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Abstract. In this paper, we propose a Hidden Markov Model (HMM) which

incorporates the threshold effect of the observation process. Simulated exam-

ples are given to show the accuracy of the estimated model parameters. We
also give a detailed implementation of the model by using a dataset of crude

oil price in the period 1986-2011. The prediction of crude oil spot price is

an important and challenging issue for both government policy makers and
industrial investors as most of the world’s energy comes from the consump-
tion of crude oil. However, many random events and human factors may lead

the crude oil price to a strongly fluctuating and highly non-linear behavior.
To capture these properties, we modulate the mean and the variance of log-

returns of commodity prices by a finite-state Markov chain. The h-day ahead

forecasts generated from our model are compared with regular HMM and the
Autoregressive Moving Average model (ARMA). The results indicate that our
proposed HMM with threshold effect outperforms the other models in terms
of predicting ability.
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1. Introduction. Crude oil price has an important impact on the world economy
as a significant proportion of energy consumption around the globe comes from
crude oil. The fluctuation of the crude oil price is a major concern of both govern-
ment policy makers and industrial investors, especially in countries of fast-growing
economy such as China and India. There are many factors that may affect the crude
oil price, for example wars and conflicts, political stability, economic growth, discov-
ery of new energy sources, financial crises and so on. The combined effect of these
factors on crude oil prices render the modeling and forecasting of their movements
complex and challenging issues. This will have a significant impact on stakeholders
in energy markets since investment decisions related to future fluctuations in crude
oil price are hard to make.

The prediction of crude oil price becomes extraordinarily important and many
different approaches have been proposed for this purpose. In [16], the authors pro-
vide probabilistic forecasts of average oil prices by utilizing inherently probabilistic
belief network models. In [30, 31], a regression model was proposed to forecast West
Texas Intermediate (WTI) price by considering the petroleum inventory level main-
tained by the Organization for Economic Cooperation and Development (OECD)
countries. Later Kaufman et al. [17] take both OPEC’s production policies and
OECD’s stocks into consideration to forecast oil price. The results indicate that
OPEC’s decisions are important price drivers. However, it is almost impossible to
predict the inventory level of the OECD and the OPEC’s decisions. During re-
cent decades time series models have been widely used, including the prediction of
oil price. Several authors have tried linear time series models [14, 29] to predict oil
prices. However, the results indicate that these models cannot capture the nonlinear
behavior of the oil price. Recently De Souza e Silva et al.[2] employed nonlinear time
series models and Hidden Markov Models (HMMs) to predict the future oil price
trends, where the high frequency price movements have been removed in advance
by employing wavelet analysis.

In recent years, HMM filtering methods have found diverse applications in elec-
tronics, statistics, physics, finance and commodity markets. Elliott et al.[4] provides
self-updating estimates for all model parameters of HMM. In [11], an HMM filtering-
based method was applied to the asset allocation problem using a mean-variance
type utility criterion. [5, 19] study the application of HMMs in option pricing. In
[20], the authors illustrate the optimal filtering of log returns of commodity prices in
which both the mean and volatility are modulated by a hidden Markov chain with
finite state space. In [21, 22], higher-order Markov-switching models were proposed
with applications to crediting rating and risk measurement. An interactive hidden
Markov model has been proposed in [1] for modeling default data. Erlwein et al.
[13] developed investment strategies relying on HMM approaches. Elliott et al. [7]
employed an HMM to the mean-variance portfolio selection problem. Elliott et al.
[10] discussed ruin theory where the risk process is described by an HMM.

However, the transition probability matrix in most of the mentioned works is
time homogeneous, which has its limitation in empirical applications. In this paper,
we consider HMM with zero-delay observations and take a threshold effect on the
transition matrices into account. The optimal estimation of parameters will be
discussed and compared with actual values by considering simulated examples. The
model will then be applied to forecast the crude oil price, where both the mean and
variance of the log return prices are modulated by a finite-state hidden Markov
chain. Here we model the observable feedback by using the threshold principle
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[25, 26, 27]; interested readers can also refer to [6, 8, 9]. The optimal estimate of
the threshold parameter will be derived using Akaike’s information criterion (AIC)
[28].

The remainder of this paper is structured as follows. In Section 2, we introduce
the HMM with threshold effect. Section 3 presents a reference probability mea-
sure under which the observation process is a sequence of identically independent
distributed random variables. In Section 4, we give the recursive formulas for the
related processes. Section 5 describes the optimal estimation for all parameters. In
Section 6, numerical examples based on simulations are given to test the quality of
estimated parameters. Then a numerical example is given to demonstrate both the
effectiveness and efficiency of our proposed model. Finally concluding remarks are
given in Section 7.

