneling process,
we simplify the experimental structure as shown in Fig. 1:
Two three-dimensional reservoirs are connected directly by
a one-dimensional QPC. The transverse trapping frequencies
ωy,z of the QPC in the y and z directions are much larger than
the thermal energy of the system, and as a result, the tunneling
channel can be regarded as one dimensional. An additional
laser beam is shone on the QPC along the y direction to create
an attractive gate potential Vg which can tune the particle
density in this region.

The total Hamiltonian of the system, consisting of two
reservoirs and the QPC, can be written as (setting � = 1)

Ĥ = ĤL + ĤR + ĤT , (1)
where ĤL (ĤR) describes the left (right) reservoir and is given
by

Ĥj =
∫

d3r

{∑
σ

ψ̂
†
jσ (r)

(
− ∇2

2m
− μj

)
ψ̂jσ (r)

+ φ̂
†
j (r)

(
− ∇2

4m
+ 2ν − 2μj

)
φ̂j (r)

+ g[ψ̂†
j↑(r)ψ̂†

j↓(r)φ̂j (r) + H.c.]

}
. (2)
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FIG. 1. The geometry of the experiment setup [7]. Two reservoirs
are connected by a quasi-one-dimensional channel, through which the
fermionic spin-1/2 atoms and bosonic molecules can tunnel from one
side to another. A gate beam applied on the central regime tunes the
particle density in the quasi-one-dimensional channel.

The operator ψ̂jσ (r) describes the creation of a fermion atom
with spin σ = ↑,↓ in the j th reservoir with j = L,R. m is the
mass of fermions. Similarly, φ̂j (k) creates a diatomic molecule
of mass 2m in the j th reservoir. 2ν is the bare detuning of
the molecular state with respect to scattering continuum and
g is the bare coupling constant between the atoms and the
molecules. These two parameters can be related to the s-wave
scattering length as and the effective range r0:

2ν

g2
= − m

4πas

+
∫

d3k
(2π )3

1

2εk
, (3)

1

g2
= − r0m

2

8π
, (4)

where εk = k2/2m.
Finally, ĤT describes the tunneling between two reser-

voirs through the QPC. Within the QPC, the transverse

confinement leads to the transport channels with energies given
by ε⊥(ny,nz) ≡ ( 1

2 + ny)ωy + ( 1
2 + nz)ωz + Vg . We define an

effective gate potential as V̄g = Vg + 1
2ωy + 1

2ωz and assume
ωz � ωy , then the eigenenergy of the several lowest transport
channels would be nyωy + V̄g , and they are nondegenerate.
The potential along the transport direction (x̂ direction in our
case, see Fig. 1) can be modeled as a saddle point potential
with V (x) = − 1

2mω2
xx

2 (see Fig. 1(c) of Ref. [7]), neglecting
the modification of potential to the entry and exit of the
QPC. In our case, ωx � ωy,z and for this particular case,
it is known that transmission matrix element through the
nth channel of the QPC is energy dependent, T n(E) = {1 +
exp[−2π (E − nωy − V̄g)/ωx]}−1 [15]. We assume that only
particle with momentum along the x̂ direction can pass through
the QPC, and away from the QPC, their energies are given by
ε(kj,x) = k2

j,x/2m, j = L,R. As a result, we can make the fol-
lowing simplification for the tunneling matrix elements when
ωx � ωy,z:

T n
F (kL,x,kR,x) = TF

∏
j=L,R

	[ε(kj,x) − nωy − V̄g], (5)

T n
B (kL,x,kR,x) = TB

∏
j=L,R

	

[
ε(kj,x)

2
− nωy − V̄g

]
. (6)

The constants TF,B will be related to the transparency of the
QPC later. The tunneling matrix elements above indicate that
only particles with energy ε(kj,x) > nωy + V̄g can enter the
nth channel of the QPC and will come out from the same
channel. Namely, we assume that there is no interchannel
scattering within the QPC. With this simplification, we can
write the tunneling Hamiltonian in the explicit form (now
written in Heisenberg representation, for more detail see
Appendix A)

ĤT = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

×
{
T n

F (kL,x,kR,x)
∑

σ

ψ̂
†
Lσ (ω,kL,x)ψ̂Rσ (ω + 
μ,kR,x) + T n

B (kL,x,kR,x)φ̂†
L(ω,kL,x)φ̂R(ω + 2
μ,kR,x) + H.c.

