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ABSTRACT 1 

 2 

The present study intended to (1) investigate the injury risk of pedestrian casualties 3 

involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the 4 

effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) 5 

explore the role of spatial correlation in econometric crash-severity models. The data 6 

from 1,889 pedestrian-related crashes at 318 signalized intersections between 2008 7 

and 2012 were elaborately collected from the Traffic Accident Database System 8 

maintained by the Hong Kong Transport Department. To account for the 9 

cross-intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated 10 

and spatially correlated random effects was developed. An intrinsic conditional 11 

autoregressive prior was specified for the spatial correlation term. Results revealed 12 

that (1) signalized intersections with greater pedestrian volumes generally exhibited a 13 

lower injury risk; (2) ignoring the spatial correlation potentially results in reduced 14 

model goodness-of-fit, an underestimation of variability and standard error of 15 

parameter estimates, as well as inconsistent, biased and erroneous inference; (3) 16 

special attention should be paid to the following factors, which led to a significantly 17 

higher probability of pedestrians being killed or sustaining severe injury: pedestrian 18 

age greater than 65 years, casualties with head injuries, crashes that occurred on 19 

footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, 20 

crashes on the two-way carriageway and those that occurred near tram or light-rail 21 

transit stops. 22 

 23 

Keywords: Pedestrian Injury Severity; Signalized Intersection; Spatial Logit Model; 24 

Conditional Autoregressive Prior; Bayesian Inference. 25 

  26 
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1. INTRODUCTION 27 

 28 

Walking is one of the oldest and substantial modes of transportation that provides 29 

numerous benefits. It is well known that walking is conducive to less congestion, 30 

efficient urban transport, fewer outputs of pollutants and greenhouse gases, less traffic 31 

noise, and livable community. Around the world, walking is also a popular physical 32 

and recreational activity for people of all ages. Indeed, considering the increasing 33 

number of short-distance trips, the growing levels of congestion, higher parking costs 34 

and restrictions in a central business district, people are being encouraged to walk 35 

more as a viable alternative and economical mode of transportation. 36 

With the rapid progress of urbanization, a growing number of intersections in 37 

cities are controlled by traffic signals. The inadequacy of accommodating pedestrians’ 38 

needs makes it difficult to cross streets and increases the number of pedestrian injuries. 39 

Although annual road traffic crash statistics show that pedestrian casualties in Hong 40 

Kong have been reduced by 19.3% over the past decade, 3,500 pedestrians are still 41 

injured every year; these are classified as slight injuries (84%), serious injuries (15%), 42 

and fatalities (1%). Moreover, about 42% of pedestrians are younger than 20 or older 43 

than 60 years of age, and in approximately 50% of cases the major cause is pedestrian 44 

inattentiveness, i.e., crossing of a road heedless of the traffic. Hence, a better 45 

understanding of factors contributing to the severity of pedestrian injuries is pressing 46 

if walking is considered as a safe and attractive mode of transportation. Such 47 

information could also facilitate safety planners and policy makers in the design of 48 

appropriate infrastructure and promotion of pedestrianization to improve pedestrian 49 

mobility and safety at signalized intersections. 50 
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Researchers have attempted to establish predictive models to investigate the 51 

possible factors influencing pedestrian–motor vehicle crashes (Zajac and Ivan [1], 52 

Ballesteros et al. [2], Lee and Abdel-Aty [3], Sze and Wong [4], Eluru et al. [5], 53 

Clifton et al. [6], Kim et al. [7], Moudon et al. [8], Tay et al. [9], Abay et al. [10], Aziz 54 

et al. [11], Mohamed et al. [12], Sasidharan and Menendez [13]). A wide variety of 55 

factors have been explored, including the demographic attributes of pedestrians and 56 

drivers, traffic characteristics, road geometry, and environmental factors. 57 

Specifically, Aziz et al. [11] suggested the road characteristics (e.g., the number 58 

of lanes, the grade, lighting, and the road surface), traffic attributes (e.g., the presence 59 

of a signal control and the type of vehicle), together with land use (e.g., parking 60 

facilities, commercial, and industrial) have a significant effect on the likelihood of 61 

mortality of pedestrians in New York City. Abay [1] found that the risk of fatal injury 62 

for pedestrians involved in Denmark is greater for crashes that occurred at night and 63 

on roads with high speed limits; for elderly and male pedestrians who were walking 64 

while under the influence of alcohol; for pedestrians who were using unmarked 65 

crossings or walking along the roadside; for drivers who were under the influence of 66 

alcohol; for male drivers with a history of crime; for drivers who were driving straight 67 

ahead; and for heavier vehicles. Based on a dataset from New York and Montreal, 68 

Mohamed et al. [12] concluded that the pedestrian age, location type, driver age, 69 

vehicle type, driver alcohol involvement, lighting conditions, and several built 70 

environmental characteristics influence the likelihood of fatal crashes. Meanwhile, 71 