2. The Hidden Markov Model with threshold effect. In this section, we
present our Hidden Markov Model with threshold effect (THMM). We begin with a
complete probability space (Ω,F ,P), where P is a real-world probability measure.
Let {xk}k≥0 be a discrete-time, finite-state, Markov chain on (Ω,F ,P) with the
state space being given by the set of standard unit vectors {e1, e2, · · · , eN}. We
suppose that x0 or its distribution is known. Suppose {yk}k≥0 is the observation
process on (Ω,F ,P) with the state space <.

To specify the probability law of the chain {xk}k≥0 under the “historical mea-
sure” P, we consider a family of transition matrices {Ayk}k≥0 where

Ayk := [aji(yk)]i,j=1,2,··· ,N

and
aij(yk) := P(xk+1 = ei|xk = ej ,yk).

Here

aij(yk) =

{
a

(1)
ij if yk > r

a
(2)
ij if yk ≤ r,

and r ∈ R is the threshold parameter. Consequently we are incorporating the
threshold effect using the threshold principle introduced by Tong [25, 26, 27] to
parametric, nonlinear time series analysis. Indeed, the threshold principle plays a
fundamental role in nonlinear time series analysis since it can be used to describe a
number of important parametric nonlinear time series models.

Let {Fk}k≥0 and {Yk}k≥0 be the P-completed, natural filtrations generated by
the chain {xk}k≥0 and the observations process {yk}k≥0, respectively. Write, for
each k ≥ 0, Gk := Fk ∨ Yk. Define a sequence of random variables {vk}k≥1 by
putting:

vk := xk −Ayk−1
xk−1. (1)

Then it is not difficult to see that {vk}k≥1 is a martingale difference sequence with
respect to the filtration {Gk}k≥0 and the measure P. That is, for each k ≥ 1,
E[vk|Gk−1] = 0 ∈ <N , where E denotes the expectation under P.

Let {wk}k≥0 be a sequence of independent and identically distributed random
variables with common distribution, N(0, 1), the standard normal distribution. We
further assume that there are vectors

µ = (µ1, µ2, . . . , µN )
′

and σ = (σ1, σ2, . . . , σN )
′

such that µ(xk) = 〈µ,xk〉 and σ(xk) = 〈σ,xk〉, where µi ∈ < and σi > 0, for each
i = 1, 2, . . . , N . Here “H ′” and “v′” denotes the transpose of the matrix H and the
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vector v respectively, and 〈·, ·〉 is the scalar product in <N . We suppose that the
observation process y is governed by the following dynamics:

yk = µ(xk) + σ(xk)wk, k = 0, 1, 2, . . . , T. (2)

The above relation implies that what we are considering is a zero-delay model.
In [18], a zero-delay setting with different observation process is discussed. Our
filtering and estimation method to be discussed below also applies to the case with
delay.

3. Reference probability approach. In this section, we discuss a reference prob-
ability approach for obtaining an optimal filter of the hidden Markov chain {xk}k≥0,
given information about the observations process {yk}k≥0. The key idea of the ref-
erence probability approach is to start with a probability measure under which the
observation process becomes simpler and does not depend on the hidden Markov
chain. The idea of the reference probability approach to filtering was introduced by
Zakai [32] and was later applied to filtering hidden Markov models by Elliott et al.
[4].

We start with a reference probability measure P on (Ω,F) under which the obser-
vation process {yk}k≥0 is a sequence of i.i.d. standard Gaussian random variables
independent of the hidden Markov chain {xk}k≥0 and {xk}k≥0 has the probability
law specified by {Ayk}k≥1. In the sequel, we reconstruct the real-world probability

measure P from the reference probability measure P by a density process for a
measure change.

Let φ(z) be the probability density function of a standard normal random vari-
able. For l = 0, 1, 2, · · · , we define

λl :=
φ(σ(xl)

−1(yl − µ(xl)))

σ(xl)φ(yl)
. (3)

where the functions µ and σ are the same as presented in Section 2.{
Λk := Πk

l=1λl, k ≥ 1 ,
Λ0 := 1.

which is a {Gk}k≥0-adapted process and will be utilized in changing probability
measure.

Then we reconstruct P by putting: dP
dP |Gk := Λk. We define a sequence of random

variables {wk}k≥1 by putting:

wk :=
yk − 〈µ,xk〉
〈σ,xk〉

.

Lemma 3.1. Under P, {wk} is a sequence of i.i.d. random variables with common
distribution N(0, 1).

Proof. See Appendix A.

Our goal is to derive the optimal filter: ξk := E[xk|Yk]. This filter is optimal in
the mean-square sense. By a version of the Bayes’ rule,

E[xk|Yk] =
E[Λkxk|Yk]

E[Λk|Yk]
.