}
. (7)

Here A is the cross-section area in the yz plane of the QPC.

μ = μL − μR are the chemical potential bias, where μL,R

is the chemical potentials for fermions of the left and right
reservoirs.

III. THE CONDUCTANCE FORMALISM

In the presence of a chemical potential bias 
μ, the total
(atomic) current is a sum of both the fermionic and bosonic
parts as I (t) = IF (t) + IB(t), where

IF ≡ 1

2

〈
∂

∂t
(NF,R − NF,L)

〉
, (8)

IB ≡
〈

∂

∂t
(NB,R − NB,L)

〉
, (9)

with NF,j ≡ ∑
kσ ψ̂

†
jσ (k)ψ̂jσ (k) and NB,j = ∑

k φ̂
†
j (k)φ̂j (k)

are the number operators of fermions and bosons in the two
reservoirs, respectively. In the above expressions the averages
〈· · ·〉 are taken over a time-evolving many-body state, which
we implement using the Keldysh formalism [6,13,14]. To
second order in TF (B), one obtains the expressions for the
currents IF,B(t) in terms of spectral functions A

F,B
j (ω,k) for

fermions and bosons in the reservoirs (see Appendix B)

IF (t) = 2αF εR
F

∫
dω
2π

dεL√
εL

dεR√
εR

	(εL − nωy − V̄g)

×	(εR − nωy − V̄g)AF
L (ω,

√
2mεL)

×AF
R(ω + 
μ,

√
2mεR)[nF (ω) − nF (ω + 
μ)],

(10)

where εR
F is the Fermi energy of the right reservoir. In this

work we will use εR
F and the Fermi momentum kR

F of the right
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reservoir as the energy and the momentum units. The expres-
sion for IB is similar except that m, αF , AF

j , and nF are now re-
placed by 2m, αB , AB

j , and nB . Furthermore, for IB(t), 
μF ≡

μ should be replaced by 
μB ≡ 2
μ. The so-called trans-
parency is defined as αF (B) = 16π2|TF (B)|2D2

F (B)(ε
R
F )/A2,

where DF (ε) = √
2m/(4π

√
ε) and DB(ε) = √

4m/(4π
√

ε)
are the one-dimensional density of state for fermions and
bosons, respectively. In this work we assume a perfectly
transparent junction and set both αF,B = 1 for simplicity. The
atomic conductances are then calculated by σ = σF + σB with
σF,B = IF,B/
μ.

For noninteracting fermions, the spectral functions are
δ functions: AF

L (ω,
√

2mεL) = δ(ω − εL + μL) and AF
R (ω +


μ,
√

2mεR) = δ(ω + 
μ − εR + μR). Then the current
in Eq. (10) reduces to the standard Landauer-Büttiker
formula [3,4,14] as IF = 1

π

∫
dε	(ε − nωy − V̄g)[nF (ε −

μL) − nF (ε − μR)], which exhibits quantized conductance
plateaus as V̄g changes. For the interacting cases, the spectral
functions of fermions and bosons are given by

AF
j (ω,k) = − 1

π
Im

1

ω − εk + μj − �F
j (ω,k)

, (11)

AB
j (ω,k) = − 1

π
Im

1

ω − εk/2 − 2ν0 + 2μj − �B
j (ω,k)

.

(12)

Here �
F,B
j (ω,k) is the self-energies of the bosonic and

fermionic components in the j th reservoir and will be
calculated within NSR scheme in the following.

