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1. Introduction

Development of a control theory for complex biological systems is one of the primary
goals of systems biology because of its potential applications to drug discovery and
treatment of intractable diseases [40, 41]. While a lot of useful results have been
obtained for control of linear systems, not so many practical results were obtained
for nonlinear systems [12]. It does not seem to be useful to apply existing theories
and methods to control of biological systems because biological systems are complex
and contain many nonlinear subsystems. Therefore, it is necessary to develop useful
control strategies for complex biological systems.

Among various mathematical models proposed for modeling complex and non-
linear biological systems, Boolean network (BN) [37, 38] attracts considerable atten-
tions as a nonlinear model of gene regulatory networks [5, 7, 10, 11, 24, 76]. Gene
regulatory networks are models of sets of interactions among genes, the analysis of
which is one of the key topics in systems biology and theoretical biology. BNs have
been widely used to model the regulatory networks in mammalian cortical area [31],
T cell large granular lymphocyte leukemia [75], mammalian cell cycle [26], and to
reproduce the wild-type gene expression patterns [8]. Of course, BNs cannot model
all aspects of biological systems. However, it is suggested that BNs provide good
approximations to the nonlinear functions in many biological systems [11] and BNs
can be used to elucidate how perturbations may alter normal behavior and thus
lead to testable predictions [9]. In fact, many BN-based models have been proposed
for describing various regulatory behaviors of biological systems as mentioned above
(see also [9]). There are two types of BNs: synchronous BNs and asynchronous BNs.
The difference between these two types lies on whether or not the states of nodes
are updated synchronously. Asynchronous BNs may be more appropriate to model
certain behaviors of biological systems. However, there are various subtypes in asyn-
chronous BNs [9], and there is no widely-used control model of asynchronous BNs.
On the other hand, many studies have been done on controllability of synchronous
BNs [2, 17, 28, 49, 50, 60, 84]. Therefore, in order to make use of the established
control models, we focus on synchronous BNs in this paper.

Many studies have been done on the analyses of BNs. For example, distribu-
tion of attractors [7, 24, 38, 76|, singleton attractors detection and the average
case complexity analyses [30, 81, 83|, relationship between network topology and
chaotic behavior [10, 11], and inference of BNs from gene expression data [5, 48, 56]
have been extensively studied. Stimulated by works on control of the probabilis-
tic Boolean network (PBN) [22, 71], Akutsu et al. studied the problem of finding
control strategies for BNs and showed it is NP-hard even in considerably restricted
cases [2].

Recently, extensive studies have also been done on the controllability and observ-
ability of BNs [16, 27, 28, 50, 53-55, 60, 84], based on the concept of Semi-tensor
product matrices that was proposed by Cheng and his colleagues [17-19]. Zhao
et al. and Fornasini et al. considered the optimal control of BNs over infinite
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horizon [28, 84]. Li et al. investigated the controllability of both BNs and free
Boolean sequences in time-variant and time-invariant ways [53, 54]. Laschov et al.
and Chen et al. considered the Mayer-type optimal control problems of BNs [16, 50].
In many of these works, necessary and sufficient conditions of the controllability of
Boolean control networks are derived. However, these methods require high compu-
tational cost: it is required to handle exponential size matrices. Other methods have
also been developed for PBN-like models [1, 45, 46, 67]. Although these methods
consider an arbitrary target state, other methods have been proposed for restrict-
ing the target states to be attractors. Recently, Zanudo and Albert proposed a
method that identifies driver nodes for BNs irrespective of the updating scheme
(synchronous/asynchronous) and the number of time steps by using the notion
of stable motifs, each of which is defined as a set of nodes that form a minimal
strongly connected component of the network and whose states form a partial fixed
point [70]. Many years ago, Akutsu et al. showed that singleton attractors in a
BN can be determined by specifying the states of nodes in the feedback vertex
set (FVS) [4], where FVS is a well-known concept in graph theory whose removal
leaves the network acyclic. It means that we can drive a BN to any specified single-
ton attractor by fixing the values of nodes in the FVS. Mochizuki et al. extended
this FVS-based approach to a general model including a certain type of nonlin-
ear ordinary differential equations and periodic attractors [63]. Zanudo and Albert
suggested that their method may require a smaller set of driver nodes than the
FVS-based methods do although there is no guarantee that their method can give
the smallest set of driver nodes [70]. These attractor-based methods provide prac-
tical ways to control BNs. However, the target states are restricted to attractors
and the number of time steps cannot be specified.

