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Abstract

We numerically investigate the electronic transport properties of graphene nanoribbons and carbon
nanotubes with inter-valley coupling, e.g.,in ~/3 N x /3N and 3N x 3N superlattices. By taking
the+/3 x /3 graphene superlattice as an example, we show that tailoring the bulk graphene
superlattice results in rich structural configurations of nanoribbons and nanotubes. After studying the
electronic characteristics of the corresponding armchair and zigzag nanoribbon geometries, we find
that the linear bands of carbon nanotubes can lead to the Klein tunnelling-like phenomenon, i.e.,
electrons propagate along tubes without backscattering even in the presence of a barrier. Due to the
coupling between K and K’ valleys of pristine graphene by /3 x /3 supercells, we propose a valley-
field-effect transistor based on the armchair carbon nanotube, where the valley polarization of the
current can be tuned by applying a gate voltage or varying the length of the armchair carbon
nanotubes.

1. Introduction

Valleytronics aim to design high-efficiency and low-dissipation electronic devices by manipulating the Bloch
electrons’ valley degree of freedom, which refers to the local minima of the electronic band structure in the
reciprocal space. In some traditional multi-valley systems, such as silicon [ 1-3], bismuth [4], and diamonds [5],
the valley degree of freedom is shown to be controllable to carry and transport information. In two-dimensional
materials, honeycomb-lattice systems are of special interest in the study of valleytronics due to the presence of
two inequivalent valleys K and K’ [9-11]. Particularly, graphene has attracted much attention due to its excellent
electronic and mechanical properties [6—8] Various valleytronics devices have been proposed in graphene
nanostructures [12—16] utilizing, e.g., zigzag edges [ 17], zero-line modes [ 18-20], topological line defects 21—
23], strain and mechanical engineering [24, 25], as well as temperature gradient [26], to generate and control
valley-polarized currents.

Recently, a new valley engineering mechanism is proposed in /3N x /3N or 3N x 3N superlattices of
graphene [27]. Due to the band folding in the superlattice, the inequivalent K /K’ valleys in pristine graphene are
folded into the same I point and thus inter-valley coupling arises that act as valley-orbit coupling similar to
spin—orbit coupling providing promising valley-processing mechanisms via electrical means. Reference [27]
suggested that the /3N x /3N or 3N x 3N superlattices could be realized in periodically doped graphene.
More recently, such kind of special supercells are also shown to appear in graphene proximity-coupled with
topological insulator substrates [28].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Panel (a): band structure of bulk /3 x +/3 graphene superlattice calculated from tight-binding Hamiltonian defined in
equation (1) with periodic boundary conditions. Panels (b), (¢) and (d): schematic plots of three types of J3 x 3 zigzag graphene
ribbons. Green dots stand for top-absorption sites in the lattice. Blue rectangles indicate the unit cell in every setup. The ribbons are
finite in y direction and periodically infinite in x direction.

In this article, we explore the potential application of these graphene superlattices in valleytronics and extend
our study to carbon nanotubes. Within top-adsorption case, we study the representative /3 x /3 superlattice
of graphene and carbon nanotubes without loss of generality since the inter-valley coupling mechanisms are
universal features in these superlattices. The /3 x /3 superlattice with top-adsorption introduces multiple
structural configurations of graphene nanoribbons and nanotubes. We focus on three kinds of zigzag ribbons,
two kinds of armchair ribbons, and typical armchair and zigzag single walled nanotubes, and theoretically
investigate their electronic properties using the tight-binding model. Our numerical results show that there exist
Klein tunneling-like phenomena in /3 x /3 armchair and zigzag carbon nanotubes even in the presence of a
barrier. By employing the inter-valley coupling to induce valley processing, we propose a valley-field-effect
transistor consisting of pristine and /3 x /3 armchair carbon nanotube, which generates nearly fully valley-
polarized current at large gate voltage and electron energy scale.

The remaining of our paper is organized as follows. In section 2, the tight-binding Hamiltonian of the bulk
V3 x /3 graphene and the Green’s function method are introduced. The numerical results on electronic and
transport properties of various confined graphene nanostructures, including zigzag and armchair ribbons, and
single walled nanotubes are shown in section 3. A brief summary is given in section 4.

