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Abstract
Wenumerically investigate the electronic transport properties of graphene nanoribbons and carbon
nanotubeswith inter-valley coupling, e.g., in N N3 3´ and N N3 3´ superlattices. By taking
the 3 3´ graphene superlattice as an example, we show that tailoring the bulk graphene
superlattice results in rich structural configurations of nanoribbons and nanotubes. After studying the
electronic characteristics of the corresponding armchair and zigzag nanoribbon geometries, we find
that the linear bands of carbon nanotubes can lead to theKlein tunnelling-like phenomenon, i.e.,
electrons propagate along tubes without backscattering even in the presence of a barrier. Due to the
coupling betweenK and K ¢ valleys of pristine graphene by 3 3´ supercells, we propose a valley-
field-effect transistor based on the armchair carbon nanotube, where the valley polarization of the
current can be tuned by applying a gate voltage or varying the length of the armchair carbon
nanotubes.

1. Introduction

Valleytronics aim to design high-efficiency and low-dissipation electronic devices bymanipulating the Bloch
electrons’ valley degree of freedom,which refers to the localminima of the electronic band structure in the
reciprocal space. In some traditionalmulti-valley systems, such as silicon [1–3], bismuth [4], and diamonds [5],
the valley degree of freedom is shown to be controllable to carry and transport information. In two-dimensional
materials, honeycomb-lattice systems are of special interest in the study of valleytronics due to the presence of
two inequivalent valleysK and K ¢ [9–11]. Particularly, graphene has attractedmuch attention due to its excellent
electronic andmechanical properties [6–8]Various valleytronics devices have been proposed in graphene
nanostructures [12–16] utilizing, e.g., zigzag edges [17], zero-linemodes [18–20], topological line defects [21–
23], strain andmechanical engineering [24, 25], as well as temperature gradient [26], to generate and control
valley-polarized currents.

Recently, a new valley engineeringmechanism is proposed in N N3 3´ or N N3 3´ superlattices of
graphene [27]. Due to the band folding in the superlattice, the inequivalent K K ¢ valleys in pristine graphene are
folded into the sameΓ point and thus inter-valley coupling arises that act as valley-orbit coupling similar to
spin–orbit coupling providing promising valley-processingmechanisms via electricalmeans. Reference [27]
suggested that the N N3 3´ or N N3 3´ superlattices could be realized in periodically doped graphene.
More recently, such kind of special supercells are also shown to appear in graphene proximity-coupledwith
topological insulator substrates [28].
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In this article, we explore the potential application of these graphene superlattices in valleytronics and extend
our study to carbon nanotubes.Within top-adsorption case, we study the representative 3 3´ superlattice
of graphene and carbon nanotubes without loss of generality since the inter-valley couplingmechanisms are
universal features in these superlattices. The 3 3´ superlattice with top-adsorption introducesmultiple
structural configurations of graphene nanoribbons and nanotubes.We focus on three kinds of zigzag ribbons,
two kinds of armchair ribbons, and typical armchair and zigzag single walled nanotubes, and theoretically
investigate their electronic properties using the tight-bindingmodel. Our numerical results show that there exist
Klein tunneling-like phenomena in 3 3´ armchair and zigzag carbon nanotubes even in the presence of a
barrier. By employing the inter-valley coupling to induce valley processing, we propose a valley-field-effect
transistor consisting of pristine and 3 3´ armchair carbon nanotube, which generates nearly fully valley-
polarized current at large gate voltage and electron energy scale.

The remaining of our paper is organized as follows. In section 2, the tight-bindingHamiltonian of the bulk
3 3´ graphene and theGreen’s functionmethod are introduced. The numerical results on electronic and

transport properties of various confined graphene nanostructures, including zigzag and armchair ribbons, and
single walled nanotubes are shown in section 3. A brief summary is given in section 4.

2. Tight-bindingHamiltonian and theoretical formalism

In 3 3´ graphene superlattice, carbon atoms are still themajority andπ-orbital expansion is therefore a
reasonable starting point. The nearest-neighbor tight-bindingHamiltonian of the bulk 3 3´ graphene
reads: [27]

H t c c u c c , 1
i j

i j i j
i

i i i
,

,å å= - +
á ñ

( )† †

where ci
†(ci) is theπ-orbital creation (annihilation) operator on site i. To recover the single-valleymetallic phase

of bulk 3 3´ graphene superlattice [27], the systemparameters are precisely determined. The nearest-
neighbor hopping amplitudes ti j, are t 2.9 eV1 = between top-absorption site and adjacent carbon atoms, and
t 2.6 eV2 = between carbon atoms, respectively. The on-site potentials ui of different sites are chosen to be
u 4.79 eV1 = - for top-absorption site, u 1.35 eV2 = - for its three nearest carbon sites, and u 1.05 eV3 = - for
the rest carbon sites with no top-absorption neighbors. These parameters perfectly recover the band structure in
reference [27], where periodic adatomor top-absorption introduces symmetry-breaking and valley-scattering in
graphene superlattice. Detailed procedures on parameter selection can be found in reference [27].