IV. THE SPECTRAL WEIGHT FUNCTIONS OF FERMIONS
AND BOSONS IN NSR SCHEME

Within the NSR scheme [11,12], the number density in j th
reservoir is given by

nj = 2
∫

d3k
(2π )3

nF (εk − μj )

+
∫

d3k
(2π )3

dω

π
nB(ω)

∂

∂μj

δj (ω,k), (13)

where nF (B)(ω) = (exp[βω] ± 1)−1 is the Fermi (Bose) distri-
bution function. The phase shift is defined by

δj (ω,k) = −arg

[−ω + εk
2 + 2ν0 − 2μj

g2
− �j (ω,k)

]
,

(14)

where arg means taking the phase of the expression in the
bracket. Here ν0 = −mg2/(8πas) and the polarization �j is
given by

�j =
∫

d3p
(2π )3

[
1 − nF (εp − μj ) − nF (εp−k − μj )

−ω + εp + εp−k − 2μj

− 1

2εp

]
.

(15)

We consider transport when both reservoirs are in the normal
state above the superfluid transition temperature Tc, which in

+ + +  ...

(a) (b)

FIG. 2. The Feynman diagrams for self-energies of (a) fermions
and (b) bosons. Dashed lines and solid lines denote the boson and
fermion propagators, respectively.

turn is given by the Thouless criterion

−2ν0 − 2μj

g2
+

∫
d3k

(2π )3

[
1 − 2nF (εk − μj )

2εk − 2μj

− 1

2εk

]
= 0.

(16)

The self-energies of fermions and bosons can be calculated
from the Feynman diagrams in Fig. 2. The fermion loop in
Fig. 2(b) is the polarization operator �j (ω,k) in Eq. (15):

�B
j (ω + i0+,k)

= −g2�j (ω + i0+,k)

= g2
∫

d3p
(2π )3

[
1 − nF (εp − μi) − nF (εp − k −μi)

ω + i0+ − εp − εp − k + 2μi − i0+ + 1

2εp

]
.

(17)

The self-energy of fermion can be calculated by summing
the diagrams in Fig. 2(a) as

�F
j (iωn,k)

= 1

β

∑
ωm

∫
d3p

(2π )3

1

−i(ωm − ωn) + εp−k − μj

×{−U (iωm,p) − U (iωm,p)�(iωm,p)U (iωm,p)

−U (iωm,p)�(iωm,p)U (iωm,p)�(iωm,p)U (iωm,p)

+ · · · }

= 1

β

∑
ωm

∫
d3p

(2π )3

1

−1/U (iωm,p) + �(ωm,p)

× 1

−i(ωm − ωn) + εp−k − μj

, (18)

where U (iωm,p) = g2(−iωm + p2/4m + 2ν0 − 2μj )−1. Af-
ter the analytical continuation we obtain the fermion self-
energy as

�F
j (ω + i0+,k)

= 1

β

∑
ωm

∫
d3p

(2π )3

× 1

χ (ωm,p)[ω + i0+ − iωm + (p − k)2/2m − μj ]
,

(19)

where we have defined

χ (ωm,p) = −1/U (iωm,p) + �(ωm,p). (20)
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FIG. 3. The spectral weight function of bosons AB
R(ω,k). The

black solid, blue dot-dashed, and red-dashed lines are for three
different momenta k/kR

F = 0.01, 0.1, and 0.5. The inset is the
spectral weight function of fermions AF

R (ω,k). The blue dot-dashed,
red-dashed, and black solid lines are for momenta k/kR

F = 0.1, 0.5,
and 1. The scattering length is set at resonance when 1/(ask

R
F ) = 0

and the effective range kR
F r0 = −0.1. The temperature is above the

superfluid transition temperature with T/T R
c = 1.1.