2. Tight-binding Hamiltonian and theoretical formalism

In+/3 x /3 graphene superlattice, carbon atoms are still the majority and 7-orbital expansion is therefore a
reasonable starting point. The nearest-neighbor tight-binding Hamiltonian of the bulk +/3 x /3 graphene
reads: [27]

H = 721',‘)]‘ CiTC]‘ + Zui CITC,‘, (1)
(i) i

where ciT (c;) is the m-orbital creation (annihilation) operator on site i. To recover the single-valley metallic phase
ofbulk /3 x /3 graphene superlattice [27], the system parameters are precisely determined. The nearest-
neighbor hopping amplitudes ¢; j are f; = 2.9 eV between top-absorption site and adjacent carbon atoms, and

t, = 2.6 eV between carbon atoms, respectively. The on-site potentials u; of different sites are chosen to be

1 = —4.79 eV for top-absorption site, u, = —1.35 eV for its three nearest carbon sites, and u; = —1.05 eV for
the rest carbon sites with no top-absorption neighbors. These parameters perfectly recover the band structure in
reference [27], where periodic adatom or top-absorption introduces symmetry-breaking and valley-scattering in
graphene superlattice. Detailed procedures on parameter selection can be found in reference [27].

Based on this tight-binding Hamiltonian, the band structure of bulk ~/3 x /3 graphene is obtained as
shown in figure 1(a) where the inequivalent Kand K’ valleys in pristine graphene are folded at the same I point
due to the band folding. In our transport study, we focus on an energy interval within several eV around the
Fermi energy. In figure 1(a), it is obvious that the three bands (labeled as ‘1’, 2’ and 3’) dominate in this energy
range. Bands 2’ and ‘3’ form an ideal quadratic crossover [27]. Moreover, one can also notice that bands ‘1’ and
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Figure 2. Band structures of three types of v/3 zigzag ribbons with various system sizes. Panels (a)—(c): band structures of ZGR-1 with
ribbon width 24, 52, and 100 lattice sites; panels (d)—(f): dispersion relations of ZGR-2 with system size 24, 52, and 100 sites; panels
(g)—(i): bands of ZGR-3 with width 24, 52, and 100 sites.

‘3’ are almost linear around I" point. The influence of such kind of linear dispersion will be discussed when
studying the transport properties of /3 graphene nanoribbons and carbon nanotubes.

Below, we utilize the Green’s function method to investigate the valley-related electronic transport
properties. From the tight-binding Hamiltonian shown in equation (1), the transmission coefficient of electrons
atenergy E can be expressed as:

T(E) = Tr[I1 G TrGY], ()

where G" = [E — H — Y| !istheretarded Green’s function, and G* = (G")' is the advanced Green’s
function. 3" = X} + Xj is the self-energy from theleft and rightleads. I} is the line width function
describing the coupling between the left/right lead and the central scattering region, and can be defined
as FL/R = I[ErL/R - Ei/R]‘

3. Numerical results and discussions

In this section, numerical results on the electronic structures and transport properties of typical nanoribbons
and nanotubes of /3 x /3 graphene supercell are presented, including both zigzag and armchair geometries.

3.1.Zigzagribbons of \/3 x /3 graphene superlattice

As displayed in figure 1, we exhibit three kinds of /3 x /3 zigzag graphene nanoribbons (ZGRs). Top-
absorption sites are highlighted as green dots. Blue rectangles are used to indicate the unit cells in different
configurations. For simplicity, the setups in panels (b), (c), and (d) of figure 1 are respectively denoted as ZGR-1,
ZGR-2,and ZGR-3. Their geometric differences can be easily distinguished from the relative position of top-
absorption sites and their presence/absence at the ribbon boundaries. The lower boundaries of ZGR-1 and
ZGR-2 purely consist of carbon atoms while the absorption sites of these two samples are located on different
sublattices. Differently, adsorption sites appear at the lower boundary of ZGR-3. As displayed in figure 1, these
ZGRs have finite widths along the y direction and are periodic along the x direction. These zigzag ribbons can be
realized by cuttingalarge /3 x /3 graphene sheet along proper directions, like the fabrication of graphene
nanoribbon [29] or through the lithography method [30]. In our first principles calculation [31], we found that
ZGR-1 exhibits the lowest Gibbs free energy, while ZGR-3 exhibits the highest one. Therefore, ZGR-1 should
theoretically be the most stable structure in these ZGRs. In our following discussions, all these setups have been
considered and we will show that they possess distinct electronic properties.