Sasidharan and Menendez [13] indicated pedestrians over 75 years of age, unlit road 72 

sections, and pedestrians crossing in the middle of a block to be associated with 73 

higher levels of injury in Switzerland. 74 
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As the above analysis shows, human factors are the primary area of focus; there 75 

is potential for further insights regarding sites design factors; and the effects of traffic 76 

volume and pedestrian activity (e.g., pedestrian volume during a period of time) have 77 

been rarely investigated. Although the severity-assessment method does not highly 78 

require extensive volume data, the quality and insightfulness of analysis is expected to 79 

improve if these variables are included (Yan et al. [14]). 80 

Various methods, such as on-site investigation, mathematical modeling, and 81 

simulation, have been used to evaluate the levels of pedestrian injuries. Of these, 82 

econometric modeling approaches, which specifically focus on the analysis of injury 83 

severity from the perspective of overall safety and its economic implications, hold 84 

considerable promise. Conditional on a crash having occurred, econometric 85 

crash-severity models cover a wide range of methods, including binary logit/probit 86 

models (Ballasteros et al. [2], Sze and Wong [4], Moudon et al. [8]), multinomial logit 87 

models (Tay et al. [9]), ordered logit/probit models (Zajac and Ivan [1], Lee and 88 

Abdel-Aty [3]), generalized ordered logit/probit models (Clifton et al. [6]), partial 89 

proportional odds models (Sasidharan and Menendez [13]), a latent class with ordered 90 

probit model (Mohamed et al. [12]), mixed generalized ordered response models 91 

(Eluru, et al. [5]), and mixed logit models (Kim et al. [7], Abay [10], Aziz et al. [11]). 92 

Some of the many factors that influence the severity of crashes are not observed 93 

or nearly impossible to collect. If these unobserved factors (i.e., often referred as 94 

unobserved heterogeneity; Mannering and Bhat [15]) are correlated with observed 95 

ones, biased parameters will be estimated and incorrect inference could be drawn. 96 

Recently, random parameters approach has been widely used in crash injury severity 97 

analysis for its ability to capture unobserved heterogeneity by allowing the parameters 98 

to vary randomly across individual observations (Eluru, et al. [5], Kim et al. [7], Abay 99 
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[10], Aziz et al. [11], Milton et al. [16], Anastasopoulos and Mannering [17], 100 

Anastasopoulos et al. [18]). However, crashes occurring at the same intersection 101 

probably share common unobserved factors. The distributional assumption required to 102 

estimate the random parameters may not adequately address this unobserved 103 

group-specific feature (Mannering and Bhat [15]). Ignoring this within-intersection 104 

correlation or cross-intersection heterogeneity results in inaccurate or biased estimates 105 

(Jones and Jorgensen [19], Kim et al. [20], Huang et al. [21]). 106 

Another major concern gaining growing interest is the spatial correlation. As 107 

crash data are typically collected with reference to location dimension, spatial 108 

correlation between observation sites is expected. Typically, the inclusion of spatial 109 

effects has two main benefits. First, considering spatial correlation allows site 110 

estimates to pool strength from neighbors, thereby improving model parameter 111 

estimations (Aguero-Valverde and Jovanis [22]). Second, spatial dependence could 112 

serve as a surrogate for unknown and relevant covariates that vary smoothly across 113 

study area (Dubin [23], Cressie [24]). Although numerous road entity-specific and 114 

area-wide safety studies have incorporated the spatial effects into crash frequency 115 

modeling (Aguero-Valverde and Jovanis [22] [25], Guo et al. [26], Ahmed et al. [27], 116 

Xie et al. [28], Dong et al. [29], Zeng and Huang [30], Barua et al. [31], Xu and 117 

Huang [32]), limited research have been conducted in crash injury severity analysis to 118 

address this issue. The consequence of this omission remains unknown. 119 

Based on the urgent need to improve pedestrian safety and to address negligent 120 

fundamental issue in crash injury severity modeling, the present study (1) investigates 121 

the injury risk of pedestrian casualties involved in traffic crashes at signalized 122 

intersections in Hong Kong; (2) determines the role played by pedestrian volumes in 123 

the severity levels of pedestrian injuries; and (3) explores the effect of spatial 124 
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correlation on econometric crash-severity models. Following the multilevel data 125 

structure proposed by Huang and Abdel-Aty [33] , a Bayesian hierarchical logit model 126 

incorporating both unstructured and spatially correlated heterogeneity is established to 127 

estimate the likelihood of a pedestrian being killed or sustaining severe injury (KSI) 128 

by considering the associations of various factors, such as detailed pedestrian 129 

characteristics, traffic characteristics, environmental features and geometric design 130 

data. 131 

 132 

2. DATA 133 

 134 

Our dataset integrated data from the Traffic Accident Database System from 2008 to 135 

2012 with the geodatabase of the Traffic Information System maintained by the Hong 136 

Kong Transport Department (HKTD). As described in detail by Sze and Wong [4], 137 

three components from the Traffic Accident Database System were included: the crash 138 

environment, the casualty injuries, and the vehicle involvement profiles. All these 139 

three were converted into a geodatabase and displayed in ArcGIS. 140 

318 signalized intersections were elaborately selected from three areas (i.e., 141 

Hong Kong Island, Kowloon, and New Territories) where 1,889 pedestrian-related 142 

crashes collectively occurred. In Hong Kong, the severity of injury is typically 143 

categorized as fatal, serious, or slight. In our sample, the fatal cases only accounted 144 

for 6.8%. Given that the two adjacent injury categories were quite similar, merging 145 

the fatal and serious injury categories was not expected to substantially affect the 146 

inference (Sze and Wong [4], Yau [34], Yau et al. [35]). Consequently, the dependent 147 

variable in the proposed model was a dichotomous injury outcome in which the 148 

response of interest referred to KSI and slight injury was treated as the contrast. 149 
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By aggregating the crash environment and casualty injury profiles, the predictor 150 

variables reflecting the demographic characteristics of pedestrian (i.e., sex and age), 151 

the crash characteristics including injury location, crash location, crash time, special 152 

circumstances (i.e. crowded/obstructed footpath), and pedestrian contributory factors 153 

