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Fast algorithm for transient current through open quantum systems

King Tai Cheung, Bin Fu, Zhizhou Yu, and Jian Wang*

Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road,
Hong Kong, China

(Received 25 October 2016; revised manuscript received 8 February 2017; published 16 March 2017)

Transient current calculation is essential to study the response time and capture the peak transient current for
preventing meltdown of nanochips in nanoelectronics. Its calculation is known to be extremely time consuming
with the best scaling T N3 where N is the dimension of the device and T is the number of time steps. The dynamical
response of the system is usually probed by sending a steplike pulse and monitoring its transient behavior. Here,
we provide a fast algorithm to study the transient behavior due to the steplike pulse. This algorithm consists
of two parts: algorithm I reduces the computational complexity to T 0N 3 for large systems as long as T < N ;
algorithm II employs the fast multipole technique and achieves scaling T 0N 3 whenever T < N2 beyond which
it becomes T log2 N for even longer time. Hence it is of order O(1) if T < N2. Benchmark calculation has been
done on graphene nanoribbons with N = 104 and T = 108. This algorithm allows us to tackle many large scale
transient problems including magnetic tunneling junctions and ferroelectric tunneling junctions.
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I. INTRODUCTION

At the heart of growing demands for nanotechnology is
the need for ultrafast transistors whose response time is
one of the key performance indicators. The response of a
general quantum open system can be probed by sending
a steplike pulse across the system and monitored by its
transient current over times, making transient dynamics a
very important problem. Many experimental data show that
most of the molecular device characteristics are closely
related to material and chemical details of the device
structure. Therefore, first-principles analysis, that makes
quantitative and predictive analysis of device characteristics
especially its dynamic properties without relying on any
phenomenological parameter, becomes a central problem of
nanoelectronics.

The theoretical study of transient current dates back to
20 years ago when the exact solution in the wide-band limit
(WBL) was obtained by Wingreen et al. [1]. Since then the
transient current has been studied extensively using various
methods [2], including the scattering wave function [3,4],
nonequilibrium Green’s-function (NEGF) [5–8] approach, and
density-matrix method [9]. The major obstacle of theoretical
investigation on the first-principles transient current is its
computational complexity. Many attempts were made trying
to speed up the calculation [3,4,10–14]. Despite these efforts,
the best algorithm to calculate the transient current from first
principles going beyond the WBL scales like T N3 using
complex absorbing potential (CAP) [15] where T and N are
the number of time steps and size of the system respectively.
We note that if the WBL is used, the scaling is reduced [12].
However, to capture the feature of band structure of the lead
and the interaction between the lead and scattering region
the WBL is not a good approximation in the first-principles
calculation.

As a result, most of the first-principles investigations on
transient dynamics were limited to small and simple one-
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dimensional systems. There are a number of problems such
as magnetic tunneling junctions (MTJs) [16] and ferroelectric
tunneling junctions [17], where the system is two dimensional
or even three dimensional in nature. For these systems, a large
number of k points Nk has to be sampled in the first Brillouin
to capture accurately the band structure of the system. For a
MTJ structure like Fe-MgO-Fe, at least Nk = 104 k points
must be used to give a converged transmission coefficient
[18]. This makes the time consuming transient calculation
Nk times longer which is an almost impossible task even
with a high performance supercomputer. Clearly it is urgent
to develop better algorithms to reduce the computational
complexity.

In this paper, we develop a fast algorithm based on NEGF-
CAP formalism to calculate transient current for a steplike
pulse as a function of time step T which could be helpful
in speeding up the first-principles transient calculation. The
computational time of this algorithm is independent of T as
long as T < N2 where N is the system size [19]. Hence our
algorithm is order O(1) as long as T < N2. Four important
ingredients are essential to achieve this: (1) the availability
of an exact solution of transient current based on NEGF that
goes beyond WBL; (2) the use of CAP so that the transient
current can be expressed in terms of poles of Green’s function;
(3) within NEGF-CAP formalism the transient current can
be calculated separately in space and time domain making
the O(1) algorithm possible; at this point the computational
complexity reduces to N3 + T N2 (algorithm I); (4) the
exploitation of Vandermonde matrix enables us to use the fast
multipole method (FMM) [20,21] and fast Fourier transform
(FFT) to further reduce the scaling to N3 + N2 log2 N for
T < N2 and large N , therefore completely independent of T