Figure 2 displays the band structures of three different zigzag graphene ribbons for different widths (e.g., 24,
52,and 100 lattice sites). The first, second and third rows of figure 2 correspond, respectively, to ZGR-1, ZGR-2
and ZGR-3. One can find that figure 2(a) (for ZGR-1 with a width of 24 lattice sites) exhibits a large energy gap A
located in the interval of [— 1, —2] eV, deeply underneath the Fermi energy. Meanwhile, two nearly flat bands lie
in the gap. By projecting the local density of states of the two bands onto the lattice sites, we find that they are
localized along the zigzag ribbon boundaries and thus they are edge modes, which originate from the dangling
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Figure 3. Transmission coefficient as a function of Fermi energy for three types of ~/3 x /3 zigzag graphene ribbons (ZGRs) at
different widths. Panels (a), (b), and (c) correspond to ZGR-1, ZGR-2, and ZGR-3, respectively. In all panels, three ribbon widths 24,
52, and 100 sites are evaluated.

bonds along the zigzag edges, like those in zigzag ribbon of pristine graphene. As clearly presented in figure 1, the
upper and lower edges of these ZGRs are different, leading to the formation of two different edge modes. As the
ribbon width increases, the energy gap above the edge modes vanishes first as shown in figure 2(b) and the lower
gap closes at alarger ribbon width as displayed in figure 2(c). Therefore, these two band gaps arise from the
finite-size effect and disappear when the system size is sufficiently large.

For ZGR-1 as the system width increases, another observation is that the edge modes are pinned at k, = +7
but evolve with the bulk states around k, = 0. One can also notice that, in figure 2(c), the band structure
establishes three envelopes, labeled as ‘1’—3’. Upon larger system sizes, the envelopes become further enhanced
with higher energy degeneracies. Compared with figure 1(a), one reasonable explanation is that these envelopes
reflect the three bands in the corresponding bulk bands. For ZGR-2, bands for system widths 24, 52, and 100
sites are respectively plotted in figures 2(d), (e) and (f), which exhibit similar characters as those in ZGR-1 except
that these two edge modes are separable and divide the band gap into three narrow ones. As the ribbon width
increases, the upper and lower gaps close first and the middle gap disappears at last. The case for ZGR-3 is similar
to that of ZGR-2 as displayed in the last three panels of figure 2. However, different from ZGR-2, the upper
surface band of ZGR-3 is flatter. Nevertheless, the band structures of these three types of zigzag ribbons share
some common features, including surface bands pinning at k, = %7 and band envelopes at large system sizes.
Besides, these zigzag ribbons are all metallic since the Fermi level lies in the conduction band.

In figure 3, we plot the transmission coefficients of these zigzag ribbons as a function of energy, where the left
and right leads are exactly extended from the central region, hence resulting in the quantized T (Eg). Panels (a),
(b) and (c) correspond respectively to ZGR-1, ZGR-2 and ZGR-3. In each setup, three ribbon widths (i.e., 24, 52
and 100 lattice sites) are considered. One can see an exact mapping between the transmission coefficients in
figure 3 and the band structures in figure 2. At small system sizes, all the ZGRs have zero transmission
coefficients at certain energy regions below the Fermi level, where the dispersion relations show energy gaps. For
ZGR-1, there are two zero-transmission-coefficient regions while three gaps exist in ZGR-2 and ZGR-3 at
ribbon width (i.e., with 24 lattice sites in black lines). At a system size of 52, the zero conducting ranges shrink in
all panels of figure 3. Only one gap is present in the ZGR-2 and ZGR-3, and two gaps still reside in the
transmission spectrum of ZGR-3, shown in red lines. For a larger system with 100 lattice sites, ZGR-1 has no zero
transmission area in the whole energy interval and single narrow gaps appear in panels (b) and (c) of figure 3.
These finite-size gaps eventually disappear at even larger systems. As the ribbon width increases, transmission
coefficient at the same energy increases rapidly for all systems. We also observe some oscillation behavior of
T (Ep) around Er =2 0.5 eV, which can be attributed to the band overlapping at these energies. One can deduce
from figure 2 that, the oscillations tend to be wilder at larger system sizes, which is confirmed by our transport
calculations.
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Figure 4. Sketches of two types of /3 armchair graphene ribbons: (a) AGR-1 and (b) AGR-2, respectively. Blue rectangles show the
corresponding unit cells and green dots indicate top-absorption sites. The ribbons have finite widths in y direction and extend to
infinite £x.
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Figure 5. Panels (a) and (b): band structures of AGR-1 with system widths 24 and 60 sites. Panel (c) plots the corresponding T versus