On the other hand, structural controllability has recently attracted considerable
attentions in the field of complex networks. One of the main targets in that study is
to determine the minimum set of driver nodes control of which leads the system to a
desired state, where the set is determined from the structure of networks. Liu et al.
[61] analyzed the average size of the minimum driver set for random networks and
scale-free networks (i.e., networks with power-law degree distributions) by making
use of the relationship [58] between structural controllability of a linear system
and the maximum matching of a bipartite graph [34]. Following their work, many
studies have been done. For example, Nepusz and Vicsek proposed and studied the
edge dynamics model [66] in place of the node dynamics model adopted by Liu et al.
Nacher and Akutsu gave a relationship between structural controllability and the
minimum dominating set, a well known concept in graph theory, by using a similar
model [64]. Gao et al. showed that the minimum number of driver nodes will be
overestimated if it is required to control a subset of nodes (or a subsystem) [29].
The problem of how the number of driver nodes changes as the removal fraction
of edges changes was discussed in [68, 73, 74], and structurally robust control was
discussed in [65]. However, these results cannot be applied to BNs because BNs
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are highly nonlinear. Therefore, we study in this paper the minimum set of driver
nodes control of which leads a given Boolean network from a specified initial state
to a specified target state in a specified number of time steps.

The purpose of this study is to develop a practical method using Integer Linear
Programming (ILP) to select the minimum number of driver nodes and to perform
theoretical analyses on the average size of the minimum set of driver nodes, both for
BNs. We focus on cases where the maximum in-degree is bounded by some constant
K. Tt is to be noted that most nodes in many real networks are considered to have
small in-degree. For example, gene regulatory networks are generally thought to
be made up of only a few nodes with high degree (knowns as hubs) and a large
majority of poorly connected nodes with low degree. Thus, gene regulatory networks
are assumed to have a hierarchical scale free network topology [13]. Many of existing
studies on BNs also focused on the cases of bounded in-degree [2, 3, 6, 21].

The paper is organized as follows. In Sec. 2, after reviewing BNs, we define the
problem to be discussed and show that it is NP-hard. In Sec. 3, we elucidate an
ILP-based method for finding the minimum set of driver nodes for given BNs and
initial/target states. In Sec. 4, we mathematically analyze boundary values of the
minimum number of control nodes for random BNs: upper bounds for cases of time
steps M =1 and M = 2. We also analyze the expected number of control nodes
needed in final time step. In Sec. 5, we present results of computational experiments.
Finally, we conclude with future work.

2. Problem

In this section, we briefly review BNs [38] and then introduce the problem.

2.1. Boolean network

A Boolean network G(V, F) consists of a set of N nodes V= {v1,...,vn} and a
list of Boolean functions F' = (f1,...,fn). The state of v; at time t is denoted
by wv;(t). The global state (or simply the state, or Gene Activity Profile (GAP)) of
a BN at time ¢ is denoted by the vector v(t) = (vi(t),...,vn(t)). For each node
v;, the Boolean function is in the form of f;(viy,...,vig,) where v;y,... vy, are
the k; input nodes of v;. The number k; is called the in-degree of node v;. The
Boolean function f; is a logical combination of k; variables. Here, we denote the
logical AND of z and y, logical OR of x and y, logical NOT of x, and exclusive OR
of x and y by x Ay, x Vy, T, and x @ y, respectively. Then the state of node v;
at time ¢ 4 1 is determined by v;(t + 1) = fi(vi1(t), ..., vig, (t)). We also write the
transition rule for v; as v;(t + 1) = fi;(v(t)) and the transition rule for the whole
BN as v(t + 1) = f(v(t)).