Write, for each k ≥ 1, γk := E[Λkxk|Yk]. Then it is easy to check that

ξk := E[xk|Yk] =
γk
〈γk,1〉

.
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Here 1 := (1, 1, · · · , 1)T ∈ <N .

4. Recursive filters and filter-based estimates. In this section, we first derive
the recursive filter γk and then some recursive relations for some useful processes.
We write

Γi(yk) =
φ(yk−µ(ei)

σ(ei)
)

σ(ei)φ(yk)
,

dk = (Γ1(yk),Γ2(yk), . . . ,ΓN (yk)) and Dk = diag(dk)

where diag(z) denotes the diagonal matrix with vector z as its diagonal.

Proposition 1. For k ∈ N , we have

γk+1 = Dk+1Aykγk.

Proof. The proof is given in Appendix B.

In order to estimate the parameters Ayk = (aij(yk)), µ = (µi) and σ = σi, the
following processes are required:

J rsk :=

k∑
n=1

〈xn−1, er〉 〈xn, es〉

the number of jumps from state er to es up to time k;

Prk :=

k∑
n=1

〈xn−1, er〉

the number of times that x occupies the state er up to time k − 1;

Ork :=

k∑
n=1

〈xn, er〉

the number of times that x occupies the state er up to time k;

T rk (f) :=

k∑
n=1

〈xn, er〉 f(yn)

where f denotes either f(yk) = yk or f(yk) = y2
k.

We now derive recursive relations for these processes and write

ˆJ rsk = E[J rsk |Yk].

From a version of the Bayes’ rule, see for instance (Elliott et al., 1995) [4],

ˆJ rsk =
E[ΛkJ rsk |Yk]

E[Λk|Yk]
=
E[ΛkJ rsk |Yk]

〈γk,1〉
. (4)

Write γ(C)k = E[ΛkCk|Yk] and 〈γ(J rsx)k,1〉 = E[ΛkJ rsk |Yk]. The recursive rela-
tions for γ(J rsx)k, γ(Prx)k, γ(Orx)k and γ(T r(f)x)k are given in the following
proposition.

Proposition 2. With the above notations, we have

γ(J rsx)k = DkAyk−1
γ(J rsx)k−1 + 〈γk−1, er〉Γs(yk)esasr(yk−1) (5)

γ(Prx)k = DkAyk−1
γ(Prx)k−1 + 〈γk−1, er〉Dka·r(yk−1) (6)

γ(Orx)k = DkAyk−1
γ(Orx)k−1 + Γr(yk)erar·(yk−1)γk−1 (7)
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γ(T r(f)x)k = DkAyk−1
γ(T r(f)x)k−1 + Γr(yk)f(yk)erar·(yk−1)γk−1 (8)

where ar·(yk−1) and a·r(yk−1) denote the rth row and rth column of the matrix
Ayk−1

separately.

Proof. The proof is given in Appendix C.

5. Parameter re-estimation. In this section, we present the estimation formulas
for all the model parameters. Write

θ = {(aij(y)), 1 ≤ i, j ≤ N,µi, 1 ≤ i ≤ N, σi, 1 ≤ i ≤ N}
for the set of the parameters in our model. Furthermore, we note that

N∑
i=1

aij(y) = 1.

Suppose such a set of parameters θ is given. We then wish to determine a new set

θ̂ = {(âij(y)), 1 ≤ i, j ≤ N, µ̂i, 1 ≤ i ≤ N, σ̂i, 1 ≤ i ≤ N}
which maximizes the conditional pseudo log-likelihoods, as in [4].

From [4], if asr(y) = 0 then

âsr(y) = 0 and
âsr(y)

asr(y)
= 1;

otherwise the optimal estimates are given by

âsr(y) =
ˆJ rsk
P̂rk

=
γ(J rs)k
γ(Pr)k

. (9)

For the parameters µi, 1 ≤ i ≤ N , we consider a new probability measure P∗ defined
by

dP∗

dP

∣∣∣∣
Gk

= Λ∗k =

k∏
l=1

λ∗l ,

where

λ∗l = exp

(
1

2 〈σ,xl〉2
{〈µ,xl〉2 − 〈µ̂,xl〉2 − 2yl 〈µ,xl〉+ 2yl 〈µ̂,xl〉}

)
.

By maximizing

E

[
log

dP∗

dP

∣∣∣∣Yk]
we obtain the optimal estimates

µ̂r =
T̂ rk (y)

Ôrk
=
γ(T̂ r(y))k

γ(Ôr)k
.