The spectral function for bosons is shown in Fig. 3 for
three different momenta. It is worth noting the accumulation
of spectral weight at low energy when k is small. It is this low
energy spectral weight that contributes an enhanced bosonic
conductance through the QPC. On the other hand, the Fermi
spectral function within the NSR calculation shows broad
peaks. For k = kF (black line in inset of Fig. 3), the width of
the spectral function is comparable to Fermi energy, indicating
that Landau quasiparticle is not well defined within NSR. In
addition, the peak position occurs away from ω = 0, consistent
with psuedogap behavior.

V. THE CONDUCTANCE RESULTS

In Fig. 4 we plot the conductances contributed by both
the bosons and fermions, as well as the total conductance as
functions of the effective gate potential V̄g . The first feature
to be noted is that the conductances for both bosons and
fermions still exhibit plateaus. However, the height of fermion
conductance plateaus is reduced to a smaller values than
the noninteracting case due to strong interaction which is
consistent with a non-Fermi liquid behavior at unitarity.

On the other hand, the conductance contributed by bosons is
much higher. There are two effects leading to this large bosonic
conductance: (i) The boson spectral weight distribution and
the Bose statistics. In Fig. 3 we show that the spectral
function of the bosonic molecule is sharply peaked at small
momentum at low energy in the strongly interacting regime.
Meanwhile, the weight of the Bose distribution function
nB(ω) = (exp[βω] − 1)−1 increases towards the small ω limit,
and this leads to a large value of boson current in Eq. (10).
(ii) The low dimensional structure of the QPC. If the QPC
is just a point in three dimension, the integration over the
momenta is equal to an average over a three-dimensional
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FIG. 4. The conductances contributed by bosons and fermions
(inset), and the total conductance as functions of the effective
gate potential V̄g . Both boson and fermion conductances exhibit
plateaus. The conductance is enhanced for bosons while suppressed
for fermions. We focus on the resonance with 1/(ask

R
F ) = 0 and the

effective range kR
F r0 = −0.1, and T/T R

c = 1.1.

density of state, which vanishes as the energy approaches
zero, which would have canceled the enhancement discussed
in (i). However, in the one-dimensional tunneling channel
we are discussing here, the density of state at low energy
is finite and even diverges when approaching zero, which
guarantees nonvanishing contribution and the existence of
the enhancement effect, consistent with conclusion reached
in Ref. [8].

In Fig. 5 we show the variation of the conductances
as a function of temperature T > Tc. We observe that the
conductance of bosons drops to zero very fast as one increases
the temperature. The effect of anomalous conductance is thus
most pronounced when temperature is close to Tc.
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FIG. 5. The conductances of bosons and fermions, as well as
the total conductance as functions of the temperature. The scattering
length 1/ask

R
F = 0 and the effective range kR

F r0 = −0.1. Here we the
conductance is calculated at V̄g/ε

R
F = −0.5.
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VI. DISCUSSIONS

Throughout this work, the conductance through a QPC
is presented for a “narrow” Feshbach resonance, where the
effective range is taken as kR

F r0 = −0.1. We find that the
contribution from the bosonic molecules can give rise to an
anomalous large conductance in a strongly interacting Fermi
gas. For a broad resonance, our calculation shows that the
closed channel molecule fraction is about

∫
dωAB (ω,k) �

10−4 for typical value of k for a broad resonance of 6Li
where kR

F r0 = −0.00016 [16]. This small fraction significantly
reduces the conductance contributed by bosons. Nevertheless,
this does not mean the contribution from the bosonic degree
of freedom is not important for a broad Feshbach resonance,
for which the bosonic degrees of freedom exist primarily as
the fluctuating Cooper pairs of open channel character.