2.2. Minimum set of control nodes in BN control

Akutsu et al. defined a control problem for BNs called BN CONTROL [2]. In BN
CONTROL, nodes are classified into two classes: internal nodes and external nodes
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where internal nodes are original usual nodes in the BN and external nodes are
control nodes. Control nodes (also called driver nodes) are nodes by controlling the
values of which we can lead the BN to a desired state. There are two ways to obtain
control nodes: select from original nodes [6] or add new nodes to the BN [33]. Here,
we consider selecting n nodes from the original BN as control nodes for the reason
that gene activation has been shown to be critical in control of cells such as iPS
cells (induced pluripotent stem cells) generation [80].

Let V. = {v1,...,Un,Vn41,...,Un} be the set of all nodes in a BN, where
v1,...,V, are control nodes and v,41,...,vy are internal nodes. For conve-
nience, we denote u(t) = (u1(t),...,un(t)) = (vi(t),...,v,(t)) and Vv'(t) =
(Un+1(t),...,on(t)). The number n is the number of control nodes selected to

drive the BN to a desired state. The transition rule for the whole BN becomes
v(t +1) = f(u(t),v'(t)). For a global state v, a global state w is called a prede-
cessor of v if v = f(w). That is, there exists an edge from w to v in the state
transition diagram of a given BN if w is a predecessor of v. Then the problem of
Minimum Set of Driver Nodes is defined as follows.

Definition 1 (Minimum Set of Driver Nodes). Instance: a BN with N nodes,
an initial state of the network v%, and a desired state of the network v™ at the
M-th time step.

Problem: find the minimum set of driver nodes. By controlling the sequence
(u(0),...,u(M)) we have v(0) = v’ and v(M) = v™. The minimum number

of driver nodes is denoted as N.

Example 1. Here follows an example to illustrate this problem. Recall that the

problem is to find the minimum number of control nodes for a given BN, v, v,

and M. For example, we consider a BN with 5 nodes (see Fig. 1(a)) defined by

vi(t+1)=vi(1),

va(t+1) = w1 (1),
E v3(t41) = v (1),

va(t +1) =v2 (1) Av3(t),

. Vs vs(t+1) =) vus(t).

(a) (b)
Fig. 1. Example of BN.
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Table 1. Transition diagrams resulted from different controls.

(a) (b)

t U1 V4 V2 v3 U5 t U1 V2 v3 V4 U5
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0
2 1 1 1 1 0 2 1 1 1 0 0
3 1 1 1 1 1 3 1 1 1 1 1

transition rules shown in Fig. 1(b). (1) Suppose that the initial global state is
v? = (0,0,0,0,0), the desired global state is vM = (1,1,1,1,1), and the target
time step is M = 3. Then, if we select {v1,v4} as the set of control nodes, we would
have transition diagram Table 1(a).

Note that we can freely assign 0/1 values to v4(t) (for ¢t = 1,2,...) regardless
of the value assigned to v1(t). For convenience, we consider a node is selected as
a control node at time ¢ if the original Boolean function is not applied at the first
time. For example, v is selected as a control node at t = 1, and vy is selected as
a control node at ¢t = 2 in Table 1(a). Note that it is possible that multiple nodes
are selected as control nodes at the same time step.

Therefore, in this case, the number of control nodes is 2 and the set of control
nodes is {vy,v4}.

(2) However, if we select {v;} as the set of control nodes, we would have the state
transitions from v® to v as Table 1(b). Here, we note that if the set of control
nodes is empty (i.e., the number of control nodes is 0), v(0) = v(1) =v(2) =--- =
(0,0,0,0,0) holds and thus we cannot reach v = (1,1,1,1,1) at M = 3.

Therefore, in this case, the minimum set of driver nodes for this instance is
{v1} and the minimum number of driver nodes is 1. It is to be noted that in our
model, the minimum set of driver nodes depends on v°, v and M although it is
determined independent of these factors in the case of structural controllability of
linear systems [58, 61]. If we need to determine the minimum set of driver nodes
independently of these factors, a large number of driver nodes would be required
in most cases because there exist many states not having predecessors and, to be
discussed in Sec. 4, not a small number of driver nodes are required in order to
cope with even one such state.