(algorithm II). To verify the computational complexity, we
carry out benchmark calculations on graphene nanoribbons
using the tight-binding model. A calculation is also done
for a system with N = 10 200 and T = 108 confirming the
O(1) scaling. This fast algorithm makes the computational
complexity of transient current calculation comparable to that
of static calculation.
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II. THEORETICAL FORMALISM

For a general open quantum system with multiple leads
under a steplike bias pulse, the Hamiltonian is given by

H (t) =
∑
kα

εkαĉ
†
kαĉkα +

∑
n

[εn + Un(t)]d̂†
nd̂n

+
∑
kαn

hkαnĉ
†
kαd̂n + c.c.,

where c† (c) denotes the electron creation (annihilation)
operator in the lead region. The first term in this equation
corresponds to the Hamiltonian of leads with εkα

the energy of
lead α which contains external bias voltage vα(t) = Vαθ (±t).
The second and third terms represent the Hamiltonian in the
central scattering region and its coupling to leads, respectively.
Here we have included the time-dependent internal response
Un(t) in the scattering region due to the external bias [22].
Taking q = h̄ = 1, the time-dependent terminal current Iα(t)
of lead α is defined as [15,23]

Iα(t) = ReTr(�α[2H (t) − i∂t ]G
<(t,t)�α), (1)

where �α is an auxiliary projection matrix which is used for
measuring the transient current passing through the lead α.
Here G< and H (t) are the lesser Green’s function and the
Hamiltonian of the central scattering region, respectively. For
a steplike pulse an exact solution for G< has been obtained
by Maciejko et al. [6] which goes beyond the WBL. Now we
consider the case of upward pulse vα(t) = Vαθ (t). In order to
have the exact solution in Ref. [6], we assume that Un(t) =
Un,eq + (Un,neq − Un,eq)θ (t) where Un,eq is the equilibrium
potential while Un,neq is the nonequilibrium potential at the
long-time limit. As a result of this instantaneous approxima-
tion, at t = 0, the system is in equilibrium with Hamiltonian
Heq while at t > 0 the system is in a nonequilibrium state with
a time-independent Hamiltonian Hneq.

Note that our fast algorithm relies critically on this
approximation where two static potentials are needed at
t = 0− and t = 0+. For instance, our method fails if Un(t) =
Un,eq + Un,neq cos(ωt). With this instantaneous assumption,
our method could be extended to the first-principles calculation
where only two static self-consistent Coulomb potentials can
be obtained by the usual NEGF method combined with density
functional theory (DFT) calculation [24]. In terms of spectral
function Aα(ε,t), the lesser Green’s function G< is given by [6]

G<(t,t) = i
∑

α

∫
dε

2π
f (ε)Aα(ε,t)�α(ε)A†

α(ε,t). (2)

For the upward steplike bias pulse the Aα(ε,t) is [6]

Aα(ε,t) = G
r
(ε + 	α) −

∫
dω

2πi

e−i(ω−ε)tG
r
(ω + 	α)

(ω − ε + 	α − i0+)

×
[

	α

(ω − ε − i0+)
+ 	G̃r (ε)

]

≡ A1α(ε + 	α) +
∫

dωe−i(ω−ε)tA2α(ω,ε), (3)

where G
r

and G̃r are the nonequilibrium and equilibrium
retarded Green’s function respectively, 	α is the amplitude
of external bias −Vα , and 	 = Uneq − Ueq is a matrix where

the subscript “neq” and “eq” refer to nonequilibrium and
equilibrium potentials, respectively.