When finishing this paper, two other theoretical works also
propose explanations for this anomalous conductance [17,18].
What is common of these three papers is that they all emphasize
the role of bosonic degree of freedoms. Reference [17] assumes
that in the QPC, the strong confinement renormalizes the
interaction such that pairing occurs in the channel, for which
they emphasize the role of multichannel Andreev reflections.
While both Ref. [18] and our work do not assume pairing in
the channel but focus on the effects of pairing fluctuation in
reservoirs. Reference [18] uses a single channel model while
our work uses a two-channel model. In their calculation they
also find that the fluctuation effect suppresses the transport of
fermionic particles, while the contribution from the fluctuating
pairs is enhanced [18]. This is consistent with our conclusion
that the fermionic contribution is suppressed while the bosonic
contribution is enhanced. Hence, Ref. [18] and our work can
be regarded as complementary to each other.
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APPENDIX A: THE TUNNELING HAMILTONIAN

To discuss the construction of the tunneling Hamilto-
nian, we start with the real space tunneling Hamiltonian at
point r = 0,

HT =
∑
n,σ

[
T n

F ψ̄Lσ (0)ψRσ (0) + T n
B φ∗

L(0)φR(0)
] + H.c.

(A1)
In order to investigate HT in the Keldysh framework, we

need to derive the time evolution of HT . Due to the chemical
potential difference in two reservoirs, we use the single particle
Hamiltonian H + ∑

j (μjNF,j + 2μjNB,j ) to construct the
time evolution operator as

U (t) = ei[H+∑
j (μj NF,j +2μj NB,j )]t . (A2)

In this case, the energies in both reservoirs are measured on
the absolute scale. Then the time evolution of HT is given by

HT (t) = U (t)HT U−1(t) (A3)

=
∑

n

[
T n

F e−it
μ
∑

σ

ψ̄Lσ (t,0)ψRσ (t,0)

+ T n
B e−2it
μφ∗

L(t,0)φR(t,0)

]
+ H.c., (A4)

where ψjσ (t,0) = eiHtψjσ (0)e−iH t and φj (t,0) =
eiHtφj (0)e−iH t . In momentum space the tunneling
Hamiltonian is written as

ĤT =
∑

n

∫
dω

2π

dkL

(2π )3

dkR

(2π )3

×
{
T n

F (kL,kR)
∑

σ

ψ̂
†
Lσ (ω,kL)ψ̂Rσ (ω + 
μ,kR)

+T n
B (kL,kR)φ̂†

L(ω,kL)φ̂R(ω + 2
μ,kR) + H.c.

}
.

(A5)

In the momentum space representation above, it is clearly
shown that a fermion with energy ω in the left reservoir will
tunnel through the QPC and end up as a fermion with energy
ω + 
μ in the right reservoir. Similar considerations applies
for bosons. Furthermore, in our model we assume only particle
moving along x̂ direction can pass through the QPC. The three-
dimensional momentum integration will be reduced to one-
dimensional integration by

∫
dk

(2π)3 → 1
A

∫
dkx

2π
, where A is the

cross-section area of the QPC. Then the tunneling Hamiltonian
can be written as

ĤT = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

×
{
T n

F (kL,x,kR,x)
∑

σ

ψ̂
†
Lσ (ω,kL,x)ψ̂Rσ (ω + 
μ,kR,x)

+ T n
B (kL,x,kR,x)φ̂†

L(ω,kL,x)φ̂R(ω + 2
μ,kR,x) + H.c.

}
.

(A6)

APPENDIX B: THE KELDYSH FORMALISM
OF THE TUNNELING HAMILTONIAN

To study the particle transport through the QPC, we follow
the Keldysh formalism on a closed time contour [14]. The
action of the left and right reservoir can be written as

Si =
∫

dxdt

{∑
σ

�̄jσ [GFj ]−1�jσ + �∗
j [GBj ]−1�j

+ g
[
φcl

j (ψ̄j1↑ψ̄j2↓ + ψ̄j2↑ψ̄j1↓)

+φ
q
j (ψ̄j1↑ψ̄j1↓ + ψ̄j2↑ψ̄j2↓) + H.c.