It has been proved that the problem of finding control strategies for BNs is
NP-hard even if the number of control nodes is 1 (Theorem 4 in [2]). We can use
the same reduction to prove that the problem of finding the minimum set of driver
nodes is NP-hard. To this end, it is enough to let 7 in the proof to be a constant
node that always outputs 0. Then, there exists a satisfiable assignment if and only
if {21} is the minimum set of driver nodes. Therefore, we have:

Proposition 1. Minimum Set of Driver Nodes for Boolean networks is NP-hard.
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It is to be noted that although the minimum driver set problem is NP-hard for
BNs, the problem for structural controllability of linear systems can be solved in
polynomial time because the problem can be reduced to the maximum matching
problem for bipartite graphs [58]. It should also be noted that the Boolean values
of the driver nodes are updated synchronously. Therefore, there is no ordering on
the driver nodes, which also holds in the case of structural controllability of linear
systems [58, 61].

Here, we briefly explain the differences between our proposed model and the
attractor-based control methods [4, 63, 70], using the example given in the above.
Recall that {v1} is the set of driver nodes in our model. {v;} is also the set of driver
nodes in each of the attractor-based control methods, regardless of the initial and
target states. However, if v0 = (0,0,0,1,1), v/ = (0,0,0,0,0), and M = 1, we do
not need any driver node (i.e., the minimum number of driver nodes is 0). On the
other hand, if v = (0,0,0,0,0), v* = (1,1,1,1,1), and M = 1, we need to control
all nodes (i.e., the minimum number of driver nodes is 5). It is to be noted that we
cannot specify u(0) but can only specify u(1) because v(0) = v® must be satisfied in
our definition. These examples show that the minimum set of driver nodes depends
on the initial and target states and the number of time steps, whereas the set of
driver nodes is uniquely determined in each of the attractor-based control methods.
These also show that there exist cases in which we need more nodes than those
given by the attractor-based control methods if the number of time steps to reach
the target state is restricted. Therefore, we cannot directly compare our model
with the attractor-based control methods. Although the attractor-based control
methods have many practical merits, our model might be useful if there exist some
restrictions on the number of time steps (e.g., duration of therapy) and/or the
target state is not an attractor (but can be a new stable state due to driver nodes)
of a given BN.

3. Integer Linear Programming-Based Method

In this section, we elucidate an integer programming-based method for our pro-
posed problem. Integer programming [77] is a mathematical optimization program
in which some or all variables are restricted to be integers. When it refers to ILP [72],
all of the objective function and constraints are linear. Since ILP has been shown
to be very powerful in solving a variety of NP-hard problems [36] and the minimum
driver set problem for BNs is NP-hard, it is reasonable to apply ILP.

We employ the framework introduced in [6] although considerable modifications
are needed in order to select the minimum set of driver nodes. To give the ILP
formalization, we need some definitions, many of which have been introduced in [6].

We define two functions oy, (x) and 7, (z) by

z ifb=1, T ifb=1,
op(x) = and Tp(x) =

T otherwise, 1 — 2 otherwise,
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where b € {0,1}. Note that any Boolean function with & inputs can be written as
f’i(x'h?"')xik): \/ fl( FERREE) lk)/\Ubl(xll)/\"'/\abk(xik)' (1)
b'il ""’bik E{O,l}k
To ensure that x; = f;(x;,,...,x;, ) holds for every node v;, we need to do two
things:
(1) We need constraints

r; < E Li,biy wbiy o

biyseesbiy €{0,1}F
1
xp > ok E Libiy iy,
biyseesbiy €{0,1}F

which ensure any obtained feasible binary solution equals to the value of v;. If
fi(ziy, ..., x;,) = 0, we simply consider z; = 0. The definition of z;p,, by
is given in (2) as follows.