Despite the simplification from the conventional double
time G<(t,t ′) to single time G<(t,t) used in Eq. (1), the
computational cost to obtain G< remains very demanding due
to the following reasons: (1) Consider Aα(ε,t) with a matrix
size of N ; matrix multiplications G

r
(ω + 	α) and G̃r (ε) in

the integrand of Eq. (3) require computational complexity of
O(N3) for each time step. As a result, the total computational
cost over a period of time is at least O(T N3) where T is the
number of time steps. (2) Double integrations in energy space
are required for G<. The presence of numerous quasiresonant
states whose energies are close to the real energy axis makes
the energy integration in Aα extremely difficult to converge.
This problem can be overcome using the CAP method [25].
The essence of the CAP method is to replace each semi-infinite
lead by a finite region of CAP while keeping the transmission
coefficient of the system unchanged. In addition, it has been
demonstrated in Ref. [15] that the first-principles results of
transient current for molecular junctions obtained from the
exact numerical method (non-WBL) and the CAP method
are exactly the same. Using the CAP method, the poles of
the Green’s function can be obtained easily and the spectral
function can be calculated analytically using the residue
theorem. Expanding the Fermi function using Padé spectrum
decomposition (PSD) [26] further allows us to calculate the
transient current separately in space and time domain making
the O(T 0N3) algorithm possible.

Now we illustrate how to achieve our algorithm for the
transient current calculation, i.e., Iα(tj ) for j = 1,2, . . . ,T .
Substituting Eq. (3) into Eq. (2), G<(t,t) can be written as

G<(t,t) = (i/π )

[
B1 +

∫
dωdω′e−i(ω−ω′)tB2(ω,ω′)

+
∑

α

∫
dεdω′ei(ω′−ε)t f (ε)A1αWαA

†
2α + c.c.

]
,

(4)

where B1 = ∫
dεf (ε)

∑
α A1αWαA

†
1α , B2(ω,ω′) = ∫

dεf (ε)∑
α A2α(ω,ε)WαA

†
2α(ω′,ε), and Wα is the CAP matrix. In

terms of poles of the Green’s function and the Fermi dis-
tribution function, we have (see Appendix A)

G<(t,t)

= (i/π )

[
B1 +

∑
nm

e−i(εn−ε∗
m)t B̄2(εn,ε

∗
m)

+
∑

α

∑
lm

e−i(ε̃l−ε∗
m+	α )t f̄ (ε̃l)B̄3α(ε̃l ,ε

∗
m) + c.c.

+
∑

α

∑
nm

e−i(εn−ε∗
m)t f (εn − 	α)B̄4α(εn,ε

∗
m) + c.c.

]
,

(5)

where εn and εm (n = 1,2, . . . N) is the complex energy
spectrum of Hneq − i

∑
α Wα in the lower half plane while ε̃l

is the poles of f (E) using PSD with l = 1, . . . Nf ; Nf is the
total number of those poles for the adopted Padé approximant;
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other parameters in Eq. (5) are given as

B̄2 = −4π2[B2(ω,ω′)(ω − εn)(ω′ − ε∗
m)]

∣∣∣∣
ω=εn,ω′=ε∗

m

, (6)

B̄3α = −2πiA1α(ε̃l)Wα[A†
2α(ω′,ε̃l)(ω

′ − ε∗
m)]

∣∣∣∣
ω′=ε∗

m

, (7)

B̄4α = −4π2[A1α(ε)WαA
†
2α(ω′,ε)(ω′ − ε∗

m)

× (ε − εn + 	α)]

∣∣∣∣
ε=εn−	α,ω′=ε∗

m

, (8)

and

f̄ = 2πi[f (ε)(ε − ε̃l)]

∣∣∣∣
ε=ε̃l

(9)

is the residue of f in the PDS representation.
Within CAP framework, G< in Eq. (1) is the lesser Green’s

function of the central scattering region excluding the CAP
regions. Substituting the second term of Eq. (5) into the first
term in Eq. (1), we find its contribution to current (denoted
as I1)

I1(t) = Re
∑
nm

e−i(εn−ε∗
m)tTr(�α2HneqB̄2(εn,ε

∗
m)�α)

≡ 2Re
∑
nm

e−i(εn−ε∗
m)tMnm, (10)

where the matrix M does not depend on time. We see that the
space and time domains have been separated.