For the parameters σi, 1 ≤ i ≤ N , consider the probability measure P∗∗ defined by

dP∗∗

dP

∣∣∣∣
Gk

= Λ∗∗k =

k∏
l=1

λ∗∗l ,

where

λ∗∗l =
〈σ,xl〉
〈σ̂,xl〉

exp

(
1

2 〈σ,xl〉2
(yk − 〈σ,xl〉)2 − 1

2 〈σ̂,xl〉2
(yk − 〈σ,xl〉)2

)
.
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Again by maximizing

E

[
log

dP∗∗

dP

∣∣∣∣Yk]
we can obtain the optimal estimates

σ̂2
i =
T̂ ik (y2)− 2µiT̂ ik (y) + µ2

i Ôik
Ôik

=
γ(T̂ i(y2))k − 2µiγ(T̂ i(y))k + µ2

i γ(Ôi)k
γ(Ôi)k

.

For the threshold parameter r in the transition probability matrix of the hidden
sequence, Akaike’s Information Criterion (AIC) approach [27, 28] will be used. In
the general case, we have

AIC(m) = −2 log(maximized likelihood) + 2(no. of independently adjusted parameters),

where m = 1, 2, . . . ,M , the candidate values for the threshold parameter r. The
likelihood function is given by

f(y1, . . . ,yt) = f(y1)f(y2|y1) . . . f(yk|Yk−1) . . . f(yt|Yt−1),

where f(yk|Yk−1) denotes the conditional probability density function yk given
Yk−1. By minimizing AIC, the optimal r is determined.

6. Numerical results.

6.1. Simulated examples. In this section, we investigate the quality of the es-
timated parameters. We start from a “true” model with known parameters and
simulate the logarithmic returns from this “true” model. The data will then be
used to estimate the parameters using the filtering algorithm. The first thing we
need to address is to determine the number of states. Many researchers restrict their
attention to a two-state (N = 2) or a three-state (N = 3). Indeed, in 2005, Taylor
[23] pointed out that a two-state model is good enough to distinguish a normal
market from one experiencing crisis. In 2009, Erlwein and Mamon, [12] determine
the optimal number of regimes by using the Akaike Information Criteria (AIC) and
they found that a two-state Markov chain model outperforms other multiple state
models. We refer interested readers to [24] for more details about order selection of
a Markov chain model. With the development of Internet, the market is changing
and becoming more complex, just considering normal market and one with crisis
may not be enough. In the following discussions, we set N = 3, i.e., we will conduct
our research under three state model, which can be seen as considering Expansion,
Neutral and Recession markets, respectively.

Under three-state THMM setting, the implementation procedure starts by as-
signing initial values for µi, σi, i = 1, . . . , N , the transition probability matrices
A(1), A(2) and the threshold parameter r. After a batch of y, new estimates of
µ,σ, A are updated by the above recursive filters, where A(1) is updated by using
those data with y > r and A(2) is updated by using data with y ≤ r. After another
batch of y, the threshold parameter r is updated by using the AIC method with
new estimates of µ,σ, A and the candidate values for r are given by all the values
from −5 to 5 with step size 0.1. These estimates are then used iteratively to update
the model parameters until all the data is used up. It was empirically observed
that all the parameters µ,σ, A(1) and A(2), except r, converge to certain values.
Furthermore, it appears that this kind of stability does not depend on the initial
parameter values. For r, we take the mean of all updated values as the estimate.

In the following, 50 groups of “true” parameters are given and each group gen-
erates 2, 000 observable values. To indicate the stable property of the evolution of
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µ, σ,A1 and A2, the dynamics of these parameters are shown in Figures 1-4 based
on one randomly chosen group of observable values from the simulated data.

Figure 1. µ
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Figure 2. σ
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The accuracy of the model parameter estimates under different window sizes is de-
picted in Table 1, where the differences between “true” parameters and correspond-
ing estimated parameters are measured using the Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and the Sum of Squares due to Error (SSE).
The number of steps to provide new estimates for parameters µ, σ,A1 and A2 is
denoted as “It”, which takes values 5, 10 and 15 separately. The corresponding
number of steps for updating the parameter r is represented as “Itr”, which is given
by 10, 20 and 30 respectively. The data indicates the accuracy of estimation, and
it also shows that the estimation tends to be more accuracy by updating more fre-
quently. However, this is not the case for the parameter r. This observation will
be taken into consideration in the followings where we will employ our method to
predict the oil price by using real data.

6.2. Implementation to a real data set. The estimation method given above
was then applied to the log returns series of daily oil prices recorded from 1986 to
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Figure 3. A1
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Figure 4. A2
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2011. The dataset consisted of 6, 524 data values. In the following discussion, we
use the data points from 1986 to 2003 as the training data set, and the data points
from 2003 to 2011 as the testing data set.