1Dy,

(2) Ensure that @;p, ..,,, =1 (or 0) is equivalent to f;(bi,, ..., bi,) Aoy, (i ) A+ A
op, (xi,,) = 1 (or 0). We add constraints

xi,b‘ by, — E i 1’1J

Tiby, by, > < Tbi, (xij )) —(k—1),
G=1,.k

where 7 is defined at the beginning of this section.

Moreover, let x; ; represent Boolean values v;(t). Use @4 p,...b,, t0 represent the
corresponding value of x; 3, .4, at time step ¢. Let ;s = v, if w; = 0 and 5, = 2
if w; = 1. In this representation, w; = 1 corresponds to the case that z; is selected
as a control node, to which z; ; gives 0-1 assignment for z; ;. These constraints can
be represented by

Yit — Wi < Tig < Yip + wy,
Zig — (1 —w;) <wip < zigp + (1 —wy).

Note that we aim at minimizing Zfil w; which gives the number of control
nodes.

By putting all the constraints together, we have the following ILP-formulation
for Minimum Driver Nodes Set problem.

Minimize > w;,
Subject to

Lit4+1,b;, iy,

Y

k

(5 m () — (6~ 1),

xi,t—‘—l,bil <big % Z;C:l Tb,;j (xi]’,t)
forallie[1,...,N],t€[0,...,M — 1] and b;, - - - bi € {0,1}*

IN
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sit. fi(biy, ..., big) =1,
T t41,bs, --bixy =0
foralli € [1,...,N],t€0,...,M — 1] and b;, - - - bis, € {0,1}*
sit. fi(biy, ..., big) =0,
Yi,t < ZbilwbikG{O,l}k Liyt,biy - big>
Yit > 55 Zbilmbike{m}k T t,b;, b
forallie[1,...,N],t€][0,...,M],
Yit — Wi < Xip < Yip + Wi,
zig— (L —w;) <xip < zig + (1 —w;)
forallie[1,...,N],t€][0,...,M],
Tit, Yits Zig, wi € {0,1}
foralli e [l,...,N],
zi0 = vy, xim = v},
foralli e [1,...,N],
Titb;,biy, €10,1}
foralli€[1,...,N],t€[0,...,M] and b;, ---b;, € {0,1}%.

4. Theoretical Analysis

The purpose of this section is to analyze the distribution of the minimum number
of driver nodes for random Boolean networks (with in-degree bound) and for ran-
dom initial states. However, it is quite difficult to obtain a general result because
no simple property is known for characterizing the minimum set of driver nodes,
different from the case of linear structural controllability studies [58, 61]. Therefore,
we focus on cases with a small number (e.g., 1 and 2) of time steps between the
initial and target states.

Recall that we denote the number of all nodes as N, the number of control
nodes as n, and the number of time steps needed from the initial state v° to the
target state v as M. Although the set of driver nodes depends on v°, v and
M, we assume here for simplicity that it is independent of v and v™. Fix the
initial state. Then, the number of possible control sequences is (27)* because the
number of possible 0-1 assignments to the driver nodes is 2" at each time step.
Since there exist 27V possible target states, in order to drive the BN to any specified
target state, we have

(2MM > 2N, (2)

However, it just gives a lower bound on n with respect to N and M, and we may
have a smaller bound if the set of driver nodes depends on v" and v .

By analyzing Eq. (2) we can get: for a fixed N, n decreases as M increases; for
a fixed M, n increases as IV increases.

In this section, we show that the minimum number of control nodes n has an
upper bound for fixed M =1 and M = 2, and a lower bound for a fixed N, where
the set of control nodes depends on v? and vM. We find two functions u(N, L)
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(Eq. (16)) and I(N) (Eq. (18)) as the upper and lower bounds estimation of the
minimum number of control nodes.

4.1. Upper bound of n

In the following, we will show upper bounds of the number of control nodes n for
cases M =1 and M = 2.