Eg: curves for these system sizes. Panels (d) and (e): band structures of AGR-2 at ribbon widths 24 and 60 sites. Panel (f) shows the
transmission of AGR-2.

3.2. Armchair ribbons of \/3 x /3 graphene superlattice
Depending on the relative positions of top-absorption on the honeycomb lattice, there are two different
configurations of armchair graphene nanoribbons (AGRs). We schematically plot these AGRs with widths of
two full unit cells in figure 4. For simplicity, we denote the armchair ribbon shown in figure 4(a) as AGR-1 and
the other one as AGR-2. Unlike zigzag ribbons of /3 x +/3 graphene, both armchair ribbons reproduce perfect
V3 x /3 periodicity. The first-principles calculation suggests that the Gibbs free energy of AGR-1 is higher
than that of AGR-2 [31]. Combining with the results of J3 % /3 ZGRs, one can conclude that the ribbons for
both zigzag and armchair forms are less stable when the top-absorption sites reside on the ribbon boundaries.

The electronic properties of these AGRs are numerically investigated and displayed in figure 5. In our
calculations, two ribbon widths (24 and 60 lattice sites) are considered for both AGR-1 and AGR-2. One notices
that both armchair ribbons are good conductors, similar as the ZGRs. Figures 5(a) and (b) plot the band
structures of AGR-1. Apparently, there is a direct band gap atk, = Oaround E ~ —1.4 eV. As the system size
increases from 24 to 60 lattice sites, this gap becomes narrower as shown in figure 5(b), indicating its finite-size
nature. The transmission coefficient of AGR-1 as a function of energy is displayed in figure 5(c). It is found that
the conducting-forbidden region matches exactly the band gaps in the left panels. This gap is gradually reduced
when system size increases and finally vanishes as the ribbon width is large enough. For AGR-2, the numerical
results are drawn in the lower panels of figure 5. The energy dispersion of AGR-2 is rather similar to that of AGR-
1 except that AGR-2 has alarger band gap at the same system size. The transmission coefficient versus energy
curves in figure 5(f) also confirms this observation. As a result, a wider ribbon width is required to close the band
gap in AGR-2.

Compared with ZGRs, there is no edge mode in AGRs. This is a much natural expectation for armchair-
edged ribbons because of the valley mixture behaviour. Another striking difference from ZGRs is that there is
less oscillation feature in the transmission spectrum of AGRs, which can be attributed to the absence of band-
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Figure 6. Panels (a) and (b): band structures of V3 x /3 armchair carbon nanotubes fabricated from ZGR-3 shown in figure 1(d), at
tube sizes (12, 12) and (20, 20). Panels (c) and (d): dispersion relations of (12, 0) and (45, 0) zigzag carbon nanotubes, formed by
folding armchair ribbons (figure 4) in y direction. Panel (e) plots the T (Eg) curves of (12, 12) and (30, 30) armchair tubes at different
Fermi energies. Panel (f) shows the transmission of zigzag tubes with system sizes (12, 0) and (45, 0).

folding from 1 x 1to J3 x /3 supercells in the armchair configurations. From figures 5(b) and (e), one can
observe that three band envelopes develop to reproduce the bulk bands of /3 x /3 graphene superlattice.

3.3. Typical single wall carbon nanotubes of /3 x /3 graphene supercell

The carbon nanotubes of /3 x /3 graphene supercells have similar structures as pristine carbon nanotubes.
Here we consider two representing configurations: single wall armchair and zigzag carbon nanotubes.
Theoretically, /3 x /3 armchair carbon nanotubes can be formed by connecting the upper and lower
boundaries of ZGR-3 as displayed in figure 1(d) with proper bonding. Meanwhile, /3 x /3 zigzag nanotubes
can be formed by rolling up armchair ribbons as displayed in figure 4 and linking their edges accordingly.
Carbon nanotubes constructed in these ways possess the full J3 x 3 periodicity. In our consideration, we
adopt the classification rule of pristine single wall carbon nanotubes [32, 33] to denote these two types of

V3 % /3 carbon nanotubes, where notations (1, #) and (1, 0) stand for armchair and zigzag tubes,
respectively. Integer n in these notations refers to the number of unit vectors defined in the honeycomb lattice of
pristine bulk graphene.