We assume that the drift µ and the volatility σ of the log return are both governed
by a hidden Markov chain x with N states. We observe the logarithmic increments
yk+1 of the oil price process Sk, and we suppose it have dynamics

yk+1 = log

(
Sk+1

Sk

)
= µ(xk+1) + σ(xk+1)wk+1

= 〈µ,xk+1〉+ 〈σ,xk+1〉wk+1.

(10)

The parameters µ,σ, A and r can be estimated by the same procedure as in the
last subsection. In turn they are then used to forecast daily oil prices.

From the representation of x in Eq. (1), it is easy to see that

E(xk+1|Yk) = AykE(xk|Yk) = Aykξk.

For t ∈ < consider the following conditional distribution
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Figure 5. Prediction
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Figure 6. Year 2011
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P(yk+1 ≤ t|Yk) =

N∑
i=1

P(σiwk+1 ≤ t− µi)P(xk+1 = ei|Yk)

=

N∑
i=1

〈Aykξk, ei〉
∫ t−µi

−∞
φi(x)dx

where

φi(x) =
1√

2πσi
e
− x2

2σ2
i .

Then the density of yk+1 given Yk is

N∑
i=1

〈Aykξk, ei〉φi(t− µi).

Therefore, the one-step ahead forecast of the asset price based on available infor-
mation is given by

E(Sk+1|Yk) = SkE(eyk+1 |Yk) = Sk

N∑
i=1

〈Aykξk, ei〉 eµi+
σ2i
2 . (11)
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Table 1: Accuracy of estimated parameters
It=5, Itr=10 It=10, Itr=20 It=15, Itr=30

MAE RMSE SSE MAE RMSE SSE MAE RMSE SSE
µ1 0.2105 0.3055 4.6652 0.2373 0.3232 5.2230 0.2583 0.3462 5.9937
µ2 0.3028 0.3936 7.7456 0.3021 0.3773 7.1170 0.2821 0.3643 6.6375
µ3 0.2372 0.3330 5.5452 0.2484 0.3258 5.3082 0.2781 0.3745 7.0111
σ1 0.1641 0.2285 2.6099 0.1804 0.2404 2.8899 0.2321 0.3385 5.7275
σ2 0.2396 0.3266 5.3347 0.2408 0.3287 5.4033 0.2494 0.3350 5.6124
σ3 0.2243 0.3114 4.8493 0.2462 0.3250 5.2813 0.2115 0.2788 3.8873

a111 0.3038 0.3637 6.6139 0.3768 0.4281 9.1632 0.2863 0.3344 5.5903

a112 0.3456 0.4060 8.2436 0.2979 0.3799 7.2170 0.3022 0.3526 6.2180

a113 0.2419 0.3059 4.6793 0.3467 0.4280 9.1571 0.3021 0.3642 6.6336

a121 0.2338 0.2981 4.4419 0.2488 0.3076 4.7312 0.2556 0.3086 4.7619

a122 0.2895 0.3597 6.4692 0.2979 0.3631 6.5927 0.3408 0.4053 8.2130

a123 0.2913 0.3469 6.0166 0.3329 0.3895 7.5851 0.3155 0.3786 7.1687

a131 0.2140 0.2742 3.7592 0.2687 0.3223 5.1940 0.3125 0.3757 7.0575

a132 0.3032 0.3512 6.1654 0.2646 0.3207 5.1414 0.2750 0.3268 5.3387

a133 0.2498 0.3233 5.2261 0.2997 0.3510 6.1592 0.3013 0.3629 6.5848

a211 0.2499 0.2963 4.3883 0.2597 0.3260 5.3139 0.2878 0.3671 6.7391

a212 0.3213 0.3809 7.2547 0.2946 0.3569 6.3691 0.2896 0.3631 6.5922

a213 0.2939 0.3453 5.9599 0.2746 0.3301 5.4489 0.3085 0.3638 6.6193

a221 0.2613 0.3335 5.5595 0.2789 0.3375 5.6964 0.3076 0.3629 6.5858

a222 0.2988 0.3511 6.1621 0.2791 0.3417 5.8363 0.3134 0.3695 6.8273

a223 0.3027 0.3638 6.6178 0.3301 0.3938 7.7553 0.3298 0.3947 7.7913

a231 0.3093 0.3620 6.5520 0.2088 0.2808 3.9438 0.2558 0.3121 4.8694

a232 0.2781 0.3270 5.3472 0.2779 0.3310 5.4777 0.2969 0.3636 6.6100

a233 0.3370 0.4104 8.4216 0.3540 0.4139 8.5662 0.3264 0.3925 7.7025
r 1.3506 2.0633 212.8582 0.8303 1.4174 100.4480 0.5571 0.8851 39.1680

The two-step ahead prediction of the price can be obtained by (11) using one-step
ahead forecast, and then h-step (h = 3, . . . , 20) ahead prediction will be given.