Denoting a Vandermonde matrix Vjk = exp(iεktj ) with
k = 1,2, . . . ,N , tj = jdt , j = 1,2, . . . ,T where dt is the
time interval, we have I1(tj ) = [V t (M + M†)V ∗]jj . Using this
approach, we finally obtain (see Appendix C for details)

IL(tj ) = I0L + [V tM1V
∗]jj +

( ∑
α=L,R

[V tM2αṼ ∗
α ]jj + c.c.

)
,

(11)

where Ṽαjk = exp[i(ε̃k + 	α)tj ] is a T × Nf matrix, M1 is a
N × N matrix while M2 is a N × Nf matrix. Since εk is the
complex energy in the lower half plane, Vjk goes to zero at large
j . Hence I0L is the long-time limit of transient current which
can be calculated using the Landauer-Buttiker formula. The
time-dependent part of the transient current can be separated
into a real-space calculation (calculation of M1 and M2α) and
then a matrix multiplication involving time. We note that
at room temperature the Fermi function can be accurately
approximated by 15 or 20 Padé approximants. Hence the
calculation of [V tM1V

∗]jj + (
∑

α[V tM2αṼ ∗
α ]jj + c.c.) can

be combined to give T N2 computational complexity.
Now we examine the computational complexity of this

algorithm (denoted as algorithm I). Clearly the total com-
putational complexity is N3 + T N2. At this stage, the
algorithm is not O(1) yet. In part III, we will show
that matrix multiplication V tM , where M is M1 or M2α ,
can be done using the FMM and FFT (denoted as
algorithm II). This will reduce the computational complexity
of V tM from T N2 to T log2 N . Hence for T < N2, the
computational complexity is N3 + N2 log2 N . For T > N2,

the scaling is N3 + T log2 N . However, for large T , the
physics comes into play. Since εj is the complex energy of the
resonant state, VjT = exp(−iεj dtT ) decays quickly to zero
before T = N2. For a graphene nanoribbon with N = 104 (see
details below), the maximum value of VjT = exp(−iεj dtT ) is
10−3 when T = N and dt = 1 fs. Consequently all the matrix
elements are zero for T = 10N . Hence for large systems, the
chance to go beyond T = N2 is small. In this sense, algorithm
II is order O(1) algorithm.

III. FAST MULTIPOLE METHOD

The fast multipole method [20] has been widely used and
has been ranked among the top ten best algorithms in the
20th century [27]. It is extremely efficient for large N . In the
following, we will illustrate how to speed up the calculation
of transient current defined in Eq. (12) below. We want to
calculate the following quantity:

I (tj ) =
∑
n,m

exp(−iεntj )Mnm exp(iε∗
mtj ), (12)

where the matrix M can be expressed in terms of vec-
tors as M = (c0,c1, . . . ,cN−1) and Vnj = exp(−iεntj ) is
a Vandermonde matrix with tj = jdt and j = 1,2, . . . T .
Equation (12) is of the form V tMV ∗ where t stands for
transpose. In the following, we outline how to calculate V tc

using κ1N + κ2N log2 N operations where c is a vector of N

components and κ1 and κ2 are constants.
Setting aj = exp(−iεj dt) and denoting T the number of

time steps, then b = V tc is equivalent to bn = ∑N−1
j=0 cj (aj )n.