Figure 6 displays the band structures of these /3 x /3 armchair and zigzag carbon nanotubes at different
tube sizes where one can find that, similar to ~/3 x /3 graphene nanoribbons, these two types of carbon
nanotubes are also metallic and their Fermi energies lie deeply into the conduction bands. Specifically,
figures 6(a) and (b) display the energy dispersion relations of the (12, 12) and (20, 20) armchair carbon
nanotubes. When transforming the zigzag ribbons into armchairs tubes, it is clear that there are neither edge
modes nor gaps in the bands of /3 x /3 armchair nanotubes. In figure 6(a), one can see that there is a band
touchingat E &~ —1.4 eV. Near the touching point, the band density is low for this (12, 12) armchair tube. Fora
larger (20, 20) tube as shown in figure 6(b), the band density becomes denser with a fixed band touching point.
The band structures of the two /3 x /3 zigzag carbon nanotubes are plotted in figures 6(c) and (d). The band
touching also appears in these systems. For the same energy, the bands of zigzag tubes under the touching point
reside around k, = 0 point, instead of spreading in the whole Brillouin zone as in the armchair tubes. This
behavior indicates that current carrier in zigzag ribbons has a larger group velocity in this energy range. Except
this minor difference, the bands between armchair and zigzag tubes share lots of similarities.

Figures 6(e) and (f) display the transmission coefficients as a function of energy for the V3 x /3 armchair
and zigzag carbon nanotubes. The results for (12, 12) and (30, 30) armchair nanotubes are shown in figure 6(e).
In awide energy range of Er € [—2.5, —1) eV, there is only a single conducting channel in the (12, 12) armchair
tube. This energy range corresponds to the two touched bands in figure 6(a) for the same system parameters. The
increase of system size narrows this T = 1 region, as one can see from the red line for the (30, 30) armchair
nanotube. Another interesting finding in figure 6(e) is that the transmission coefficients increase by 2 at a lot of
energy points. This behaviour reveals that many energy levels in the armchair tubes are doubly degenerate,
regardless of the system size. The transmission spectra of two /3 x /3 zigzag tubes with sizes of (12, 0) and
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Figure 7. Transmission versus Fermi energy ofa </3 (12, 12) armchair carbon nanotube where a potential barrier with a length of 10
unit cells exists. Various colored lines stand for different barrier heights V;. Inset: transmission of the same system at fixed energy
Ep = —2.1 eV and barrier height Vj = 0.5 eV for several barrier lengths. The length scale ‘unit cell’ is indicated in figure 1(d).

(45, 0) are displayed in figure 6(f). Despite their distinct geometric configurations, the /3 x /3 zigzagand
armchair carbon nanotubes have similar T (Eg) profiles. We also observe the large single mode region for small
tube size and lots of doubly degenerate bands at zigzag nanotubes.

In figures 6(a) and (c), the linear bands parallel to the blue arrows are rather attractive. In single layer
graphene, the massless Dirac fermion with linear energy dispersion leads to the counterintuitive Klein paradox
[34, 35], where incoming relativistic particles penetrate high barrier with nearly perfect transmission at certain
angles. Klein tunnelling behaviour has been revealed in various graphene-based systems, such as graphene p — n
junctions [36, 37], deformed single layer [38], and twisted bilayer graphene [39], as well as spin-related graphene
system [40]. Similar perfect transmission is also observed when electron propagates in pristine carbon
nanotubes [41-43]. Inspired by these findings, we carry out numerical calculation to show the existence of Klein
paradoxinthe /3 x /3 carbon nanotubes.