4.1.1. Case of M =1

When M = 1 which means the desired state is required to be achieved in one time
step, we need to compare f(v%) and v!. Let v; denote the ith coordinate value of v.
Only if f;(v%) # v} we will select v; as a control node. Since the probability of
£;(v?) # v} is 3 for a random BN and a random initial state (including states of
control nodes), the expected number of nodes selected as control nodes is upper

bounded by Zfioz(]j)(%)]v =4

4.1.2. Case of M =2

When M = 2 which means the desired state is required to be achieved at ¢t = 2, we
need to consider two possibilities: the target state has or does not have predecessors
in the state transition diagram. Figure 2 shows how we select and assign values
to control nodes. Here we assume: (1) predecessors are distributed uniformly at

t=0 t=1 t=2

M predecessors of |/

Select H: control
nodes to achieve X \ b
Target State V/

Fy

Route 1 T CONTROL

o

L 2

1
Initial State V' Global state X

CONTROL

Route 2 4 CONTROL

. -
Select n; control Select gy, control |
nodes to achieve X nodes to achieve X

v

111 .predecessors of.X2 T 5 states having
predecessors

Fig. 2. Selection and value assignment of control nodes when M = 2.
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random; (2) once a state has predecessors, the number of its predecessors takes the
expected number, i.e., we will have m; = my in the following discussion; (3) there
are mg states having predecessors in a BN.

As shown in Fig. 2, Routes 1 and 2 indicate the ways how we select and assign
values to control nodes when the target state has and does not have predecessors,
respectively.

In Route 1, which occurs when the target state has predecessors, the number of
predecessors is denoted as my. Denote the global state this BN achieves automat-
ically at t = 1 as X'. We shall select a state among m; predecessors from X' to
which we need the least number of control nodes n;.

However, if the target state does not have predecessors, we execute Route 2.
In this case, we should select control nodes in two steps. Firstly, we shall select
one state that has predecessors. According to [3], the number of such states ms
is at most 2N*T1-L where L = 225(\:_1. We shall select the one from which to the
target state we need the least control nodes, denoted as X2. The least number of
control nodes selected in this step is denoted as n4. Secondly, suppose X2 has ms
predecessors, we shall select the predecessors from X! to which we need the least
control nodes. The least number of control nodes selected in this step is denoted as
nf. The total least control nodes is the sum of both parts, i.e., no = nf +nj.

Here follows two examples to illustrate the above two routes (see Fig. 3). Fig-
ure 3(a) shows the example of Route 1, i.e., the route when the target state V2
has predecessors (we use V instead of v). As we assumed, V2 has m; predecessors.
The initial state V° goes to X! by Boolean functions. The case when we need to
control is that X! cannot go to any of those m predecessors. We can control X' to
become any state among a, ..., a.,, but finally we will select X from ay, ..., am,

CONTROL

need 1, CONTROL
i ] control nodes need n5
CONTROL | control nodes
need n, control —
nodes :
""" 3 X
0 m; states having
my predecessor -prcdcccssors -
=0 r=1 =2 =0 t=1 1=2
(a) Example of Route 1 (b) Example of Route 2

Fig. 3. (Color online) Examples of Routes 1 and 2 when M = 2. Rectangles, black arrows with
solid line, red arrows with dotted line, and red arrows with solid line are used to denote global
states, state transition through Boolean functions, possible control between states, and the control
we finally execute, respectively.

1650006-11



Advs. Complex Syst. 2016.19. Downloaded from www.worldscientific.com
by 147.8.230.128 on 02/27/18. For personal use only

W. Hou et al.

so that we need the least number of control nodes n; to control X! to X (by invert-
ing the states of ny nodes). Figure 3(b) shows the example of Route 2, i.e., the
route when V2 does not have predecessors. In this case, at the final time ¢t = 2 we
should control some node to V2. According to our assumption, there are ms states
in a BN that have predecessors, namely, X%, ..., X?ng. We can control any of them
to become V2. We shall select X? from these states so that the least number of
control nodes are needed to control X2 to V? (by inverting the states of n4 nodes).
Analogously, X2 is supposed to have my predecessors as we assumed. Since the
state is X! at ¢ = 1, we shall control X! to become one of the predecessors of X2,
namely, by, ..., b,,,. Then X will be selected from these states so that the least
number of control nodes are needed to control X! to be X (by inverting the states
of n}, nodes).