(i.e. heedless crossing, inattentive etc.), the traffic characteristics (i.e., road type, 154 

junction type, speed limit, and traffic congestion), and the environmental factors (i.e., 155 

weather, light, and road surface) were extracted. The intersections’ geometric features 156 

were derived from the Digitized Traffic Aids Drawings in the Intelligent Road 157 

Network Package provided by HKTD. These characteristics included the number of 158 

approaches, approach lanes, traffic streams, pedestrian–vehicle conflict 159 

points/locations, and the lane width. Traffic characteristics, such as the number of 160 

traffic streams, the number of pedestrian crossing streams, the presence of tram and 161 

light rail transit (LRT) stops, the presence of bus stops, and the presence of 162 

right-turning pockets were also considered. The data for the signal phasing scheme 163 

were manually measured on site. 164 

Regarding the traffic volume measures, the annual average daily traffic of each 165 

intersection was estimated based on the modeled peak-hour flow, which was obtained 166 

from the Base District Traffic Models developed by HKTD, and the 24-hour traffic 167 

flow data from the nearest counting station, as reported in the Annual Traffic Census. 168 

Despite the pedestrian volume plays an important role in road safety analysis, few 169 

transportation agencies collect pedestrian data from a large number of sites on a 170 

regular basis due to the limited resources. The pedestrian volume of each intersection, 171 

represented as the annual average daily pedestrian in this study, was estimated based 172 

on the 24-hour zonal pedestrian flow profiles extracted from the Travel Characteristics 173 
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Survey 2011 database (Transport Department [36]), and further adjusted based on the 174 

on-site surveys at signalized intersections under investigation.  175 

The variables used for model development are displayed in Table 1, with the 176 

proportions of the categorical variables above and the descriptive statistics of the 177 

continuous or binary variables below. 178 

 179 

[Insert Table 1 here] 180 

 181 

3. METHODOLOGY 182 

 183 

The response variable ijY  for the thi  pedestrian crash that occurred at the thj  184 

intersection took one of two values: 1ijY   for KSI and 0ijY   for slight injury. The 185 

probability of 1ijY   was denoted by Pr( 1)ij ijY   , which was assumed to be 186 

determined by a set of covariates representing crash- and site-specific attributes and a 187 

corresponding set of unknown regression parameters, using the logit link: 188 

 189 

0
1 1

logit( ) log( )
1

QP
ij

ij p ijp q jq
p qij

X Z


   
  

   
                            (1) 190 

 191 

where ijpX  was the thp  individual crash level explanatory variable and jqZ  was 192 

the thq  intersection level-specific factors, 0  was the intercept, and 193 

( 1,..., )p p P   and ( 1,..., )q p Q   were the regression coefficients to be estimated 194 

for crash and intersection specific factors. 195 

To address the potential within-intersection correlation or cross-intersection 196 
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heterogeneity, the random effects logit model further assumed (Jones and Jorgensen 197 

[19], Kim et al. [20], Huang et al. [21]): 198 

 199 

0
1 1

2

logit( ) log( ) +
1

~ Normal(0, )

QP
ij

ij p ijp q jq j
p qij

j u

X Z u

u


   




 

   
  

                      (2) 200 

 201 

where ju  was included to permit the potential variations across intersections. In most 202 

cases, the spatial effects are expected because neighboring intersections typically have 203 

similar environmental and geographical characteristics (Castro et al. [37], Klassen et 204 

al. [38]). To this end, a spatially structured or spatially correlated error term js  was 205 

added, resulting in a spatial logit model: 206 

 207 

0
1 1

logit( ) log( ) +
1

QP
ij

ij p ijp q jq j j
p qij

X Z u s


   
  

    
                       (3) 208 

 209 

One possible joint density for the spatial effects 1 2( , ,..., )ms s ss  was in terms 210 

of pairwise differences in errors and a variance term 2
s  (Banerjee et al. [39]): 211 

 212 

22 -1
1 2

~

( , ,..., ) exp[-0.5( ) ( - ) ]m s jk j k
j k

P s s s c s s                              (4) 213 

 214 

This joint density implies a normal conditional prior for js  conditioning on the 215 

effect of ks  in remaining observation sites: 216 

 217 
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2

~ Normal( , )jk kk s
j k j

jk jkk k

w s
s s

w w





 

                                  (5) 218 

 219 

where jkw  represents the un-normalized weight between intersection j  and k . 220 

The simplest neighboring structure is that of adjacency-based first-order neighbors, 221 

which could be defined as all intersections that connect directly with the one in 222 

question (Guo et al. [26], Xie et al. [28], Zeng and Huang [30]). As our intersection 223 

locations were spread throughout three areas of Hong Kong, a large portion of 224 

intersections had no directly connected neighbors. This produced an unstable model 225 

that did not converge and was thus discarded. 226 

An alternative is the distance decay based proximity structure, in which the 227 

weight is calculated using an exponential decay function of the distance between 228 

intersections (Congdon [40]): 229 

 230 

jkd

jkw e                                                         (6) 231 

 232 

where jkd  is the network distance between intersection j  and k , and the 233 

parameter   controls the rate of decline of correlation. This approach is 234 

computationally feasible for only a few hundred observations (Aguero-Valverde and 235 