Our system in considerationisa~/3 x /3 (12, 12) armchair nanotube. A potential barrier with height of
Vyand certain length is exerted on the tube while other parts of the system remain unchanged. We calculate the
electron transmission coefficient through the barrier. Figure 7 plots the transmission coefficient as a function of
energy for several different barrier heights. The barrier length is fixed at 10 unit cells, and this length scale of
V3 x /3 armchair tube is depicted in figure 1(d), containing 4 sites along the x direction. It is found that, in a
wide energy window of E € [—2.5, —1.7] eV, electrons in these armchair carbon nanotubes can almost
perfectly penetrate the potential barrier. Quantized transmission coefficients of T'(Eg) = 1 canbe achieved for
barrier heightup to Vj = 0.5 eV. Outside this region, the transmission coefficient dramatically drops in the
presence of potential barrier.

We carefully examined the numerical results and found that, the T (Eg) = 1energy window
E € [—2.5, —1.7]eV corresponds to the linear dispersion region in figure 6(a), suggesting a direct correlation
between linear dispersion and nearly perfect transmission. In energy range E € [—2.5, —1.7] eV, the linear
dispersion relation guarantees the electrons high group velocity, or so-called relativistic electron. In our carbon
nanotube system with potential barrier, the incident electrons normally collide with the barrier. The high-
velocity relativistic electron can penetrate the barrier without backscattering, resulting almost perfect
transmission or reflectionless tunneling. We further checked the dependence of this almost perfect tunnelling
on barrier length, at fixed electron energy of Er = —2.1 eV and barrier strength of V; = 0.5 eV. The
transmission function versus barrier length is plotted in the inset of figure 7. Regardless of the barrier length, the
system with longer barrier remains transparent to the incident electrons and also gives rise to quantized
transmission coefficient T = 1. These numerical evidences strongly suggest the existence of Klein tunnelling-
like behavior in the /3 x /3 armchair carbon nanotubes, where electrons transport without backscattering in
the system, independent of barrier length and heights up to half an electron volt. Similar perfect tunnelling is also
observedin the /3 x /3 zigzag carbon nanotubes. However, when the tube size increases, bulk states arise in
the whole energy range and gradually co-exist with the linear bands. As a result, the Klein tunnelling-like
phenomenon becomes obscure and eventually disappears.
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Figure 8. Panel (a): illustration of a valley-field-effect-transistor based on pristine and +/3 armchair carbon nanotubes. A gate voltage
is applied on the v/3 armchair carbon nanotube region, which functions as valley-processing unit. The /3 armchair carbon nanotube
is characterized by the blue-colored top-absorption sites. Panels (b) and (c): band structures of (8, 8) pristine and V3 x /3 armchair
carbon nanotubes, respectively.

3.4. Valley processingin /3 x /3 armchair nanotubes
Due to the band folding of the /3 x /3 superlattice, the inequivalent K and K’ valleys in pristine graphene and
carbon nanotubes are folded into I" point. Therefore, the inter-valley coupling and valley-orbit coupling effects
emerge in these nanotubes of /3 x /3 superlattices of graphene [27], which qualify them as potential valley-
processing materials. Here, we propose a heterostructure composed of 1 x 1and+/3 x +/3 armchair carbon
nanotubes to act as a valley filter or valley polarizer as illustrated in figure 8(a), which consists of two identical
leads made of pristine armchair nanotubes and a central scattering region made of v/3 x +/3 armchair carbon
nanotubes. A gate voltage is applied in the central region. We consider typical (8, 8) armchair nanotubes at both
parts, whose energy dispersions are respectively displayed in figures 8(b) and (c). The inter-valley coupling and
valley-orbit coupling mechanismin ~/3 x /3 superlattices can manipulate valley polarization coherently in
analogy to real spin for spintronics. Electrons propagating in the left pristine armchair carbon nanotube contain
equivalent Kand K’ valley components. When the valley-unpolarized current in pristine armchair CNT enters
the central /3 X ~/3 armchair nanotube region, these mechanisms break the balance between the two
components by flipping electrons of K valley to K’ valley or vice versa. Hence in the outgoing current to the right
lead, one valley component is larger than the other. In another word, the current is valley-polarized. Similar to
the spin polarization, a valley polarization function can be defined to evaluate the efficiency of the device. The
valley polarization can be adjusted by external factors, such as bias voltage and gate voltage. The setup presented
here can serve as a prototype valley field effect transistor, where valley-polarized current is turned on/off via
applying the gate voltage as illustrated below.