Based on this tight-bindingHamiltonian, the band structure of bulk 3 3´ graphene is obtained as
shown infigure 1(a)where the inequivalentK and K ¢ valleys in pristine graphene are folded at the sameΓ point
due to the band folding. In our transport study, we focus on an energy interval within several eV around the
Fermi energy. Infigure 1(a), it is obvious that the three bands (labeled as ‘1’, ‘2’ and ‘3’) dominate in this energy
range. Bands ‘2’ and ‘3’ form an ideal quadratic crossover [27].Moreover, one can also notice that bands ‘1’ and

Figure 1.Panel (a): band structure of bulk 3 3´ graphene superlattice calculated from tight-bindingHamiltonian defined in
equation (1)with periodic boundary conditions. Panels (b), (c) and (d): schematic plots of three types of 3 3´ zigzag graphene
ribbons. Green dots stand for top-absorption sites in the lattice. Blue rectangles indicate the unit cell in every setup. The ribbons are
finite in y direction and periodically infinite in x direction.
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‘3’ are almost linear aroundΓ point. The influence of such kind of linear dispersionwill be discussedwhen
studying the transport properties of 3 graphene nanoribbons and carbon nanotubes.

Below, we utilize theGreen’s functionmethod to investigate the valley-related electronic transport
properties. From the tight-bindingHamiltonian shown in equation (1), the transmission coefficient of electrons
at energyE can be expressed as:

T E G GTr , 2L
r

R
a= G G( ) [ ] ( )

where G E Hr r 1= - - S -[ ] is the retardedGreen’s function, and G Ga r= ( )† is the advancedGreen’s
function. r

L
r

R
rS = S + S is the self-energy from the left and right leads. L RG is the linewidth function

describing the coupling between the left/right lead and the central scattering region, and can be defined
as iL R L R

r
L R
aG = S - S[ ].

3.Numerical results and discussions

In this section, numerical results on the electronic structures and transport properties of typical nanoribbons
and nanotubes of 3 3´ graphene supercell are presented, including both zigzag and armchair geometries.

3.1. Zigzag ribbons of 3 3´ graphene superlattice
As displayed infigure 1, we exhibit three kinds of 3 3´ zigzag graphene nanoribbons (ZGRs). Top-
absorption sites are highlighted as green dots. Blue rectangles are used to indicate the unit cells in different
configurations. For simplicity, the setups in panels (b), (c), and (d) offigure 1 are respectively denoted as ZGR-1,
ZGR-2, andZGR-3. Their geometric differences can be easily distinguished from the relative position of top-
absorption sites and their presence/absence at the ribbon boundaries. The lower boundaries of ZGR-1 and
ZGR-2 purely consist of carbon atomswhile the absorption sites of these two samples are located on different
sublattices. Differently, adsorption sites appear at the lower boundary of ZGR-3. As displayed infigure 1, these
ZGRs have finite widths along the y direction and are periodic along the x direction. These zigzag ribbons can be
realized by cutting a large 3 3´ graphene sheet along proper directions, like the fabrication of graphene
nanoribbon [29] or through the lithographymethod [30]. In ourfirst principles calculation [31], we found that
ZGR-1 exhibits the lowest Gibbs free energy, while ZGR-3 exhibits the highest one. Therefore, ZGR-1 should
theoretically be themost stable structure in these ZGRs. In our following discussions, all these setups have been
considered andwewill show that they possess distinct electronic properties.

Figure 2 displays the band structures of three different zigzag graphene ribbons for different widths (e.g., 24,
52, and 100 lattice sites). Thefirst, second and third rows offigure 2 correspond, respectively, to ZGR-1, ZGR-2
andZGR-3.One canfind thatfigure 2(a) (for ZGR-1with awidth of 24 lattice sites) exhibits a large energy gapΔ
located in the interval of [−1,−2]eV, deeply underneath the Fermi energy.Meanwhile, two nearlyflat bands lie
in the gap. By projecting the local density of states of the two bands onto the lattice sites, we find that they are
localized along the zigzag ribbon boundaries and thus they are edgemodes, which originate from the dangling

Figure 2.Band structures of three types of 3 zigzag ribbonswith various system sizes. Panels (a)–(c): band structures of ZGR-1with
ribbonwidth 24, 52, and 100 lattice sites; panels (d)–(f): dispersion relations of ZGR-2with system size 24, 52, and 100 sites; panels
(g)–(i): bands of ZGR-3withwidth 24, 52, and 100 sites.
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bonds along the zigzag edges, like those in zigzag ribbon of pristine graphene. As clearly presented infigure 1, the
upper and lower edges of these ZGRs are different, leading to the formation of two different edgemodes. As the
ribbonwidth increases, the energy gap above the edgemodes vanishes first as shown infigure 2(b) and the lower
gap closes at a larger ribbonwidth as displayed infigure 2(c). Therefore, these two band gaps arise from the
finite-size effect and disappear when the system size is sufficiently large.

For ZGR-1 as the systemwidth increases, another observation is that the edgemodes are pinned at kx p= 
but evolve with the bulk states around k 0x » . One can also notice that, in figure 2(c), the band structure
establishes three envelopes, labeled as ‘1’–‘3’. Upon larger system sizes, the envelopes become further enhanced
with higher energy degeneracies. Comparedwithfigure 1(a), one reasonable explanation is that these envelopes
reflect the three bands in the corresponding bulk bands. For ZGR-2, bands for systemwidths 24, 52, and 100
sites are respectively plotted infigures 2(d), (e) and (f), which exhibit similar characters as those in ZGR-1 except
that these two edgemodes are separable and divide the band gap into three narrow ones. As the ribbonwidth
increases, the upper and lower gaps close first and themiddle gap disappears at last. The case for ZGR-3 is similar
to that of ZGR-2 as displayed in the last three panels offigure 2.However, different fromZGR-2, the upper
surface band of ZGR-3 isflatter. Nevertheless, the band structures of these three types of zigzag ribbons share
some common features, including surface bands pinning at kx p=  and band envelopes at large system sizes.
Besides, these zigzag ribbons are allmetallic since the Fermi level lies in the conduction band.