In [20], the predictability performance under the Diebold-Kilian metric of two-
and three-state HMMs is compared with that implied by the autoregressive condi-
tional heterroscedasticity (ARCH(1)) and generalized ARCH (GARCH(1,1)) mod-
els. Their results indicate that HMMs outperform the ARCH and GARCH models
in terms of short-run forecasts. However, they did not mention anything about
the Autoregressive Moving Average (ARMA) model, which is supposed to be the
most popular model in forecasting application. To show the advantages of our
model, ARMA model would be used as a benchmark in the following numerical
experiments.

In our numerical experiments, we aim to compare the predictability of the three-
state hidden Markov model with threshold parameter (THMM) with the predictabil-
ity implied by the regular HMM and the benchmark ARMA model. To make the
comparison more convincing, we evaluate the forecasting errors for the three differ-
ent model types using the Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Root Mean Square Error (RMSE), Harding and Pagan Test [15]
and Diebold-Mariano Test [3]. Harding and Pagan test seeks to identify synchronic-
ity in the turning points of two series, and it is a statistical measure which casts
directionally accurate changes. This test is generated by creating two series, XF

for the forecast (or futures) series and XS for the actual spot price series:
XF,t = 0 if Ft+n|t − St < 0
XF,t = 1 if Ft+n|t − St ≥ 0
XS,t = 0 if St+n − St < 0
XS,t = 1 if St+n − St ≥ 0

where F and S are the futures and spot price series, respectively, and n is the fore-
cast horizon. For a given forecast horizon, the concordance statistic is determined
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by:

CS,F = T−1

[
T∑
t=1

(XS,tXF,t) +

T∑
t=1

(1−XS,t)(1−XF,t)

]
(12)

This statistic measures how closely predictions move with actual values in direc-
tional terms.

The Diebold-Mariano test is proposed for the comparison of different forecasting
models. The basic underlying principle of Diebold-Mariano Test is to base such
test on the expectation of the difference between loss functions of the forecasting
errors for different models. In the following, let {yt} denote the actual data series,
and {ŷhi,t} denote the ith competing h-step forecasting series. The loss differential
between two forecasts is given by dt = g(eit)− g(ejt), i, j = 1, 2, . . . ,m, and the two
forecasts have equal accuracy if and only if the loss differential has zero expectation
for all t. Suppose that the forecasts are h(> 1)-step-ahead. In order to test the null
hypothesis, H0 : E(dt) = 0,∀t, the following statistics is utilized by Diebold and
Mariano:

DM =
d̄√

2πf̂d(0)
T

where d̄ =
∑T
t=1 dt, and f̂d(0) is a consistent estimate of

fd(0) =
1

2π

( ∞∑
k=−∞

γd(k)

)
the spectral density of the loss differential at frequency 0, γd(k) is the autocovariance

of the loss differential at lag k. The quantity f̂d(0) is defined by

f̂d(0) =
1

2π

T−1∑
k=−(T−1)

I

(
k

h− 1

)
γ̂d(k)

where

γ̂d(k) =
1

T

T∑
t=|k|+1

(dt − d̄)(dt−|k|−d̄)

and

I

(
k

h− 1

)
=

{
1 for

∣∣∣ k
h−1 ≤ 1

∣∣∣
0 otherwise

Under the null hypothesis, the test statistics DM is asymptotically N(0, 1) dis-
tributed. The null hypothesis of no difference will be rejected if the computed DM
statistic falls outside the range of −Zα/2 to Zα/2.

In our numerical experiment, the number of underlying hidden state is set to
be 3 (N = 3), and the forecasting errors for the three different model types for
the h-step ahead forecasts (h = 1, 2, . . . , 20) are reported in Table 2. By analyzing
the autocorrelation functions and the partial autocorrelation functions of the price
series, the orders of the model ARMA are given by 8 and 12 respectively. Addition-
ally, the results for Harding and Pagan test are reported in Table 3 and the values
of DM statistics are presented in Table 4.
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Table 2: Accuracy of predictions
MAE MAPE RMSE