Jovanis [25]). Meanwhile, the full consideration of all possible spatial correlations for 236 

all sites could also significantly reduce model performance (Dong et al. [29]). 237 

Aguero-Valverde and Jovanis [25] deemed 1 mi (about 1.609km) a proper threshold 238 

point for considering segments spatially correlated in Pennsylvania and Washington. 239 

Thus, an arbitrary maximum distance of 1.5km was selected in the present study, i.e., 240 
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any intersection whose distance was greater than this threshold was assumed to have a 241 

weight of zero. This setting allowed approximately 25 neighbors for each intersection 242 

on average. 243 

Inspired by the work of Aguero-Valverde and Jovanis [25], a distance-order 244 

neighboring scheme was also introduced. The adjacency hierarchy was defined in 245 

terms of distances, i.e., the first-, second- and third-order neighbors were within 0.5, 1, 246 

and 1-1.5 km of the intersection of interest, respectively, hence: 247 

 248 

1 0.5 km

1 2 0.5 km 1 km

1 3 1 km 1.5 km

jk

jk jk

jk

d

w d

d

 


  
  

                                        (7) 249 

 250 

Assessing the relative strength of spatial and unstructured variations requires 251 

estimates of marginal variances: 252 

 253 

sd( )

sd( ) sd( )
 


s

s u
                                                 (8) 254 

 255 

where   is the proportion of variability in random effects due to the spatial 256 

correlation, and sd  is the empirical marginal standard deviation function. 257 

A full Bayesian inference using the Markov Chain Monte Carlo algorithm was 258 

implemented to construct above model. Non-informative priors were assigned for 259 

model parameters (El-Basyouny and Sayed [41], El-Basyouny and Sayed [42]): 260 

 261 

~ Normal(0,1000)

~ Normal(0,1000)

p

q




                                                (9) 262 



13 
 

 263 

For the variance parameters, a uniform(0,10)   was specified for 2
u  and 2

s  264 

(Gelman [43], Lee [44]). The decay parameter   was assumed to be a265 

uniform(0.53,76.75)  (Thomas et al. [45]). This specification allowed a diffuse but 266 

plausible prior range of correlation between 0.10 and 0.98 at the minimum distance of 267 

0.03 km, and between 0 and 0.45 at the maximum distance of 1.5 km. 268 

For model comparison, the Deviance Information Criterion (DIC) was used: 269 

 270 

DIC ( ) 2 D DD p D p                                              (10) 271 

 272 

where ( )D   is the deviance evaluated at  , the posterior means of the parameter of 273 

interest, Dp  is the effective number of parameters in the model, and D  is the 274 

posterior mean of the deviance statistic ( )D  . The lower the DIC, the better the 275 

model fit. Generally, differences in DIC of more than 10 definitely rule out the model 276 

with the higher DIC, differences between 5 and 10 are considered substantial, while a 277 

difference of less than 5 indicates that models are not statistically different 278 

(Spiegelhalter et al. [46]).  279 
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4. RESULTS AND DISCUSSION 280 

 281 

The freeware software WinBUGS was used to calibrate the above models 282 

(Spiegelhalter et al. [47]). Three parallel chains with diverse starting values were 283 

tracked. The first 10,000 iterations in each chain were discarded as burn-ins, and then 284 

5,000 iterations were performed for each chain resulting in a sample distribution of 285 

15,000 for each parameter. The model’s convergence was monitored by the 286 

Brooks-Gelman-Rubin (BGR) statistic (Brooks and Gelman [48]), visual examination 287 

of the Markov Chain Monte Carlo chains, and the ratios of Monte Carlo errors relative 288 

to the respective standard deviations of the estimates (as a rule of thumb, these ratios 289 

should be less than 0.05). 290 

The model specifications were developed based on the following principles. A 291 

correlation test was first conducted to ensure the non-existence of any highly 292 

correlated variables. The correlation analysis indicated a high correlation between the 293 

time of day and natural light and street light, implying that those three variables 294 

should not be included together in the model. Similarly, weather, rain and road surface; 295 

the number of approaches, approach lanes and traffic streams; and the number of 296 

pedestrian streams, conflict points and conflict locations, respectively, were all 297 

correlated. Obstruction and traffic aids were also highly correlated, indicating that 298 

only one of the two should be included in the model. DIC was then used to compare 299 

alternative models with different covariate subsets. The one that produced a lower 300 

DIC value was superior. 301 

For the purpose of comparison, the basic binary logit model and the one with 302 

uncorrelated random effects only were also estimated. As such, six models were 303 
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ultimately calibrated. The performances of the developed models are compared in this 304 

section, followed by the presentation and interpretation of the parameter estimates. 305 

 306 

4.1 Model comparison 307 

 308 

Table 2 shows the goodness-of-fit measures for the calibrated models. The spatial 309 

logit models outperformed according to DIC statistics. In particular, the second-order 310 

distance model performed best with the lowest DIC value, which was approximately 311 