Infigure 3, we plot the transmission coefficients of these zigzag ribbons as a function of energy, where the left
and right leads are exactly extended from the central region, hence resulting in the quantizedT EF( ). Panels (a),
(b) and (c) correspond respectively to ZGR-1, ZGR-2 andZGR-3. In each setup, three ribbonwidths (i.e., 24, 52
and 100 lattice sites) are considered. One can see an exactmapping between the transmission coefficients in
figure 3 and the band structures infigure 2. At small system sizes, all the ZGRs have zero transmission
coefficients at certain energy regions below the Fermi level, where the dispersion relations show energy gaps. For
ZGR-1, there are two zero-transmission-coefficient regionswhile three gaps exist in ZGR-2 andZGR-3 at
ribbonwidth (i.e., with 24 lattice sites in black lines). At a system size of 52, the zero conducting ranges shrink in
all panels offigure 3.Only one gap is present in the ZGR-2 andZGR-3, and two gaps still reside in the
transmission spectrumof ZGR-3, shown in red lines. For a larger systemwith 100 lattice sites, ZGR-1 has no zero
transmission area in thewhole energy interval and single narrow gaps appear in panels (b) and (c) offigure 3.
Thesefinite-size gaps eventually disappear at even larger systems. As the ribbonwidth increases, transmission
coefficient at the same energy increases rapidly for all systems.We also observe some oscillation behavior of
T EF( ) around EF » 0.5eV, which can be attributed to the band overlapping at these energies. One can deduce
fromfigure 2 that, the oscillations tend to bewilder at larger system sizes, which is confirmed by our transport
calculations.

Figure 3.Transmission coefficient as a function of Fermi energy for three types of 3 3´ zigzag graphene ribbons (ZGRs) at
different widths. Panels (a), (b), and (c) correspond to ZGR-1, ZGR-2, andZGR-3, respectively. In all panels, three ribbonwidths 24,
52, and 100 sites are evaluated.
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3.2. Armchair ribbons of 3 3´ graphene superlattice
Depending on the relative positions of top-absorption on the honeycomb lattice, there are two different
configurations of armchair graphene nanoribbons (AGRs).We schematically plot these AGRswithwidths of
two full unit cells infigure 4. For simplicity, we denote the armchair ribbon shown infigure 4(a) as AGR-1 and
the other one as AGR-2.Unlike zigzag ribbons of 3 3´ graphene, both armchair ribbons reproduce perfect

3 3´ periodicity. Thefirst-principles calculation suggests that theGibbs free energy of AGR-1 is higher
than that of AGR-2 [31]. Combiningwith the results of 3 3´ ZGRs, one can conclude that the ribbons for
both zigzag and armchair forms are less stable when the top-absorption sites reside on the ribbon boundaries.

The electronic properties of these AGRs are numerically investigated and displayed infigure 5. In our
calculations, two ribbonwidths (24 and 60 lattice sites) are considered for bothAGR-1 andAGR-2.One notices
that both armchair ribbons are good conductors, similar as the ZGRs. Figures 5(a) and (b) plot the band
structures of AGR-1. Apparently, there is a direct band gap at kx=0 around E 1.4 eV~ - . As the system size
increases from24 to 60 lattice sites, this gap becomes narrower as shown infigure 5(b), indicating itsfinite-size
nature. The transmission coefficient of AGR-1 as a function of energy is displayed infigure 5(c). It is found that
the conducting-forbidden regionmatches exactly the band gaps in the left panels. This gap is gradually reduced
when system size increases and finally vanishes as the ribbonwidth is large enough. For AGR-2, the numerical
results are drawn in the lower panels offigure 5. The energy dispersion of AGR-2 is rather similar to that of AGR-
1 except that AGR-2 has a larger band gap at the same system size. The transmission coefficient versus energy
curves infigure 5(f) also confirms this observation. As a result, a wider ribbonwidth is required to close the band
gap inAGR-2.

Comparedwith ZGRs, there is no edgemode inAGRs. This is amuch natural expectation for armchair-
edged ribbons because of the valleymixture behaviour. Another striking difference fromZGRs is that there is
less oscillation feature in the transmission spectrumof AGRs, which can be attributed to the absence of band-

Figure 4. Sketches of two types of 3 armchair graphene ribbons: (a)AGR-1 and (b)AGR-2, respectively. Blue rectangles show the
corresponding unit cells and green dots indicate top-absorption sites. The ribbons have finite widths in y direction and extend to
infinite x .

Figure 5.Panels (a) and (b): band structures of AGR-1with systemwidths 24 and 60 sites. Panel (c) plots the correspondingT versus
EF curves for these system sizes. Panels (d) and (e): band structures of AGR-2 at ribbonwidths 24 and 60 sites. Panel (f) shows the
transmission of AGR-2.
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folding from1×1 to 3 3´ supercells in the armchair configurations. Fromfigures 5(b) and (e), one can
observe that three band envelopes develop to reproduce the bulk bands of 3 3´ graphene superlattice.