A direct computation shows that the entries of b = V tc are the
first T coefficients of the Taylor expansion of

S(x) =
N−1∑
j=0

cj

1 − ajx
=

∞∑
n

N−1∑
j=0

cj (ajx)n =
∑

n

bnx
n, (13)

where bn = ∑N−1
j=0 cj (aj )n. Denoting S̄(x) = ∑T −1

n=0 bnx
n and

setting x = ωl
T with ωT = exp(i2π/T ) we can calculate

S̄(ωl
T ) which is the Fourier transform of bn,

S̄
(
ωl

T

) =
N−1∑
j=0

T −1∑
n=0

cja
n
j ωnl

T =
N−1∑
j=0

cj

1 − (
ajω

l
T

)T

1 − ajω
l
T

= ω−l
T

N−1∑
j=0

cj

(
1 − aT

j

)
(1/ωT )l − aj

,

where we have used [ωT ]T = 1. Note that the fast multipole
method (FMM) aims to calculate vl = ∑

j cj /(xl − aj ) with
O(N ) operations instead of N2 operations. Hence S̄(ωl

T ) can
be obtained using FMM, from which we calculate bn using
FFT.

Now we estimate the computational complexity for T �N .
For FMM we need κ1max(T ,N ) operations where κ1 is
about 40 log2(1/τ ) with τ the tolerance [32]. For FFT the
computational complexity is at most κ2N log2 N where κ2 is a
coefficient for FFT calculation [32]. To compute V tM where
M has N vectors, we have to calculate V tc N times. Hence the
total computational complexity is κ1N

2 + κ2N
2 log2 N . This
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algorithm is denoted as algorithm IIa while the algorithm for
T < N2 discussed below is denoted as algorithm IIb.

For very large T up to T = N2 (if N = 104 we have
T = 108), we will show that the computational complexity
is κ1N

2 + 2κ2N
2 log2 N . In fact, it is easy to see that I (tj )

defined in Eq. (12) are the first T coefficients of the Taylor
expansion of

S(x) =
N−1∑

n,m=0

Mnm

1 − ana∗
mx

(14)

=
∞∑
j

N−1∑
n,m=0

Mnm(ana
∗
m)j xj =

∑
j

I (tj )xj , (15)

where an = exp(−iεndt). Now we define two new vectors u

and d which have N2 components with ut = (ct
0,c

t
1, . . . ,c

t
N−1)

[recall our definition M = (c0,c1, . . . ,cN−1)] and dt =
(a∗

0a
t ,a∗

1at , . . . ,a∗
N−1a

t ), where once again t stands for trans-
pose. With the new vectors defined, S(x) in Eq. (14) is
expressed as

S(x) =
N2−1∑
j=0

uj

1 − djx
, (16)

which is exactly the same form as Eq. (13). The only difference
is that c and a in Eq. (13) have N components and S has
to be calculated N times while u and d in Eq. (16) have
N2 components and we calculate S defined according to
Eq. (16) just once. Therefore the computational complexity
is κ1N

2 + κ2N
2 log2 N2. If T = nN with n = 1,2, . . . N , it

is not difficult to show that the computational complexity is
κ1T N/n + κ2T (N/n) log2(nN ) = κ1N

2 + κ2N
2 log2(nN ).

To summarize, the computational complexity of Eq. (12) is
κ1N

2 + 2κ2N
2 log2 N for T < N2. It is easy to show that for

T > N2 the scaling is dominated by κ2T log2 N . However, for
large T , the physics comes into play. Since aj = exp(−iεj dt)
with εj the energy of resonant state, aT

j quickly decays to zero
before T = N2 and hence no need to go up for T > N2.

IV. NUMERICAL TEST

To demonstrate the power of this algorithm, we calculate
the transient current in a graphene nanoribbon. Graphene is
a well-known intrinsic two-dimensional (2D) material with
many exotic properties [28,29]. Its transient behavior in
response to a steplike pulse was studied in the literature
[7,30,31]. Tuovin et al. [7] explored the metal-graphene-metal
system at zero temperature under the effect of ribbon length,
width, and bias and found the present of a several-hundreds-
femtoseconds oscillation period in transient current, caused
by the lead-ribbon reflections; Again at zero temperature,
Perfetto et al. [30] studied the phenomenon of two temporal
plateaus that appeared in the transient current of wide graphene
nanoribbon (width W � 20 nm) and deduced that the two
had arisen from diverse origins; for zigzag ribbon, Xie et al.
[31], investigated the difference in the current response for
symmetric and asymmetric systems. While in all these studies
the transient current through a central region of pure graphene
nanoribbons under a step bias has been studied for both
armchair and zigzag structures under different circumstances,