20 points lower than the basic logit model and 15 points lower than the unstructured 312 

random effects model. This result suggests that accounting for spatial correlation is 313 

conducive to a substantial improvement in goodness-of-fit. It is also interesting to find 314 

that the four spatial models had comparable performance. This finding indicated that 315 

the estimated spatial models based on our dataset are robust to the configuration of 316 

neighboring structures. In addition, a substantial proportion of variability (i.e. around 317 

80%) was explained by the spatially correlated effects, confirming the extensive 318 

existence of cross-intersection spatial correlation. This may be why the uncorrelated 319 

random effects model did not provide a significantly improved performance relative 320 

to the basic model. 321 

 322 

[Insert Table 2 here] 323 

 324 

 325 

4.2 Parameter estimates 326 

 327 

Table 3 summarizes the final results for the basic, uncorrelated random-effects and 328 
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spatial logit (i.e., second-order distance) models. A 5% level of significance was used 329 

as the threshold to determine whether the parameter estimates differed from zero. Any 330 

variables that were insignificant in all three models were excluded. 331 

Several general observations are worth noting. First, the significant variables 332 

were not identical. For example, the presence of bus stops was statistically significant 333 

in the former two models, but became totally insignificant once spatial correlation was 334 

considered. Similar results also held true for the two-way carriageway and presence of 335 

tram/LRT stops variables. This inconsistency may be the result of model 336 

misspecification, including the omission of spatially relevant variables. Second, the 337 

standard error of the coefficient estimates in the spatial logit model was slightly 338 

greater than that in the basic model. Third, when spatial effects were introduced, the 339 

standard deviation of the uncorrelated random effects was obviously reduced, 340 

dropping from 0.404 to 0.179. This was expected because spatial effects can capture 341 

some of the extra variation in the data previously explained by the uncorrelated 342 

random effects. Fourth, the total variation explained in the spatial logit model 343 

increased to nearly 1.0, which was higher than 0.404 in the corresponding model 344 

without spatial effects. This implied that ignoring spatial dependence could lead to an 345 

underestimation of variability. 346 

 347 

 348 

[Insert Table 3 here]     349 
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Given that the spatial logit model performed best, we chose it to interpret our 350 

results in the subsequent section. As Table 3 shows, the majority of the significant 351 

variables in the spatial logit model were related to pedestrian rather than 352 

environmental characteristics, or to the geometric designs of signalized intersections. 353 

The following factors were associated with a significantly higher probability of KSI: 354 

pedestrians older than 65 years of age (odds ratio, 2.878), casualties with head injuries 355 

(3.626), crashes that occurred on footpaths that were not obstructed/overcrowded 356 

(1.671), heedless (1.972) or inattentive (1.477) crossing and crashes on the two-way 357 

carriageway (1.306) near tram/LRT stops (1.449). Accordingly, crashes occurring at or 358 

near obstructions (0.599) and at intersections with greater pedestrian volume (0.850) 359 

tended to have a lower likelihood of KSI. 360 

The involvement of pedestrians over 65 years of age was found to have a more 361 

significant relationship with KSI than that of youths under 15 years of age. This was 362 

unsurprising, as the elderly are usually weaker in terms of physiological condition and 363 

perception of safety, and slower to react in hazardous situations. Similar findings have 364 

also been previously reported (Zajac and Ivan [1], Sze and Wong [4], 2007; Eluru et al. 365 

[5], Moudon et al. [8], Abay [10], Aziz et al. [11]). 366 

Regarding the location of injury, no one is likely to disagree that casualties with 367 

head injuries are more likely to result in severe injuries or even death (Ballesteros et al. 368 

[2]). According to the odds ratio in Table 3, the KSI risk of the crashes that involved a 369 

pedestrian with a head injury was more than triple those with other injuries, implying 370 

that special attention should be paid to this type of injury. 371 

In addition to obstructed or overcrowded footpaths, other circumstances, 372 

including the absence of a footpath on one or both sides of an intersection and a 373 

pedestrian running onto the road or climbing over barrier rails, were more likely to 374 
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lead to KSI. This finding probably reflected the fact that drivers do not expect 375 

pedestrians to appear on the carriageway except when it is obstructed or overcrowded. 376 

Likewise, Abay [10] implied that pedestrians crossing with unmarked crossings 377 

(non-crosswalks) were more likely to be seriously or fatally injured using a Danish 378 

dataset. Thus, public transport economists and other policy makers should consider 379 

investing in infrastructural facilities such as safer crossing and staying facilities for 380 

pedestrians. Such direct countermeasures could improve the synergy of the mobility 381 

and minimize the vulnerability of road users in the pre-crash phase. 382 

Consistent with Sze and Wong [4], pedestrians who were heedless and inattentive 383 

of crossing were prone to sustain a higher KSI likelihood. This elevated injury risk 384 

may have been modified by pedestrian impairments, such as alcohol intoxication, 385 

carelessness, or misjudgment, and also by the availability and accessibility of marked 386 

crosswalks (Al-Ghamdi [49], Loo and Tsui [50]). 387 

In addition, pedestrians at or near an obstruction were more likely to be slightly 388 

injured. This protective effect was not surprising to some extent because the collision 389 

speed may be substantially reduced in the presence of an obstruction, thus lowering 390 

the probability of a severe injury. 391 

Setting one-way roads as the base category, a higher risk of fatal or serious 392 

injuries for pedestrians was observed on two-way carriageways. This was perhaps 393 

related to the reduced possibility of turning negligently or drivers making 394 

improper/illegal turns on one-way roads in Hong Kong (Transport Department, Hong 395 