3.3. Typical singlewall carbon nanotubes of 3 3´ graphene supercell
The carbon nanotubes of 3 3´ graphene supercells have similar structures as pristine carbon nanotubes.
Herewe consider two representing configurations: single wall armchair and zigzag carbon nanotubes.
Theoretically, 3 3´ armchair carbon nanotubes can be formed by connecting the upper and lower
boundaries of ZGR-3 as displayed infigure 1(d)with proper bonding.Meanwhile, 3 3´ zigzag nanotubes
can be formed by rolling up armchair ribbons as displayed infigure 4 and linking their edges accordingly.
Carbon nanotubes constructed in theseways possess the full 3 3´ periodicity. In our consideration, we
adopt the classification rule of pristine single wall carbon nanotubes [32, 33] to denote these two types of

3 3´ carbon nanotubes, where notations (n, n) and n, 0( ) stand for armchair and zigzag tubes,
respectively. Integer n in these notations refers to the number of unit vectors defined in the honeycomb lattice of
pristine bulk graphene.

Figure 6 displays the band structures of these 3 3´ armchair and zigzag carbon nanotubes at different
tube sizes where one can find that, similar to 3 3´ graphene nanoribbons, these two types of carbon
nanotubes are alsometallic and their Fermi energies lie deeply into the conduction bands. Specifically,
figures 6(a) and (b)display the energy dispersion relations of the 12, 12( ) and 20, 20( ) armchair carbon
nanotubes.When transforming the zigzag ribbons into armchairs tubes, it is clear that there are neither edge
modes nor gaps in the bands of 3 3´ armchair nanotubes. Infigure 6(a), one can see that there is a band
touching at E 1.4 eV» - . Near the touching point, the band density is low for this 12, 12( ) armchair tube. For a
larger 20, 20( ) tube as shown infigure 6(b), the band density becomes denser with afixed band touching point.
The band structures of the two 3 3´ zigzag carbon nanotubes are plotted in figures 6(c) and (d). The band
touching also appears in these systems. For the same energy, the bands of zigzag tubes under the touching point
reside around k 0x = point, instead of spreading in thewhole Brillouin zone as in the armchair tubes. This
behavior indicates that current carrier in zigzag ribbons has a larger group velocity in this energy range. Except
thisminor difference, the bands between armchair and zigzag tubes share lots of similarities.

Figures 6(e) and (f) display the transmission coefficients as a function of energy for the 3 3´ armchair
and zigzag carbon nanotubes. The results for 12, 12( ) and 30, 30( ) armchair nanotubes are shown infigure 6(e).
In awide energy range of E 2.5, 1F Î - -[ ) eV, there is only a single conducting channel in the 12, 12( ) armchair
tube. This energy range corresponds to the two touched bands infigure 6(a) for the same systemparameters. The
increase of system size narrows thisT= 1 region, as one can see from the red line for the 30, 30( ) armchair
nanotube. Another interestingfinding infigure 6(e) is that the transmission coefficients increase by 2 at a lot of
energy points. This behaviour reveals thatmany energy levels in the armchair tubes are doubly degenerate,
regardless of the system size. The transmission spectra of two 3 3´ zigzag tubes with sizes of 12, 0( ) and

Figure 6.Panels (a) and (b): band structures of 3 3´ armchair carbon nanotubes fabricated fromZGR-3 shown infigure 1(d), at
tube sizes 12, 12( ) and 20, 20( ). Panels (c) and (d): dispersion relations of 12, 0( ) and 45, 0( ) zigzag carbon nanotubes, formed by
folding armchair ribbons (figure 4) in y direction. Panel (e) plots the T EF( ) curves of 12, 12( ) and 30, 30( ) armchair tubes at different
Fermi energies. Panel (f) shows the transmission of zigzag tubes with system sizes 12, 0( ) and 45, 0( ).
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45, 0( ) are displayed infigure 6(f). Despite their distinct geometric configurations, the 3 3´ zigzag and
armchair carbon nanotubes have similarT EF( ) profiles.We also observe the large singlemode region for small
tube size and lots of doubly degenerate bands at zigzag nanotubes.

Infigures 6(a) and (c), the linear bands parallel to the blue arrows are rather attractive. In single layer
graphene, themassless Dirac fermionwith linear energy dispersion leads to the counterintuitive Klein paradox
[34, 35], where incoming relativistic particles penetrate high barrier with nearly perfect transmission at certain
angles. Klein tunnelling behaviour has been revealed in various graphene-based systems, such as graphene p− n
junctions [36, 37], deformed single layer [38], and twisted bilayer graphene [39], as well as spin-related graphene
system [40]. Similar perfect transmission is also observedwhen electron propagates in pristine carbon
nanotubes [41–43]. Inspired by thesefindings, we carry out numerical calculation to show the existence of Klein
paradox in the 3 3´ carbon nanotubes.

Our system in consideration is a 3 3´ 12, 12( ) armchair nanotube. A potential barrier with height of
V0 and certain length is exerted on the tubewhile other parts of the system remain unchanged.We calculate the
electron transmission coefficient through the barrier. Figure 7 plots the transmission coefficient as a function of
energy for several different barrier heights. The barrier length isfixed at 10 unit cells, and this length scale of

3 3´ armchair tube is depicted infigure 1(d), containing 4 sites along the x direction. It is found that, in a
wide energy windowof E 2.5, 1.7Î - -[ ]eV, electrons in these armchair carbon nanotubes can almost
perfectly penetrate the potential barrier. Quantized transmission coefficients ofT E 1F =( ) can be achieved for
barrier height up toV 0.5 eV0 = . Outside this region, the transmission coefficient dramatically drops in the
presence of potential barrier.