Proposition 2. For a random BN of N nodes, in-degree K, if we want to change a
state to be one of m states at the same time by control nodes, the minimum number
of control nodes is expected to be (3)N™ Zigl(zg:iﬂ (]Z))m

Proof. If we want to change a state to be another state immediately, nodes on
which values are different will be selected as control nodes. The number of control
nodes X is a binomially distributed random variable and X ~ B(N, 1).

Note that if we denote the number of control nodes as X; for the ith predecessor
i €[l,m],i € N, then Xy,...,X,, are i.i.d. random variables from a discrete distri-
bution with cumulative distribution function F(z) and probability mass function

f(x) where
r=52(1) () =) () @

The first-order statistics X(;) is always the minimum of the samples, namely
X(l) :min{Xl,...,Xm}. (4)

Here, we give the derivation of Pr(X() = ). Let

Note that

Pr(X(1) < x) = Pr(there are at most m — 1 trails greater than x)

= Z (T) pi'(p2 +p3)™ ",
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and

Pr(X() < x) = Pr(there are at most m — 1 trails greater than or equal to x)

m—1
m 7 m—1
=Y (1) o o)
i=0
Thus, the probability mass function of X(;y can be computed by

PI‘(X(l) =)= PI‘(X(l) <z)-— PI“(X(l) <)

m

—1
=Y (1) @it ™ ) )
=0
m=1
=Y (1) - FoyiEwn
=0
(1= Fl@) + (@) (F@) - F@)™)

(7 (> 50) (2 0)) o

Then, we can obtain the expectation value of X(;) by computing
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Proposition 3. Suppose that for a random BN of N nodes, and for each node K
input nodes are randomly selected and then a Boolean function is randomly selected
from 22" possible Boolean functions (including constant Boolean functions). Then
the minimum number of control nodes for time step M = 2 is expected to be at
most

nBTE(E )

w(@TE(E ) OTEE))

=i+1

L
where P, < 2%7 P, > 22—{27 my > 287 mg > 207 ;g < 2NHIEL g I =
N

22K 4 1°

Proof. Since there are two possibilities to achieve V2 from VY, we need to divide
the problem into two cases.

Case 1. The target state has predecessors. We need to select a global state X
from m; predecessors by changing which to X! we need the least control nodes. By
Proposition 2, the minimum number of control nodes is expected to be

@RS 0)

Case 2. The target state has no predecessors. In this case, the selection and value
assignment of control nodes include two steps:

First, select a global state X? changing which to V2 we need the least control
nodes among mg states having predecessors. The minimum number of control nodes

is expected to be
Nmg N—1 N ms
1 3 N
ng:<§) Z<Z <k>> '
i=0 \k=i+1

Second, select a global state X among ms predecessors of X2 changing which
to X! we need the least control nodes. The minimum number of control nodes is

expected to be
Nmgy N—1 N mz
1 N
"/2:<5) Z<Z (k)) '
i=0 \k=it+1
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Note that the probabilities of Cases 1 and 2 occur are P; and Ps, respectively.
Then, overall the minimum number of control nodes is

n = Piny + Py(nh +n?)

(7 E(EE) OTE(E0)

1=

BEE0))

The range of Py, Py, my, ma, and m3 can be obtained from [3]. O

Proposition 4. Suppose that for a random BN of N nodes, and for each node
K input nodes are randomly selected and then a Boolean function is randomly
selected from 22" possible Boolean functions (including constant Boolean functions).
Assume that my and mo equal to the expectation value of number of predecessors
and ms3 equals to the expectation value of number of states having predecessors.
Then the minimum number of control nodes for time step M = 2 is expected to
be at most 55N (5N Tilia (1) + T (@Y Eilns (P77 where

o |
g(m) = (%)NWNZ (é ( )) | ®)