]}
, (B1)
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where the bosonic and fermionic coherent fields are given by

�̄jσ = (ψ̄j1σ ψ̄j2σ ), (B2)

�jσ =
(

ψj1σ

ψj2σ

)
, (B3)

�∗
j = (

φcl∗
j φ

q
j ∗

)
, (B4)

�j =
(

φcl
j

φ
q
j

)
. (B5)

The quantum and classical fields are defined as usual in the
following [14]:

φcl
j = 1√

2
(φ+

j + φ−
j ), φ

q
j = 1√

2
(φ+

j − φ−
j ), (B6)

φcl
j

∗ = 1√
2

(φ+
j

∗ + φ−
j

∗
), φ

q
j

∗ = 1√
2

(φ+
j

∗ − φ−
j

∗
). (B7)

ψj1σ = 1√
2

(ψ+
jσ + ψ−

jσ ), ψj2σ = 1√
2

(ψ+
jσ − ψ−

jσ ), (B8)

ψ̄j1σ = 1√
2

(ψ̄+
jσ − ψ̄−

jσ ), ψ̄j2σ = 1√
2

(ψ̄+
jσ + ψ̄−

jσ ), (B9)

where φ
+(−)
j and ψ

+(−)
jσ are the bosonic and fermionic fields

along the forward (backward) branch of the time contour [14].
The fermionic and bosonic propagators are given in Keldysh
space as

GFj =
(

GR
Fj GK

Fj

0 GA
Fj

)
, (B10)

GBj =
(

GK
Bj GR

Bj

GA
Bj 0

)
. (B11)

The retard (advanced) Green function of fermions is given by

G
R(A)
Fj = 1

ω − k2/2m + μj ± i0+ (B12)

and the Keldysh Green function

GK
Fj = [1 − 2nF (ω)]

(
GR

Fj − GA
Fj

)
. (B13)

The retard (advanced) Green function of bosons in momentum
space is given by

G
R(A)
Bj = 1

ω − k2/4m − 2ν + 2μj ± i0+ (B14)

and the Keldysh Green function is GK
Bj = [1 +

2nB (ω)](GR
Bj − GA

Bj ), where nF (B) = (exp[βω] ± 1)−1

is the Fermi (Bose) distribution function.
With a chemical potential bias both fermions and the bosons

can be transferred through the QPC. The currents contributed
by fermions and bosons are defined as

IF (t) = 1

2

〈
∂
(
NF

R − NF
L

)
∂t

〉
= 1

2i�

〈[
H,NF

R − NF
L

]〉
, (B15)

IB(t) =
〈
∂
(
NB

R − NB
L

)
∂t

〉
= 1

i�

〈[
H,NB

R − NB
L

]〉
. (B16)

The factor of 2 in the above definition is because two fermions
are transferred when one boson passes through the QPC. For
convenience, we calculate the current in the momentum space.
By Fourier transformation, the currents can be expressed as

IF (�) = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

{
iT n

F (kL,x,kR,x)
∑

σ

ψ̂
†
Lσ (ω,kL,x)ψ̂Rσ (� + ω + 
μ,kR,x)

}
+ H.c.,

IB(�) = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

{
iT n

B (kL,x,kR,x)φ̂†
L(ω,kL,x)φ̂R(� + ω + 2
μ,kR,x)

} + H.c. (B17)

We introducing a time-dependent external source fields A(t) to generate the fermionic and bosonic current. The partition
function of the whole system in the momentum space can be written as

Z = 1

Z0

∫
D[ψ̄jσ ,ψjσ ,φ∗

j ,φj ] exp(iS), (B18)

where S = S0 + SI + ST + Ss and S0, SI , ST , and Ss correspond to the free, interaction, tunneling, and source terms, respectively.
They can be expressed in the momentum space as the following:

S0 =
∫

dω

2π

d3k
(2π )3

{∑
σ

�̄jσ (ω,k)[GFj ]−1�jσ (ω,k) + �∗
j (ω,k)[GBj ]−1�j (ω,k)