We carefully examined the numerical results and found that, theT E 1F =( ) energy window
E 2.5, 1.7Î - -[ ]eV corresponds to the linear dispersion region infigure 6(a), suggesting a direct correlation
between linear dispersion and nearly perfect transmission. In energy range E 2.5, 1.7Î - -[ ]eV, the linear
dispersion relation guarantees the electrons high group velocity, or so-called relativistic electron. In our carbon
nanotube systemwith potential barrier, the incident electrons normally collide with the barrier. The high-
velocity relativistic electron can penetrate the barrier without backscattering, resulting almost perfect
transmission or reflectionless tunneling.We further checked the dependence of this almost perfect tunnelling
on barrier length, at fixed electron energy of E 2.1 eVF = - and barrier strength ofV 0.5 eV0 = . The
transmission function versus barrier length is plotted in the inset offigure 7. Regardless of the barrier length, the
systemwith longer barrier remains transparent to the incident electrons and also gives rise to quantized
transmission coefficientT=1. These numerical evidences strongly suggest the existence of Klein tunnelling-
like behavior in the 3 3´ armchair carbon nanotubes, where electrons transport without backscattering in
the system, independent of barrier length and heights up to half an electron volt. Similar perfect tunnelling is also
observed in the 3 3´ zigzag carbon nanotubes. However, when the tube size increases, bulk states arise in
thewhole energy range and gradually co-exist with the linear bands. As a result, the Klein tunnelling-like
phenomenon becomes obscure and eventually disappears.

Figure 7.Transmission versus Fermi energy of a 3 12, 12( ) armchair carbon nanotubewhere a potential barrier with a length of 10
unit cells exists. Various colored lines stand for different barrier heightsV0. Inset: transmission of the same system atfixed energy
E 2.1 eVF = - and barrier height V 0.5 eV0 = for several barrier lengths. The length scale ‘unit cell’ is indicated infigure 1(d).
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3.4. Valley processing in 3 3´ armchair nanotubes
Due to the band folding of the 3 3´ superlattice, the inequivalentK and K ¢ valleys in pristine graphene and
carbon nanotubes are folded intoΓ point. Therefore, the inter-valley coupling and valley-orbit coupling effects
emerge in these nanotubes of 3 3´ superlattices of graphene [27], which qualify them as potential valley-
processingmaterials. Here, we propose a heterostructure composed of 1×1 and 3 3´ armchair carbon
nanotubes to act as a valley filter or valley polarizer as illustrated infigure 8(a), which consists of two identical
leadsmade of pristine armchair nanotubes and a central scattering regionmade of 3 3´ armchair carbon
nanotubes. A gate voltage is applied in the central region.We consider typical 8, 8( ) armchair nanotubes at both
parts, whose energy dispersions are respectively displayed infigures 8(b) and (c). The inter-valley coupling and
valley-orbit couplingmechanism in 3 3´ superlattices canmanipulate valley polarization coherently in
analogy to real spin for spintronics. Electrons propagating in the left pristine armchair carbon nanotube contain
equivalentK and K ¢ valley components.When the valley-unpolarized current in pristine armchair CNT enters
the central 3 3´ armchair nanotube region, thesemechanisms break the balance between the two
components byflipping electrons of K valley toK’ valley or vice versa. Hence in the outgoing current to the right
lead, one valley component is larger than the other. In anotherword, the current is valley-polarized. Similar to
the spin polarization, a valley polarization function can be defined to evaluate the efficiency of the device. The
valley polarization can be adjusted by external factors, such as bias voltage and gate voltage. The setup presented
here can serve as a prototype valley field effect transistor, where valley-polarized current is turned on/off via
applying the gate voltage as illustrated below.

The efficiency of this valley field effect transistor is characterized by the valley polarization function, which
can be defined in terms of the valley-specified transmission function as:

P
T T

T T
3V

K K

K K

=
-
+

¢

¢
( )

whereTK andTK¢ are transmission functions of electrons belonging toK and K ¢ valleys, respectively. To separate
electrons from equivalent valleys, a simple and effective way is to consider their different group velocities. The
group velocity, v E

k

1


= ¶

¶
, is related to the band structure, i.e., the slope of the band structures.When focusing on

thefirst subband of 8, 8( ) pristine armchair carbon nanotube shown infigure 8(b), it is clear that above the
Fermi energy electron inK valley has larger group velocity than that of K ¢ valley. The situation becomes reverse
below the Fermi level. Thus, we can calculate the transmission function contributed from any specific valley
under theGreen’s function frame. In the semi-infinite lead of pristine armchair carbon nanotube, the velocity of
incident electrons is connectedwith the linewidth function LG in the formof v U UL L L = G = G† [44, 45]. Here
vL is a diagonal velocitymatrix with nonzero diagonal elements contributed by electrons incoming from the left
lead. U is a unitary transformationmatrix ranked by eigenfunctions of LG , transforming it into a diagonalmatrix

LG . Obviously, there is an exactmapping between the incident electron velocities and the eigenvalues of line
width function: v 1L L= G( ) . Considering only the propagatingmodes of the first subband of 8, 8( ) armchair
carbon nanotubes (see figure 8(b)), both vL and LG are 2×2 diagonalmatrices. Incident electron fromK valley
has larger velocity, corresponding to the larger one of the two eigenvalues of LG . Based on this analysis, we can

Figure 8.Panel (a): illustration of a valley-field-effect-transistor based on pristine and 3 armchair carbon nanotubes. A gate voltage
is applied on the 3 armchair carbon nanotube region, which functions as valley-processing unit. The 3 armchair carbon nanotube
is characterized by the blue-colored top-absorption sites. Panels (b) and (c): band structures of 8, 8( ) pristine and 3 3´ armchair
carbon nanotubes, respectively.
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construct effective linewidth function using only the propagatingK and K ¢ valleymodes [45, 46]