Step THMM HMM ARMA THMM HMM ARMA THMM HMM ARMA
1 0.6571 0.6772 38.5056 70.1171 70.1162 70.6075 1.2772 1.2900 44.6933
2 0.8618 0.8767 38.4588 70.1171 70.1157 70.6071 1.5165 1.5291 44.6933
3 1.0943 1.1075 38.2271 70.1170 70.1152 70.6048 1.7544 1.7672 44.3661
4 1.3337 1.3252 38.5154 70.1191 70.1168 70.6107 2.1103 2.1094 44.4763
5 1.5809 1.5720 38.1649 70.1200 70.1171 70.6049 2.4751 2.4744 44.2075
6 1.7653 1.7512 39.0297 70.1190 70.1157 70.6191 2.6917 2.6858 44.8844
7 1.9091 1.9004 37.9088 70.1182 70.1143 70.6022 2.8747 2.8849 43.8580
8 2.0631 2.0395 36.8175 70.1197 70.1153 70.5854 3.1950 3.1885 42.8849
9 2.3027 2.2690 37.0833 70.1225 70.1176 70.5901 3.4312 3.4062 43.0634
10 2.4098 2.3912 37.0323 70.1221 70.1168 70.5893 3.6031 3.6021 43.0214
11 2.4520 2.4237 38.0120 70.1213 70.1153 70.6041 3.6323 3.6301 43.9126
12 2.7095 2.6502 38.3527 70.1256 70.1192 70.6088 3.9464 3.9046 44.2681
13 2.7674 2.7020 38.2748 70.1234 70.1166 70.6077 3.9701 3.9416 44.1929
14 3.1003 3.0394 38.7028 70.1207 70.1132 70.6143 4.6993 4.7048 44.5676
15 3.3073 3.2407 39.8606 70.1216 70.1138 70.6318 4.8768 4.8855 45.6269
16 3.0475 2.9143 39.8835 70.1256 70.1173 70.6321 4.2991 4.2164 45.6542
17 3.2624 3.2002 38.7757 70.1220 70.1131 70.6147 4.9488 4.9643 44.7068
18 3.8019 3.7099 38.6336 70.1287 70.1195 70.6121 5.3424 5.2526 44.6244
19 3.3387 3.2340 39.8483 70.1258 70.1160 70.6302 4.6491 4.5823 45.7631
20 3.5091 3.4241 39.9252 70.1265 70.1162 70.6313 5.0282 4.9773 45.8393

Table 3: Directional Forecasts
Harding-Pagan Test

Step THMM HMM ARMA

1 0.3475 0.5111 0.4737

2 0.2158 0.2786 0.4569

3 0.1403 0.1494 0.4443

4 0.1479 0.1515 0.4559

5 0.1378 0.1337 0.4382

6 0.1474 0.1489 0.4321

7 0.1312 0.1302 0.4311

8 0.1398 0.1383 0.4265

9 0.1398 0.1393 0.4235

10 0.1530 0.1570 0.4281

11 0.1555 0.1525 0.4326

12 0.1520 0.1459 0.4265

13 0.1575 0.1494 0.4306

14 0.1611 0.1631 0.4250

15 0.1601 0.1575 0.4250

16 0.1702 0.1636 0.4235

17 0.1499 0.1525 0.4159

18 0.1738 0.1651 0.4169

19 0.1651 0.1520 0.4139

20 0.1550 0.1550 0.4144

From Table 2, by comparing the forecasting errors of the THMM with those
of HMM and ARMA models, we find that THMM and HMM models dominate
ARMA model in terms of the three criteria for all the h-step ahead forecasts(h =
1, 2, . . . , 20). Additionally, these criteria also indicate that THMM performs better
than the HMM model for short-run forecasts. Nevertheless, the difference of long-
run forecasting errors is too small to yield any practical significance, which can be
justified by corresponding values of DM statistics from Table 4. On the other hand,
from Table 3, we conclude that ARMA model shows the best directional forecasting
ability. However, THMM outperforms HMM in directional forecasts for long-run
forecasts. By calculating the Diebold-Mariano statistics, the null hypothesis of no
difference is rejected at the 5% level for THMM with ARMA model. For THMM
with HMM model, the null hypothesis is rejected at the 5% level for short-run
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Table 4: The Diebold-Mariano Test
Step DM Test based on

THMM and HMM

DM Test based on THMM

and ARMA

1 -7.3944 -39.8539

2 -3.5605 -23.0956

3 -1.9302 -18.0701

4 0.0952 -15.6151

5 0.0506 -13.6254

6 0.3246 -12.6574

7 -0.4322 -11.4710

8 0.2511 -10.4746

9 0.8516 -9.9699

10 0.0270 -9.4191

11 0.0532 -9.0919

12 0.9990 -8.6963

13 0.5196 -8.3548

14 -0.0829 -8.0797

15 -0.1185 -7.9669

16 1.2755 -7.6941

17 -0.1728 -7.2728

18 1.1428 -6.9931

19 0.8583 -6.9341

20 0.5422 -6.7681

forecasts. These results reinforce further the adequacy of the THMM model in
capturing the dynamics of the data set.