Kong [51]). The one-way carriageways were also observed to experience a lower risk 396 

of fatal or serious injuries in multi-vehicle traffic crashes (Yau et al. [35]). 397 

Pedestrian volume has been identified as one of the most influential factors in 398 

predicting pedestrian–vehicle crashes. Leden [52], Lyon and Persaud [53], and 399 
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Miranda-Moreno et al. [54] reported a statistically significant and positive relationship 400 

between pedestrian activity and crash occurrence at different types of intersections. 401 

More importantly, a non-linear relationship has been found, suggesting that the 402 

absolute number of collisions increases with the pedestrian volume, whereas the risk 403 

faced by each pedestrian decreases. This is often referred as the “safety in numbers” 404 

effect (Leden [52], Jacobsen [55], Geyer et al. [56]). By accounting for the pedestrian 405 

activity in pedestrian injury severity modeling, the present study provided additional 406 

evidence to existing research that the number of pedestrians was also closely 407 

correlated with the injury severity outcomes, as our results implied that pedestrians at 408 

signalized intersections with greater pedestrian volumes indeed sustained a relatively 409 

lower likelihood of KSI. The pedestrian volume typically serves as a measurement for 410 

the use and preference of crossing facilities (Cho et al. [57]). One potential 411 

explanation is that pedestrians usually have a strong value preference for the 412 

perceived safe crossing sites, either because they are following a knowledgeable 413 

leader or there exists some collective wisdom of safe sits (Landis et al. [58], Jacobsen 414 

et al. [59]). Therefore, intersections with more pedestrians are deemed to be inherently 415 

safer with lower vehicle speeds, lower traffic volumes, and greater buffers between 416 

pedestrians and motorists. Besides, pedestrians in intersections with higher AADP 417 

may be more likely to cross a street close together in a group. This practice provides a 418 

degree of collective vigilance regarding motorist hazards, or there may be more 419 

physical buffering effects if a mass of pedestrians are crossing the street together 420 

(Bhatia and Wier [60]). Furthermore, given that drivers’ speeds are potentially 421 

influenced by pedestrians (Jacobsen [55], Todd [61]), the inclusion of AADP was 422 

expected to enhance the model’s accountability, as it could be regarded as a superb 423 

proxy for factors that were not available in current crash databases, such as collisions 424 
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speeds. Nevertheless, reaching above casual inferences should be conducted with 425 

great caution, as the measure of pedestrian volume used in this empirical study was 426 

based on the average daily pedestrian flow. This average metric may not always be 427 

equivalent to the counterpart present when crashes actually occurred. 428 

The presence of a tram or LRT stop increased the likelihood of KSI at a 10% 429 

level of significance. This finding deserves substantial attention because most of the 430 

tram stops in Hong Kong Island are located near signalized intersections, at which 431 

traffic moves in the same direction on both sides of the island and is allowed to enter 432 

the tram lanes in congested areas. This puts tram passengers in more danger because 433 

traffic does not come from the anticipated direction when they cross the second half 434 

of the road. Wong et al. [62] also revealed that the presence of tram or LRT stops 435 

significantly increased the occurrence of traffic crashes at signalized intersections in 436 

Hong Kong. 437 

Finally, a significantly positive spatial correlation was expected due to the 438 

missing variables (e.g., land use and coordinated signal control strategies along a 439 

corridor) and spatial clustering pattern of crash counts. 440 

 441 

5. CONCLUSIONS 442 

 443 

This study investigated the injury severity sustained by pedestrians involved in 444 

crashes at signalized intersections through an analysis of data from the Transport 445 

Department of Hong Kong on detailed pedestrian characteristics, traffic 446 

characteristics, environmental features and geometric design. To account for the 447 

cross-intersection heterogeneity, a Bayesian hierarchical logit model incorporating 448 

both uncorrelated and spatially correlated random effects was developed. 449 
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There were some key findings evident from this empirical analysis. By including 450 

AADP, the present study demonstrated that the intersections with greater pedestrian 451 

volume generally possessed a relatively lower risk of KSI (i.e., the places where more 452 

people walk may be less risky). It is also noteworthy that perceived safety did not 453 

necessarily correspond with actual safety (Cho et al. [57]). Perceived safety without 454 

actual safety creates a false sense of security, whereas actual safety without perceived 455 

safety discourages people from walking. Thus, to promote more walking, both the 456 

safety of facilities and the number of pedestrians must increase. Planners should 457 

improve pedestrianization designs by accommodating pedestrians’ proper walking 458 

behavior, particularly which of the more vulnerable elders, to satisfy their safety 459 

concerns. Signs and markings should be placed around signalized intersections and 460 

tram stops to alert pedestrians of the danger of heedless and inattentive crossing (e.g., 461 

while talking on the telephone, texting, or listening to music). Other remediation to 462 

account for the potential risk of head injuries and the lack of footpaths is also required. 463 

In the meantime, safety officials should consider providing education programs to 464 

help pedestrians obey traffic rules and walk sensibly. All of these integrated 465 

countermeasures would improve mobility and safety at signalized intersections while 466 

raising the safety consciousness of pedestrians. Once people’s perceptions of risk 467 

increase, their behavior changes, creating a safer environment. 468 

Despite the growing concern over spatial dependence in crash frequency 469 

modeling, the role of spatial correlation in injury severity analysis has not been 470 

comprehensively addressed. Thus, a full Bayesian hierarchical approach was used 471 

here with an intrinsic conditional autoregressive prior for the spatial correlation term. 472 