,L,K K K K L,K K K KG = L G L¢ ¢ ¢ ¢
 †

where K,KL ¢ is the eigenfunction of LG for K K ¢ valleymode. R,K KG ¢ of the right lead can be produced similarly.
Following equation (2), the valley-specified transmission function can be straightforwardly expressed as

T G GTr r a
K K L,K K R,K K= G G¢ ¢ ¢[ ]

Then one can calculate the valley polarization PV via equation (3).
Wefirst evaluate the valley-specified transmission coefficientTK K¢ and valley polarization efficiency PV as

function of the electron energy. The systemunder investigation is armchair carbon nanotube-based valley-field-
effect-transistor as schematically plotted infigure 8(a). The numerically calculated transport properties are
exhibited infigure 9. The energy interval of interest is thefirst subband of pristine armchair carbon nanotube.
For the 8, 8( ) armchair systemwith 3 units length of 3 3´ armchair carbon nanotube, bothTK andTK¢ are
continuous functions of the electron energy as shown infigure 9(a). One can see thatTK is rather smooth and
larger than 0.8 in the focused energy regime, while themagnitude ofTK¢ changesmore abruptly and exhibits a
fluctuating pattern. This observation reveals that incident electrons from theK valley of the pristine nanotube
are less affected by the central 3 3´ armchair carbon nanotube. And this fact holds for all systems
considered infigure 9. The calculated valley polarization PV is very small below the Fermi level and growswith
the increasing electron energy. PV alsofluctuates likeTK¢ in thewhole region, and itsmaximum reaches about
0.3 for our considered system.

When the length of the central scattering region increases from3units to 6 units,TK is still smooth as plotted
infigure 9(b), butTK¢ fluctuatesmore frequently in the same energywindow. Therefore, the resulting valley
polarization vibrates with energy for both below and above the Fermi level. This result suggests that, by
increasing the length of the central region, one can realize amore effectivemanipulation of valley polarization in
a relatively small energy range. Considering a larger system, such as a 12, 12( ) armchair carbon nanotube valley-
field-effect-transistor, an interesting and important observation is: bothTK andTK ¢, as well asPv, are identically
the same as those in a 8, 8( ) system in the energywindowof 0.6, 0.6-[ ] eV, as shown infigures 9(c) and (d).We
have examined setups from 6, 6( ) to 12, 12( ) carbon nanotube systems and reached the following conclusion: as
long as the electron energy is in the first subband of the pristine armchair carbon nanotube, both the valley-
specified transmission functions and valley polarization are independent of the circumference of the system.
This fantastic property guarantees a great freedom in fabricating such kind of valley-field-effect-transistor, since
the device’s performance is independent of its transverse dimension.

Secondly, we investigate the influence of the gate voltage on the device performance. The gate voltage is
applied on the 3 3´ armchair carbon nanotube region, which serves as the valley-processing unit. In our
calculation, gate voltage simply shifts the on-site energies of the affected atoms, i.e., diagonal elements of their
Hamiltonian. Electron energy is kept at the first subband of pristine armchair carbon nanotube. The valley
polarization PV as a function of gate voltageVg is calculated at two energy points and different system sizes as
shown infigure 10. Fromfigure 10(a), one canfind that the valley polarization fluctuatingly grows as the applied

Figure 9.Panels (a) and (b): valley-specified transmission functions and valley polarization versus energy of 8, 8( ) armchair carbon
nanotube valley-field-effect-transistor. Lengths of the 3 armchair carbon nanotube are respectively 3 and 6 units. Panels (c) and (d):
the same functions for 12, 12( ) armchair carbon nanotube valley-field-effect-transistor. Gate voltage is set to be zero in the
calculations.
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gate voltage decreases frompositive to negative. For a 8, 8( ) valley-field-effect-transistor with 3-unit length of
the 3 3´ armchair carbon nanotube, the valley polarization can reach about 0.9 at the negative gate
voltage, which indicates that theK valley is almost fully polarized. Thewide P 0.9V > plateau shown in
figure 10(a) qualifies the device as a stable valley-polarized current generator that can operate in a broad gate
voltage range.

More importantly, PV jumps abruptly frombelow 0.02 to above 0.9 atV 0.5 eVg » - , showing a great on/
off ratio of this valley-field-effect-transistor. Thefluctuation of PV exists at all electron energies. Comparing the
results for E 0.36 eV= and E 0.60 eV= , obviously high valley polarization can be easily achievedwhen the
systemworks at larger electron energy, which only requiresV 0.25 eVg » - to reach P 0.9V > at E 0.60 eV= .
When increasing the length of the central regime to 6 units in the device,more fluctuations of PV are revealed in
figure 10(b), suggesting amore effective gatemodulation. But the high valley polarization plateau shrinks at all
electron energies and a larger negativeVg is required for P 0.9V > .We also performed calculations on a 12, 12( )
armchair carbon nanotube system and the corresponding results are displayed infigures 10(c) and (d). It is
found again that the device performance is independent of the diameter of the nanotubes.

Figure 10.Panels (a) and (b): valley polarization versus gate voltage of 8, 8( ) armchair carbon nanotube valley-field-effect-transistor
at several electron energies. L in the legends stands for the lengths of the 3 armchair carbon nanotube, which are respectively 3 and 6
units in the calculation. Panels (c) and (d): the same functions for 12, 12( ) tube systems.