FIG. 1. The transmission coefficient of the zigzag graphene
nanoribbon for a system of 10 000 atoms. The solid line (TS) is the
exact numerical result using self-energy of the lead and the dashed
line (TCAP ) is from CAP.

none of them has considered the cases when barrierlike gated
regions exist in central region. Here, we will test our algorithm
on a gated zigzag graphene nanoribbon at room temperature
using the tight-binding (TB) Hamiltonian given by

Ĥ = −h0

∑
〈i,j〉

ĉ
†
i ĉj − q

∑
i

[Viθ (t) + Vg1i + Vg2i]ĉ
†
i ĉi , (17)

where ĉ
†
i (ĉi) is the creation (annihilation) operator at site

i and h0 = 2.7 eV is the nearest hopping constant. Here
V (x) = VL + (VR − VL)x/L is the potential landscape due
to the external bias with VR = −VL = 0.54 V and Vg1 and
Vg2 are gate voltages in regions S1 and S2, respectively.

We first confirm that the transient current calculated using
this method is the same as that of Ref. [15]. Using 30 layers
of CAP, transmission coefficient versus energy was calculated
which shows good agreement with the exact solution (Fig. 1
gives the comparison for a graphene nanoribbon with N =
10 000). This also ensures the correct steady-state current.
For the transient current, excellent agreement is also obtained
between our algorithm and that of Ref. [15] (see Fig. 2).
We note that even in the presence of gates, an overshooting
at the beginning is still observed, similar to the ungated
graphene [31] but the oscillating tail is not observable after
the overshooting peak. We also tested with the cases for
gated graphene ribbon with a larger width W (not shown)
and obtained higher transient current over time which was
observed previously [7] for the ungated condition.

We have performed calculations on transient current
through a zigzag graphene nanoribbon of 10 000 atoms with
T = 20 000 time steps (each time step is 1 fs). The width
of the system is two unit cells (16 atoms) while the length
of the system is 625 unit cells. Two gate voltages of 2.2 V
were applied so that the system is in the tunneling regime.
The bias voltage is vL = −vR = 0.5 V. From Fig. 3, we see
a typical behavior of transient current with the current shots
up initially and then decreasing to the long-time limit. Our
numerical results using FMM (algorithm II) show that 100 ps
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FIG. 2. (a) Configuration of the gated graphene nanoribbon.
The S1 and S2 gates are of values 0.81 and −0.81V respectively.
(b) Transient current of zigzag graphene nanoribbon for a system of
600 atoms. The dashed line is the dc limit.

is needed to reach the dc limit. The oscillatory behavior is due
to resonant states in the system.

Now we test the scaling of our algorithm by calculating the
transient current for nanoribbons with different system sizes
ranging from 600 to 10 200 atoms. We first test algorithm
I. Computational time of transient current for three time steps
against system sizes N is shown in Fig. 4(a). We have fitted the
data using 50N3 + T N2 with very good agreement showing
T N2 scaling for the time-dependent part. For comparison,
we have also plotted the computation time using method in
Ref. [15]. We found that the number of energy points NE

depends on the spectrum of resonant states of the system. For
graphene nanoribbons with 600 atoms, we have used NE =
6000 to converge the integral over Fermi function. Figure 4(a)
shows that a speed up factor of 1000 T is achieved at N =
2400. The scaling is shown in Fig. 4(b), from which we see
that for T < N the computational time is almost independent
of the number of time steps.

FIG. 3. Transient current of zigzag graphene nanoribbon for a
system of 10 000 atoms at temperature of 300 K. The inset is the
long-time behavior between 17 and 18 ps. The dashed line is the dc
limit of transient current.