}
,

SI = g

∫
dω1

2π

dω2

2π

d3k1

(2π )3

d3k2

(2π )3

{
φcl

j (ω1 + ω2,k1 + k2)
[
ψ̄j1↑(ω1,k1)ψ̄j2↓(ω2,k2) + ψ̄j2↑(ω1,k1)ψ̄j1↓(ω2,k2)

]
+φ

q
j (ω1 + ω2,k1 + k2)

[
ψ̄j1↑(ω1,k1)ψ̄j1↓(ω2,k2) + ψ̄j2↑(ω1,k1)ψ̄j2↓(ω2,k2)

] + H.c.
}
,

ST = J
q
F (0) + J q(0)B + H.c.,

Ss = i

∫
d�

2π

{
Acl(�)

[
J

q
F (−�) + 2J

q
B (−�)

] + Aq(�)
[
J cl

F (−�) + 2J cl
B (−�)

]} + H.c. (B19)
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In the above partition function Acl = 1
2 (A+ + A−) and Aq = 1

2 (A+ − A−), where A+ and A− are the external field along the
forward and backward time direction. We have defined

J cl
F (�) = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

× T n
F (kL,x,kR,x)

∑
σ

[ψ̄L1σ (ω,kL,x)ψR2σ (� + ω + 
μ,kR,x) + ψ̄L2σ (ω,kL,x)ψR1σ (� + ω + 
μ,kR,x)],

J
q
F (�) = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

× T n
F (kL,x,kR,x)

∑
σ

[ψ̄L1σ (ω,kL,x)ψR1σ (� + ω + 
μ,kR,x) + ψ̄L2σ (ω,kL,x)ψR2σ (� + ω + 
μ,kR,x)],

J cl
B (�) = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

× T n
B (kL,x,kR,x)

[
φcl

L (ω,kL,x)∗φcl
R (� + ω + 2
μ,kR,x) + φ

q
L(ω,kL,x)∗φq

R(� + ω + 2
μ,kR,x)
]
,

J
q
B(�) = 1

A2

∑
n

∫
dω

2π

dkL,x

2π

dkR,x

2π

× T n
B (kL,x,kR,x)

[
φcl

L (ω,kL,x)∗φq
R(� + ω + 2
μ,kR,x) + φ

q
L(ω,kL,x)∗φcl

R (� + ω + 2
μ,kR,x)
]
. (B20)

Next, the total current can be calculated by

I (t) =
∫

d�

2π
ei�t I (�), (B21)

where I (�) is given by

I (�) = i

2

∂Z
∂Aq

∣∣∣∣
Aq=0

= IF (�) + IB(�). (B22)

To order of T 2
F (B), the currents can be calculated

IF (�) = 1
2

[〈
J cl

F (−�)J q
F (0)∗

〉 − 〈
J cl

F (�)∗J q
F (0)

〉]
, (B23)

IB(�) = 〈
J cl

B (−�)J q
B(0)∗

〉 − 〈
J cl

B (�)∗J q
B(0)

〉
. (B24)

To calculate the correlation functions in the above equations we adopt the approximations: 〈ψ̄LψLψ̄RψR〉 � 〈ψ̄LψL〉〈ψ̄RψR〉 and
〈φ∗

LφLφ∗
RψR〉 � 〈φ∗

LφL〉〈φ∗
RψR〉, where all the two-point correlation functions are the single particle propagators renormalized

with self-energy within the NSR scheme. A straightforward calculation yields

IF (t) = 2αF εR
F

∫
dω

2π

dεL√
εL

dεR√
εR

× 	(εL − nωy − V̄g)	(εR − nωy − V̄g)AF
L (ω,

√
2mεL)AF

R(ω + 
μ,
√

2mεR)[nF (ω) − nF (ω + 
μ)],

IB(t) = 2αBεR
F

∫
dω

2π

dεL√
εL

dεR√
εR

× 	(εL − nωy − V̄g)	(εR − nωy − V̄g)AB
L(ω,

√
4mεL)AB

R(ω + 2
μ,
√

4mεR)[nB(ω) − nB(ω + 2
μ)]. (B25)
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