Figure 11.Valley polarization function PV of a 8, 8( ) armchair carbon nanotube valley-field-effect-transistor with 3 units length of
31/2× 31/2 armchair carbon nanotube (31/2 stands for the square root of 3, please see themathematical symbol in the rest text), in
terms of the electron energy and gate voltage.
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We summarize this part with theworkingmap of a 8, 8( ) armchair carbon nanotube based valley-field-
effect-transistor. Its valley polarization PV as functions of electron energy and gate voltage are displayed in
figure 11. PV function of this device can be effectively tuned by applying an external gate voltage. The best
working zone of this device is the large red triangular area highlighted infigure 11, where theK valley is nearly
fully polarized. The valley-field-effect-transistor has a stable output in this zone, and the on/off ratio is
guaranteed by the narrow blue region adjacent to the red zone, whose valley polarization is below 0.05. The
larger the electron energy, the easier to get fully valley-polarized current. The performance of this device is the
same for systemswith different circumferences, as long as the energy is within the first subband of pristine
armchair carbon nanotube.

4. Conclusion

In conclusion, we have numerically investigated the electronic properties of typical 3 3´ graphene
nanoribbon and nanotube structures.We show that all the 3 3´ nanostructures aremetallicmaterials.
Both the zigzag and armchair ribbons havefinite-size energy gap below the Fermi energymore than 1 eV.
Double-degeneracy in energy levels instead of energy gaps is found in the spectra of both armchair and zigzag
carbon nanotubes. In small 3 3´ carbon nanotubes, there is a large energy range showing linear
dispersion, which leads to theKlein tunneling-like behavior: electron transmission through the tube is
quantized even in the presence of a potential barrier, regardless of the barrier length and height up to a few
hundred ofmeV. A valley-field-effect-transistor consisting of pristine and 3 3´ armchair carbon
nanotubes is proposed, which can be used tofilter fully valley-polarized current and can be tuned by applying an
external gate voltage or adjusting the length of the central scattering regime. As long as the electron energy is
within the range of the first subband of pristine armchair carbon nanotubes, performance of this valley-field-
effect-transistor is independent of the tube circumference.

Acknowledgments

Thisworkwas financially supported by theNational KeyR&DProgram (GrantNo. 2016YFA0301700), the
NNSFC (GrantsNo. 11504240,No. 11574217,No. 11304205, andNo. 11474265), NSF of SZU (GrantNo.
201550). YR andZQ also acknowledge thefinancial supports from theChinaGovernment Youth 1000-Plan
Talent Program, Fundamental Research Funds for theCentral Universities (WK3510000001 and
WK2030020027). The SupercomputingCenter ofUSTC is gratefully acknowledged for the high-performance
computing assistance.

References

[1] TakashinaK,OnoY, Fujiwara A, Takahashi Y andHirayamaY 2006Phys. Rev. Lett. 96 236801
[2] McGuire LM, FriesenM, Slinker KA, Coppersmith SN and ErikssonMA2010New J. Phys. 12 033039
[3] CulcerD, Saraiva A L, Koiller B,HuX andDasSarma S 2012Phys. Rev. Lett. 108 126804
[4] ZhuZ, CollaudinA, Fauqué B, KangWandBehniaK 2011Nat. Phys. 8 89
[5] Isberg J, GabryschM,Hammersberg J,Majdi S, Kovi KK andTwitchenD J 2013Nat.Mater. 12 760
[6] Žutić I, Fabian J andDas Sarma S 2004Rev.Mod. Phys. 76 323
[7] Wakabayashi K, Takane Y, YamamotoMand SigristM2009New J. Phys. 11 095016
[8] NovoselovK S 2011Rev.Mod. Phys. 83 837
[9] GeimAK andNovoselovK S 2007Nat.Mater. 6 183
[10] CastroNetoAH,Guinea F, PeresNMR,NovoselovK S andGeimAK2009Rev.Mod. Phys. 81 109
[11] Das Sarma S, AdamS,Hwang EH andRossi E 2011Rev.Mod. Phys. 83 407
[12] MorpurgoAF andGuinea F 2006Phys. Rev. Lett. 97 196804
[13] McCannE 2006Phys. Rev. Lett. 97 146805
[14] XiaoD, YaoWandNiuQ 2007Phys. Rev. Lett. 99 236809
[15] YaoW,XiaoD andNiuQ 2008Phys. Rev.B 77 235406
[16] Hill A, Sinner A andZiegler K 2011New J. Phys. 13 035023
[17] Rycerz A, Tworzydo J andBeenakker CW J 2007Nat. Phys. 3 172
[18] Qiao Z, Jung J, NiuQ andMacDonald AH2011Nano Letters 11 3453
[19] Qiao Z, Jung J, LinC,MacDonald AH andNiuQ 2014Phys. Rev. Let 112 206601
[20] RenY,Qiao Z andNiuQ2016Rep. Prog. Phys. 79 066501
[21] GunlyckeD andWhite CT 2011Phys. Rev. Lett. 106 136806
[22] Liu Y, Song J, Li Y, Liu Y and SunQ-F 2013Phys. Rev.B 87 195445
[23] Chen J-H, AutesG, AlemN,Gargiulo F, GautamA, LinckM,Kisielowski C, YazyevOV, Louie SG andZettl A 2014 Phys. Rev.B 89