Different neighboring structures were tested to identify the most promising. Our 473 

results revealed that ignoring the spatial correlation potentially results in reduced 474 
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model goodness-of-fit, an underestimation of variability and standard error of 475 

parameter estimates, along with inconsistent, biased and erroneous inferences. The 476 

fact that a large portion of extra variation is due to spatial effects suggests that the 477 

spatial correlation between observation sites should be elaborately considered in the 478 

context of injury severity modeling in road networks. 479 

For future research, in addition to the typically used conditional autoregressive 480 

model, other spatial prior distributions such as the jointly specified (Aguero-Valverde 481 

[63]) and multiple membership (El-Basyouny and Sayed [64]) forms could be 482 

attempted. Furthermore, as the severity of pedestrian injury greatly depends on the 483 

individual specific factors, a natural next step is to consider how to incorporate the 484 

cross-sites and unobserved individual heterogeneity into the modeling process 485 

simultaneously. As the fatal cases only accounted for 6.8%, we merged the fatal and 486 

serious injury categories as KSI. Future efforts to accommodate the small proportion 487 

of fatal injuries in traffic safety modeling are desirable. Besides, as the results of the 488 

study were based on a single dataset, future studies with different data sources would 489 

also prove worthwhile to confirm the paper’s findings. 490 
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Table 1 Summary of the parameters in the pedestrian injury model 696 

Factor Attribute Count (proportion) 
Year 2008 433 (22.9%) 
 2009 389 (20.6%) 
 2010 384 (20.3%) 
 2011 352 (18.7%) 
 2012 331 (17.5%) 
   
Injury severity Killed or severe injury 518 (27.4%) 
 Slight injury 1371 (72.6%) 
   
Sex Male 1000 (52.9%) 
 Female 889 (47.1%) 

 
Age (years) Under 15 163 (8.6%) 
 15 to 65 1350 (71.5%) 
 Above 65 376 (19.9%) 

 
Injury location Head injury 573 (30.3%) 
 Others 1316 (69.7%) 
   
Pedestrian location On the crossing 530 (28.1%) 
 Within 15 m of the crossing 1159 (61.3%) 
 Others 200 (10.6%) 
   
Pedestrian action Crossing road or junction 1011 (53.5%) 
 Walking along footpath 170 (9.0%) 
 Others 708 (37.5%) 
   
Pedestrian special circumstance Overcrowded footpath 264 (14.0%) 
 Obstructed footpath 225 (11.9%) 
 Others 835 (44.2%) 
 None 565 (29.9%) 

 
Pedestrian contributory Heedless crossing 387 (20.5%) 
 Inattentive 229 (12.1%) 
 Others 616 (32.6%) 
 None 657 (34.8%) 
   
Day of week Weekday (Monday-Friday) 1410 (74.6%) 
 Weekend (Saturday-Sunday) 476 (25.4%) 
   
Time of day 7:00 to 9:59 AM 266 (14.1%) 
 10:00 AM to 3:59 PM 672 (35.6%) 
 4:00 to 6:59 PM 411 (21.7%) 
 7:00 PM to 6:59 AM 540 (28.6%) 
   
Speed limit Below 50 km/h 23 (1.2%) 
 50 km/h 1851 (98.0%) 
 Above 50 km/h 15 (0.8%) 
   
Traffic aids Poor aids 186 (9.8%) 
 Normal 1703 (90.2%) 
   
Traffic congestion Severe congestion 340 (18.0%) 
 Moderate congestion 476 (25.2%) 
 No congestion 1073 (56.8%) 
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Factor Attribute Count (proportion) 
Obstruction At or near obstruction 348 (18.4%) 
 No obstruction nearby 1541 (81.6%) 
   
Junction type T-junction 767 (40.6%) 
 Y-junction 31 (1.6%) 
 Cross-roads 326 (17.3%) 
 Others 765 (40.5%) 
   
Road type Single-way carriageway 877 (46.4%) 
 Two-way carriageway 461 (24.4%) 
 Multiple/dual carriageway 551 (29.2%) 
   
Weather Clear 1736 (91.9%) 
 Dull 102 (5.4%) 
 Fog/mist 35 (1.9%) 
 Strong wind and unknown 16 (0.8%) 
   
Rain Not raining 1635 (86.6%) 
 Light rain 202 (10.7%) 
 Heavy rain 41 (2.2%) 
 Unknown 11 (0.5%) 
   
Natural light Daylight 1292 (68.4%) 
 Dawn/dusk 61 (3.2%) 
 Dark 536 (28.4%) 
   
Street light Good 781 (41.3%) 
 Poor 11 (0.6%) 
 Obscured and others 1097 (58.1%) 
   
Road surface Wet 265 (14.0%) 
 Dry 1617 (85.6%) 
 Unknown 7 (0.4%) 
   
Crossing facility Traffic signal 731 (38.7%) 
 Others 1074 (56.9%) 
 None 84 (4.4%) 
   
Presence of tram/LRT stops Yes 247 (13.1%) 
 
 

No 1642 (86.9%) 