The efficiency of this valley field effect transistor is characterized by the valley polarization function, which
can be defined in terms of the valley-specified transmission function as:

k- T

= 3)
Tk + Tx

%
where Ty and T are transmission functions of electrons belonging to K and K’ valleys, respectively. To separate
electrons from equivalent valleys, a simple and effective way is to consider their different group velocities. The
group velocity, v = %‘?—E, is related to the band structure, i.e., the slope of the band structures. When focusing on
the first subband of (8, 8) pristine armchair carbon nanotube shown in figure 8(b), it is clear that above the
Fermi energy electron in K valley has larger group velocity than that of K’ valley. The situation becomes reverse
below the Fermi level. Thus, we can calculate the transmission function contributed from any specific valley
under the Green’s function frame. In the semi-infinite lead of pristine armchair carbon nanotube, the velocity of
incident electrons is connected with the line width function I} in the form of v, = U'T U = I [44, 45]. Here
vy is a diagonal velocity matrix with nonzero diagonal elements contributed by electrons incoming from the left
lead. U is a unitary transformation matrix ranked by eigenfunctions of 17, transforming it into a diagonal matrix
T'L. Obviously, there is an exact mapping between the incident electron velocities and the eigenvalues of line
width function: v = (1/7%)1}.. Considering only the propagating modes of the first subband of (8, 8) armchair
carbon nanotubes (see figure 8(b)), both v and I} are2 x 2 diagonal matrices. Incident electron from K valley
has larger velocity, corresponding to the larger one of the two eigenvalues of I} . Based on this analysis, we can
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Figure 9. Panels (a) and (b): valley-specified transmission functions and valley polarization versus energy of (8, 8) armchair carbon
nanotube valley-field-effect-transistor. Lengths of the /3 armchair carbon nanotube are respectively 3 and 6 units. Panels (c) and (d):
the same functions for (12, 12) armchair carbon nanotube valley-field-effect-transistor. Gate voltage is set to be zero in the
calculations.

construct effective line width function using only the propagating K and K’ valley modes [45, 46]

Dk/x = AK/K’/ifL,K/K’A;/K/:
where Ay g is the eigenfunction of I} for K /K valley mode. Iy x /x of the right lead can be produced similarly.
Following equation (2), the valley-specified transmission function can be straightforwardly expressed as

T x = TrILk/x G Ty k/xG%]

Then one can calculate the valley polarization Py via equation (3).

We first evaluate the valley-specified transmission coefficient Tx ; - and valley polarization efficiency Py as
function of the electron energy. The system under investigation is armchair carbon nanotube-based valley-field-
effect-transistor as schematically plotted in figure 8(a). The numerically calculated transport properties are
exhibited in figure 9. The energy interval of interest is the first subband of pristine armchair carbon nanotube.
For the (8, 8) armchair system with 3 units length of /3 x /3 armchair carbon nanotube, both Ty and Ty are
continuous functions of the electron energy as shown in figure 9(a). One can see that T is rather smooth and
larger than 0.8 in the focused energy regime, while the magnitude of Ty’ changes more abruptly and exhibits a
fluctuating pattern. This observation reveals that incident electrons from the K valley of the pristine nanotube
are less affected by the central /3 x /3 armchair carbon nanotube. And this fact holds for all systems
considered in figure 9. The calculated valley polarization Py is very small below the Fermi level and grows with
the increasing electron energy. Py also fluctuates like Ty in the whole region, and its maximum reaches about
0.3 for our considered system.

When the length of the central scattering region increases from 3 units to 6 units, T is still smooth as plotted
in figure 9(b), but Ty fluctuates more frequently in the same energy window. Therefore, the resulting valley
polarization vibrates with energy for both below and above the Fermi level. This result suggests that, by
increasing the length of the central region, one can realize a more effective manipulation of valley polarization in
arelatively small energy range. Considering a larger system, such as a (12, 12) armchair carbon nanotube valley-
field-effect-transistor, an interesting and important observation is: both Txand T, as well as P,, are identically
the same as thosein a (8, 8) system in the energy window of [—0.6, 0.6] eV, as shown in figures 9(c) and (d). We
have examined setups from (6, 6) to (12, 12) carbon nanotube systems and reached the following conclusion: as
long as the electron energy is in the first subband of the pristine armchair carbon nanotube, both the valley-
specified transmission functions and valley polarization are independent of the circumference of the system.
This fantastic property guarantees a great freedom in fabricating such kind of valley-field-effect-transistor, since
the device’s performance is independent of its transverse dimension.