121407(R)
[24] Fujita T, JalilMBA andTan SG 2010Appl. Phys. Lett. 97 043508

Khatibi Z, RostamiH andAsgari R 2013Phys. Rev.B 88 195426

11

New J. Phys. 18 (2016) 113011 FXu at al

http://dx.doi.org/10.1103/PhysRevLett.96.236801
http://dx.doi.org/10.1088/1367-2630/12/3/033039
http://dx.doi.org/10.1103/PhysRevLett.108.126804
http://dx.doi.org/10.1038/nphys2111
http://dx.doi.org/10.1038/nmat3694
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1088/1367-2630/11/9/095016
http://dx.doi.org/10.1103/RevModPhys.83.837
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevLett.97.196804
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1103/PhysRevB.77.235406
http://dx.doi.org/10.1088/1367-2630/13/3/035023
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1021/nl201941f
http://dx.doi.org/10.1103/PhysRevLett.112.206601
http://dx.doi.org/10.1088/0034-4885/79/6/066501
http://dx.doi.org/10.1103/PhysRevLett.106.136806
http://dx.doi.org/10.1103/PhysRevB.87.195445
http://dx.doi.org/10.1103/PhysRevB.89.121407
http://dx.doi.org/10.1103/PhysRevB.89.121407
http://dx.doi.org/10.1063/1.3473725
http://dx.doi.org/10.1103/PhysRevB.88.195426


[25] Zhai F,MaY andChangK 2011New J. Phys. 13 083029
Jiang Y, LowT,ChangK, KatsnelsonM I andGuinea F 2013Phys. Rev. Lett. 110 046601

[26] ChenX, Zhang L andGuoH2015Phys. Rev.B 92 155427
YuZ, Xu F andWang J 2016Carbon 99 451

[27] RenY,DengX,Qiao Z, Li C, Jung J, ZengC, Zhang Z andNiuQ 2015Phys. Rev.B 91 245415
[28] JinKH and Jhi SH2013 Phys. Rev. B 87 075442

Zhang J, Triola C andRossi E 2014Phys. Rev. Lett. 112 096802
[29] Campos LC,Manfrinato VR, Sanchez-Yamagishi J D, Kong J and Jarillo-Herrero P 2009Nano Lett. 9 2600
[30] XieG, Shi Z, YangR, LiuD, YangW,ChengM,WangD, ShiD andZhangG 2012Nano Lett. 12 4642
[31] ZuF, YuZ,Hao J andWei Y unpublished
[32] AndoT 2005 J. Phys. Soc. Jpn. 74 777
[33] Charlier J-C, Blase X andRoche S 2007Rev.Mod. Phys. 79 677
[34] KatsnelsonM I,Novoselov K S andGeimAK2006Nat. Phys. 2 620
[35] Beenakker CWJ 2008Rev.Mod. Phys. 80 1337
[36] YoungA F andKimP2009Nat. Phys. 5 222
[37] StanderN,Huard B andGoldhaber-GordonD2009Phys. Rev. Lett. 102 026807
[38] Bahat-Treidel O, PelegO,GrobmanM, ShapiraN, SegevMandPereg-Barnea T 2010Phys. Rev. Lett. 104 063901
[39] HeW-Y,ChuZ-D andHe L 2013Phys. Rev. Lett. 111 066803
[40] LiuM-H, Bundesmann J andRichter K 2012Phys. Rev.B 85 085406
[41] WhiteCT andTodorov TN2001Nature 411 649

LiangW, BockrathM, BozovicD,Hafner JH, TinkhamMandParkH 2001Nature 411 665
[42] SteeleGA,GotzG andKouwenhoven L P 2009Nat. Nanotech. 4 363
[43] JakubskyV,Nieto L-MandPlyushchayMS 2011Phys. Rev.D 83 047702
[44] Khomyakov PA, BrocksG, KarpanV, ZwierzyckiM andKelly P J 2005Phys. Rev.B 72 035450
[45] Xing YX, Zhang L andWang J 2011Phys. Rev.B 84 035110
[46] Wang J andGuoH2009Phys. Rev.B 79 045119

12

New J. Phys. 18 (2016) 113011 FXu at al

http://dx.doi.org/10.1088/1367-2630/13/8/083029
http://dx.doi.org/10.1103/PhysRevLett.110.046601
http://dx.doi.org/10.1103/PhysRevB.92.155427
http://dx.doi.org/10.1016/j.carbon.2015.12.033
http://dx.doi.org/10.1103/PhysRevB.91.245415
http://dx.doi.org/10.1103/PhysRevB.87.075442
http://dx.doi.org/10.1103/PhysRevLett.112.096802
http://dx.doi.org/10.1021/nl900811r
http://dx.doi.org/10.1021/nl301936r
http://dx.doi.org/10.1143/JPSJ.74.777
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1103/PhysRevLett.104.063901
http://dx.doi.org/10.1103/PhysRevLett.111.066803
http://dx.doi.org/10.1103/PhysRevB.85.085406
http://dx.doi.org/10.1038/35079720
http://dx.doi.org/10.1038/35079517
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1103/PhysRevD.83.047702
http://dx.doi.org/10.1103/PhysRevB.72.035450
http://dx.doi.org/10.1103/PhysRevB.84.035110
http://dx.doi.org/10.1103/PhysRevB.79.045119

	1. Introduction
	2. Tight-binding Hamiltonian and theoretical formalism
	3. Numerical results and discussions
	3.1. Zigzag ribbons of 3×3 graphene superlattice
	3.2. Armchair ribbons of 3×3 graphene superlattice
	3.3. Typical single wall carbon nanotubes of 3×3 graphene supercell
	3.4. Valley processing in 3×3 armchair nanotubes

	4. Conclusion
	Acknowledgments
	References