A comparison of one-step ahead forecasts generated from our model with the
actual data is depicted in Figure 5 and the zoom-in view of year 2011 is given in
Figure 6. The two figures shows directly how closely the one-step ahead forecasts
follow the actual data.

7. Concluding remarks. In this paper, we have added a threshold parameter to a
hidden Markov model for oil prices and considered the zero-delay case. The optimal
estimators of the model parameters are given and compared with corresponding true
values. The prediction results show good forecasting ability of our model. For future
research, it will be interesting to extend this model to a higher-order case, where the
hidden sequence follows a discrete-time higher-order Markov chain. The embedding
technique discussed in [21] can be employed to analyze such a higher-order HMM.
The model introduced in this article can also be applied to other research areas,
such as optimal portfolio management, option valuation and risk measurement.

Appendix. Proof of Lemma 1. Firstly, we note that

P(wk+1 ≤ t|Gk) = E[I{wk+1≤t}|Gk]

By a version of the Bayes’ rule,

E[I{wk+1≤t}|Gk] =
E[Λk+1I{wk+1≤t}|Gk]

E[Λk+1|Gk]

=
ΛkE[λk+1I{wk+1≤t}|Gk]

ΛkE[λk+1|Gk]

=
E[λk+1I{wk+1≤t}|Gk]

E[λk+1|Gk]
.
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Now

E[λk+1|Gk] = E

[
φ(wk+1)

σ(xk+1)φ(yk+1)

∣∣∣∣Gk]
= E

[
E

[
φ(wk+1)

σ(xk+1)φ(yk+1)

∣∣∣∣Gk,Fk+1

]∣∣∣∣Gk]
= E

[∫ +∞

−∞

φ(wk+1)

σ(xk+1)φ(yk+1)
φ(yk+1)dyk+1

∣∣∣∣Gk]
= 1,

so

P(wk+1 ≤ t|Gk) = E[λk+1I{wk+1≤t}|Gk]

= E
[
E[λk+1I{wk+1≤t}|Gk,Fk+1]|Gk

]
= E

[∫ +∞

−∞

φ(wk+1)

σ(xk+1)φ(yk+1)
φ(yk+1)I{wk+1≤t}dyk+1

∣∣∣∣Gk]
=

∫ t

−∞

1√
2π
e−

w2
k+1
2 dwk+1

= P(wk+1 ≤ t).

The result follows.

Proof of Proposition 1. With the notations, we have

γk+1 = E[Λkλk+1Xk+1|Yk+1]

=

N∑
i=1

E[Λk 〈Xk+1, ei〉 |Yk+1]Γi(yk+1)ei

= E[Λk 〈AykXk + vk+1, ei〉 |Yk+1]Γi(yk+1)ei

=

N∑
i=1

N∑
j=1

E[Λk 〈Xk, ej〉 |Yk+1]Γi(yk+1)eiaij(yk)

=

N∑
i=1

N∑
j=1

〈γk, ej〉Γi(yk+1)eiaij(yk) = Dk+1Aykγk.

Proof of Proposition 2. With the given notation,

γ(J rsx)k = E[ΛkJ rsk xk|Yk] = E[Λk(J rsk−1 + 〈xk−1, er〉 〈xk, es〉)xk|Yk]

= E[ΛkJ rsk−1xk|Yk] + E[Λk 〈xk−1, er〉 〈xk, es〉xk|Yk]

=

N∑
i=1

E[Λk−1λkJ rsk−1xk 〈xk, ei〉 |Yk]

+E[Λk−1 〈xk−1, er〉 〈xk, es〉 |Yk]
φ(yk−µs

σs
)

σsφ(yk)
es
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γ(J rsx)k =

N∑
i=1

E[Λk−1J rsk−1 〈xk, ei〉 |Yk]Γi(yk)ei

+E[Λk−1 〈xk−1, er〉 〈xk, es〉 |Yk]Γs(yk)es

=

N∑
i=1

N∑
j=1

E[Λk−1J rsk−1

〈
Ayk−1

xk−1 + vk, ei
〉
〈xk−1, ej〉 |Yk]Γi(yk)ei

+E[Λk−1 〈xk−1, er〉
〈
Ayk−1

xk−1 + vk, es
〉
|Yk]Γs(yk)es

then

γ(J rsx)k =

N∑
i=1

N∑
j=1

〈
γ(J rsx)k−1, ej

〉
Γi(yk)eiaij(yk−1) + 〈γk−1, er〉Γs(yk)esasr(yk−1)

so

γ(J rsx)k = DkAyk−1
γ(J rsx)k−1 + 〈γk−1, er〉Γs(yk)esasr(yk−1).

The other two recursive relations can be obtained similarly. See Elliott et al.
(1995)[4].
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