FIG. 4. (a) Scaling of computation time against N at T = 3 (each
time step is 1 fs). The fitted curve in the form of 50N3 + T N 2 is in
good agreement with the calculated results (Y axis is on the right). In
order to compare the performance of Ref. [15], 6000 energy points
were used for integration (Y axis is on the left). (b) Scaling of CPU
time against t for N = 10 200 (t = 100 fs corresponds to T = 100)
using algorithm I. Left-hand side: exponential scale in t ; Right-hand
side: linear scale in t . These show that the computational time is
nearly independent of time steps over a range of T but becomes
proportional to it at an extremely large number of data points ranging
over 10 thousand points.

Now we examine algorithm II which reduces the scaling
T N2 further. Notice that the scaling T N2 comes from matrix
multiplication involving Vandermonde matrix V tM1. A fast
algorithm is available to speed up the calculation involving
a structured matrix such as the Vandermonde matrix. As
discussed in detail in Sec. III, we can use FMM [20,21]
and FFT to carry out the same matrix multiplication using
only κ1N

2 + κ2N
2 log2 N operations provided T < N2. Here

the coefficient κ1 is a large constant that depends only on the
tolerance of the calculation τ and the setup of FMM. The
theoretical estimate of this coefficient is about 40log2(1/τ )
where τ is the tolerance [32] in the FMM calculation in which
we used τ = 10−4. When implementing FMM, this coefficient
is in general larger than the theoretical one.

To test algorithm II, we have calculated the transient current
numerically for N = 104 and T = 108 using FMM and FFT.
The configuration of the system is the same as that appearing
in the main text (Fig. 1) except the width W of the system is
now 17 times wider with a total of 10 200 (∼104) atoms. The
time step is 0.012 fs. The computed transient current using
algorithms I and II are shown in Fig. 5. The purpose of this
calculation is to test the computational complexity only. All
we need to do is to compute

S̄
(
ωl

T

) = ω−l
T

N2−1∑
j=0

uj

(
1 − dT

j

)
(1/ωT )l − dj

(18)

using FMM and then take FFT to obtain I (tj ) where uj and dj

have been defined just before Eq. (16). Note that uj has been
obtained in the time-independent calculation.

If (1/ωT )j and dj in Eq. (18) are uniformly distributed
on the complex plane, the FMM can be done much faster.
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FIG. 5. Transient current calculated by algorithms I, IIa, and IIb;
IIa and IIb refer to the cases with FMM methods targeting T = N

and T = N 2 respectively.

However, as shown in Figs. 6 and 7, the unit distribution
of (1/ωT )j and dj are highly nonuniform in our case.
Actually, (1/ωT )j are distributed nonuniformly along the
circle (Fig. 6) while dj are distributed in a sector of unit circle
(Fig. 7). This makes the calculation more difficult. For N =
104 and T = N8, we found that the optimum number of levels
in FMM is 10. With ten levels in FMM, over 60% of CPU time
was spent on direct sum in FMM calculation.

In Fig. 5, we have tested algorithm IIa which is suitable
for T = N and algorithm IIb designed for T = N2 against
algorithm I. For T < N , the results of algorithm I, algorithms
IIa and IIb, are on top of each other. For T > N , the calculation
was done for T = N2. In Fig. 5, we only show the results for
T < 40 000. There is no significant feature in the transient
current plot beyond that.

Denote t1 the CPU time needed for the spacial calculation
(order N3), t2 needed for the temporal part [matrix multipli-
cation in Eq. (7)]. Using a workstation of Xeon X5650 with
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FIG. 6. Distribution of (1/ωT )j on the complex plane.
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FIG. 7. Distribution of dj on the complex plane.

12 cores and frequency 2.67 GHz, we obtained t1 = 3500 s
using 12 cores and t1 = 33 800 s using a single core so
the efficiency of multithreading is about 80%. For FMM
calculation, multithreading could be very inefficient and we
have used a single core to perform the calculation. We found
t2 = 3400 s for T = 108 using a single core. We see that for
T = 108 the time spent in the time-dependent part is about
one-tenth of the time-independent calculation. This confirms
that our method is of order O(1) as long as T < N2. We
wish to point out that algorithm II is aimed to calculate the
transient current I (t) with time steps T = N2 at one shot with
scaling N2log2N . This scaling remains if we want I (t) with
the number of time step less than N2.