Presence of bus stops Yes 670 (35.5%) 
 No 1219 (64.5%) 
   
Presence of right-turn pocket Yes 191 (10.1%) 
 No 1698 (89.9%) 
   
 Range Mean S.D. 
Exposure measures    
  Annual average daily traffic 1124 to 340516 35409.54 23887.61 
  Annual average daily 
pedestrian 

288 to 340107 56855.69 60849.93 

   
Geometric design   
  Number of approaches 1 to 4 3.04 0.79 
  Number of approach lanes 1 to 20 7.73 3.57 
  Number of traffic streams 1 to 12 4.55 2.04 
  Average lane width (m) 2.47 to 6.85 3.41 0.49 
  Number of pedestrian streams 0 to 10 3.25 1.83 
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Factor Attribute Count (proportion) 
  Number of conflict points 0 to 46 11.36 7.93 
  Number of conflict locations 0 to 46 10.24 7.43 
   
Signal phasing scheme   
   Cycle time (s) 30 to 150 103.46 19.69 
   Number of stages 1 to 5 2.80 0.91 

 697 

 698 

 699 

Table 2 Goodness-of-fit measures for basic and random-effects binary logit models 700 
Model type Neighboring structure D  Dp  DIC 

Basic model None 1954.88 16.01 1970.89 — 
Uncorrelated RE model None 1907.24 58.32 1965.56 — 
Spatial logit model Distance exponential 

decay 
1898.26 57.59 1955.85 0.76 

Distance first order 1886.26 67.32 1953.58 0.93 
Distance second order 1887.36 62.82 1950.17 0.83 
Distance third order 1894.77 58.06 1952.83 0.79 

Note: RE refers to random effects; the estimate for   was 2.89 with a 95% Bayesian credible 701 

interval (0.60, 8.45). 702 

 703 



34 
 

Table 3 Estimates results for basic, and random effects binary logit models 

Basic model Uncorrelated RE model Spatial model 

Variables Control Mean SD 95% BCI Mean SD 95% BCI  Mean SD 95% BCI OR 

Constant  −2.664** 0.265 (−3.189,−2.156) −2.718** 0.275 (−3.261, −2.190) −2.606** 0.279 (−3.179,−2.074)  

Pedestrian age (years)  15           

15-65  0.175 0.209 (−0.225,0.592) 0.163  0.216 (−0.253,0.592) 0.145   0.219 (−0.277,0.589) 1.156 

 65  1.042** 0.228 (0.603,1.496) 1.053** 0.238 (0.595,1.526) 1.057** 0.240 (0.602,1.547) 2.878** 

Head injury Others 1.237** 0.116 (1.012,1.463) 1.259** 0.121 (1.023,1.496) 1.288** 0.123 (1.044,1.529) 3.626** 

Pedestrian special circumstance            

Overcrowded footpath  0.121   0.196 (−0.262,0.503) 0.116 0.204 (−0.289,0.508) 0.111   0.207 (−0.299,0.514) 1.117 

Obstructed footpath  0.262  0.199 (−0.130,0.650) 0.277   0.207 (−0.133,0.686) 0.317   0.210 (−0.098,0.727) 1.373 

Others  0.503** 0.141 (0.226,0.779) 0.520** 0.146 (0.234,0.804) 0.513** 0.149 (0.228,0.807) 1.671** 

Pedestrian contributory action None           

Heedless crossing  0.710** 0.165 (0.388,1.031) 0.717** 0.169 (0.386,1.048) 0.679** 0.173 (0.341,1.023) 1.972** 

Inattentive  0.301  0.205 (−0.103,0.699) 0.321   0.211 (−0.093,0.735) 0.390*  0.220 (−0.030,0.804) 1.477* 

Others  0.602** 0.148 (0.311,0.890) 0.603** 0.152 (0.306,0.901) 0.534** 0.159 (0.222,0.853) 1.705** 

At or near obstruction  −0.444** 0.150 (−0.746,−0.145) −0.465** 0.158 (−0.782,−0.160) −0.513** 0.163 (−0.838,−0.197) 0.599** 

Road type Single           

   Two-way carriageway  0.360** 0.139 (0.087,0.634) 0.376** 0.144 (0.094,0.656) 0.267*  0.152 (−0.031,0.567) 1.306* 

Multiple carriageway  0.043   0.142 (−0.237,0.322) 0.056   0.149 (−0.235,0.344) 0.144   0.155 (−0.156,0.445) 1.155 

AADP  −0.221** 0.072 (−0.365,−0.081) −0.215** 0.077 (−0.378,−0.056) −0.162** 0.082 (−0.316,−0.016) 0.850** 

Presence of tram/LRT stops  0.405** 0.163 (0.083,0.723) 0.450** 0.193 (0.072,0.835) 0.371*  0.206 (−0.036,0.770) 1.449* 

Presence of bus stops  0.241** 0.119 (0.005,0.477) 0.240*  0.139 (−0.032,0.510) 0.125   0.134 (−0.143,0.384) 1.133 

sd( )u      0.404** 0.137 (0.106,0.651) 0.179** 0.112 (0.033,0.456)  

sd( )s          0.815** 0.149 (0.571,1.163)  

Note: RE refers to random effects; OR represents odd ratio; BCI is the abbreviation for Bayesian credible interval; ** and * indicate 5% and 10% levels of 
significance, respectively.  