Secondly, we investigate the influence of the gate voltage on the device performance. The gate voltage is
appliedon the /3 x /3 armchair carbon nanotube region, which serves as the valley-processing unit. In our
calculation, gate voltage simply shifts the on-site energies of the affected atoms, i.e., diagonal elements of their
Hamiltonian. Electron energy is kept at the first subband of pristine armchair carbon nanotube. The valley
polarization Py as a function of gate voltage V; is calculated at two energy points and different system sizes as
shown in figure 10. From figure 10(a), one can find that the valley polarization fluctuatingly grows as the applied
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Figure 11. Valley polarization function Py ofa (8, 8) armchair carbon nanotube valley-field-effect-transistor with 3 units length of
3172 % 312 armchair carbon nanotube 3 172 stands for the square root of 3, please see the mathematical symbol in the rest text), in
terms of the electron energy and gate voltage.

gate voltage decreases from positive to negative. For a (8, 8) valley-field-effect-transistor with 3-unitlength of
the +/3 x /3 armchair carbon nanotube, the valley polarization can reach about 0.9 at the negative gate
voltage, which indicates that the K valley is almost fully polarized. The wide Py > 0.9 plateau shown in

figure 10(a) qualifies the device as a stable valley-polarized current generator that can operate in a broad gate
voltage range.

More importantly, Py jumps abruptly from below 0.02 to above 0.9 at V, ~ —0.5 eV, showinga greaton/
off ratio of this valley-field-effect-transistor. The fluctuation of Py exists at all electron energies. Comparing the
results for E = 0.36 eV and E = 0.60 eV, obviously high valley polarization can be easily achieved when the
system works at larger electron energy, which only requires V; ~ —0.25 eV toreach Py > 0.9at E = 0.60 eV.
When increasing the length of the central regime to 6 units in the device, more fluctuations of Py are revealed in
figure 10(b), suggesting a more effective gate modulation. But the high valley polarization plateau shrinks at all
electron energies and a larger negative V; is required for Py > 0.9. We also performed calculationsona (12, 12)
armchair carbon nanotube system and the corresponding results are displayed in figures 10(c) and (d). Itis
found again that the device performance is independent of the diameter of the nanotubes.
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We summarize this part with the working map of a (8, 8) armchair carbon nanotube based valley-field-
effect-transistor. Its valley polarization Py as functions of electron energy and gate voltage are displayed in
figure 11. Py function of this device can be effectively tuned by applying an external gate voltage. The best
working zone of this device is the large red triangular area highlighted in figure 11, where the K valley is nearly
fully polarized. The valley-field-effect-transistor has a stable output in this zone, and the on/off ratio is
guaranteed by the narrow blue region adjacent to the red zone, whose valley polarization is below 0.05. The
larger the electron energy, the easier to get fully valley-polarized current. The performance of this device is the
same for systems with different circumferences, as long as the energy is within the first subband of pristine
armchair carbon nanotube.

4. Conclusion

In conclusion, we have numerically investigated the electronic properties of typical /3 x /3 graphene
nanoribbon and nanotube structures. We show that all the +/3 x /3 nanostructures are metallic materials.
Both the zigzag and armchair ribbons have finite-size energy gap below the Fermi energy more than 1 V.
Double-degeneracy in energy levels instead of energy gaps is found in the spectra of both armchair and zigzag
carbon nanotubes. Insmall /3 x /3 carbon nanotubes, there is a large energy range showing linear
dispersion, which leads to the Klein tunneling-like behavior: electron transmission through the tube is
quantized even in the presence of a potential barrier, regardless of the barrier length and height up to a few
hundred of meV. A valley-field-effect-transistor consisting of pristine and +/3 x ~/3 armchair carbon
nanotubes is proposed, which can be used to filter fully valley-polarized current and can be tuned by applying an
external gate voltage or adjusting the length of the central scattering regime. As long as the electron energy is
within the range of the first subband of pristine armchair carbon nanotubes, performance of this valley-field-
effect-transistor is independent of the tube circumference.
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