V. DISCUSSION AND CONCLUSION

Since our algorithm is based on the NEGF-CAP formalism,
it could be extended to the NEGF-DFT-CAP formalism
which performs the first-principles calculation. With the fast
algorithm at hand, many applications can be envisaged. For
instance, the transient spin current (related to spin transfer
torque) using the NEGF-DFT-CAP formalism could be carried
out for planar structures where k sampling in the first Brillouin
zone is needed. It is straightforward to include k sampling in
our method. It is also possible to extend this method to the case
when electron-phonon interactions in the Born approximation
as well as other dephasing mechanism are present [33].
Finally, first-principles transient photoinduced current on two-
dimensional layered materials could be calculated using our
method.
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APPENDIX A: PADÉ APPROXIMANT

Brute force integration over Fermi function along real energy axis to obtain G<(t,t) may need thousands of energy points
to converge which is very inefficient. To obtain an accurate result while reducing the cost, fast converging Padé spectrum
decomposition (PSD) is used for the Fermi function f in Eq. (4) in the main text so that the residue theorem can be applied.

Using the [n − 1/n] PSD scheme [26] with the Padé approximant accurate up to O[(ε/kT )4n−1], the Fermi function f can
be expressed as

f (ε) = 1

2
−

n∑
j=1

2ηjβε

(βε)2 + ξj
2 , (A1)

where ξj and ηj are two sets of constants that can be calculated easily. Using the PSD scheme the analytic form of G< in Eq. (4)
of the main text can be obtained using the residue theorem.

APPENDIX B: CALCULATION OF THE SPECTRAL FUNCTION

We express G̃r (ε) and G
r
(ε), the equilibrium and nonequilibrium retarded Green’s functions, respectively in terms of their

eigenfunctions by solving the following eigenequations for Heq and Hneq [15], i.e.,

(Heq − iW )ψ0
n = ε0

nψ
0
n , (Heq + iW †)φ0

n = ε0
nφ

0
n, (B1)

where W = ∑
α Wα and similar equations can be defined for Hneq. Using the eigenfunctions of Heq − iW and Hneq − iW , we

have

G̃r (ε) = [ε − Heq + iW ]−1 =
∑

n

∣∣ψ0
n

〉〈
φ0

n

∣∣(
ε − ε0

n + i0+) , (B2)

G
r
(ε) = [ε − Hneq + iW ]−1 =

∑
n

|ψn〉〈φn|
(ε − εn + i0+)

. (B3)

Performing the integral over ω using the residue theorem, the analytic solution of Aα is obtained,

Aα(ε,t) =
∑

n

|ψn〉〈φn|
ε+	α − εn + i0+ +

∑
n

ei(ε+	α−εn)t |ψn〉〈φn|
ε − εn + i0+

[
	α

ε + 	α − εn + i0+ − 	
∑

l

∣∣ψ0
l

〉〈∣∣φ0
l

∣∣
ε − ε0

l + i0+

]
, (B4)

where 	 = Hneq − Heq.

APPENDIX C: CALCULATION OF THE TRANSIENT CURRENT

Starting from Eq. (1) and in analog to Eq. (6) of the main text, the expressions of the current in Eq. (7) of the main text can
be obtained as follows:

I0L(tj ) = 2ReTr

[
i

π
�LHneqB1�L

]
,

M1 = ReTr

[
i

π
�L[2Hneq − (εn − ε∗

m)]

(
B̄2 +

∑
α

f (εn − 	α)B̄4α

)
�L

]
,

M2α = ReTr

[
i

π
�L[2Hneq−(ε̃l−ε∗

m+	α)][f (ε∗
m)B̄3α]�L

]
.

The expression of the transient current IR(t) is similar to Eq. (7).
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