Then g(m) is decreasing since Eq. (8) can be written as

-2 (0) £ ()

nNY & /N
}: - +
0< (5) (k)<1, fori=0,...,N—1, Ne NT.

k=i+1

and

Note that in Eq. (7), based on the assumption we have

my -mgz =2V (9)
and
meo - M3 = 2N, (10)
We also know
P+ P=1. (11)
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Substituting Eqgs. (9)-(11) to Eq. (7) we obtain

SEE(EO) SO o)
= g(m1) + Pag (i—Nl) <g(lmi)+g (;—Nl) (12)

Since g(my) is decreasing much faster than 9(%) where % is big enough to
make the function value stable at comparatively much smaller values for m; > 2571,
Eq. (12) achieves its maximum when m; equals to its minimum. Thus, we have

N
g(mi) +g (fn—l> <g(2" ) + g2V

()

1=

L—1

EEEE) -

That is to say, the minimum number of control nodes is expected to be

N+1—L

SEE ) S ETsE) e

k=i+1 O

Note that the second term of Eq. (14) becomes very small and can be ignored
when N > 3, and thus we can approximate Eq. (14) by

n s glm) < g2 = 3 ((%)N fj (ﬂf)) . (15)
, 2

Therefore, the function

w(N, L) = Ngol (G)NENJH (i))Q _ (16)

approximately gives an upper bound for the number of control nodes n.

4.2. Lower bound function of n

As we have mentioned at the beginning of this section, it is expected that the
number of control nodes n approaches to 0 as time step M increases where the
number of all nodes N is fixed. However, ILP results show that the number of
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Number of Control Nodes n Decreases By M (K=2)
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Fig. 4. How n changes by M when K = 2.

control nodes n will ultimately approach to a positive constant (See Figs. 4 and 5).
Hence, we try to find out the relationship between this constant and the number of
all nodes N. In the following, we called this constant as stable n.

Here we only consider the case K = 2. In this case, there are 22% = 16 Boolean
functions to each node with 2 inputs. We shall discuss the following two cases.

Case 1. Boolean functions are only constant Boolean functions.

Constant Boolean functions are 1 or 0 which means the corresponding node is
assigned values 1 or 0 always. Recall that our problem is to control a network
from a random initial state to the global state (0, ...,0), without loss of generality.
In this case, only when a node (assumed as y) is assigned the constant Boolean
function 1 does it need to be controlled. Then the probability of one node needs to
be controlled is % Note that this case happens with probability 12—6 (two out of 16
Boolean functions are constant) and the BN has N nodes, the expected number of
control nodes is
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Number of Control Nodes n Decreases By M (K=3)
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Fig. 5. How n changes by M when K = 3.

Case 2. Only non-constant Boolean functions are assigned to nodes.

In this case, there are 14 nonconstant Boolean functions that can be assigned
to nodes. Here, we shall consider pairs of nodes because nodes might influence
each other when they have same input nodes. We analyze the following two
cases.

Subcase 1. Any two nodes have two same input nodes.

Assume nodes y and z, they have two same input nodes z; and zy, then totally
there are 142 = 196 possible combinations of Boolean functions assigned to y and z
because we only consider nonconstant Boolean functions here. All possibilities are
shown in the following Tables A.1 and A.2.

As we can see from Tables A.1 and A.2, we need to control either the node y
or z in 50 out of all 196 possible combinations. Denote the possibility that a node
needs to be controlled as p; in this case, then

(G) 50 25
PL= 758 X Tor T ToNTN T
196 49N(N — 1)

(3)
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where (3)/() is the probability that two nodes have two same input nodes and
% is the probability that a pair of such nodes with only nonconstant Boolean

functions needs to be controlled.

Subcase 2. Any two nodes have only one same input node.

If any two nodes y and z have only one same input node, then only in this circum-
stances we have to control some node(s): y(t+1) = OV axp and z(t+1) =2,V O
where x, is the same input node, and (O can be empty, z;, Z;(j # k), or;
yt+1) = OVar and 2(t + 1) = . \/ O where z; is the same input node,
and O can be empty, z;, T;(j # k).

Analogously, we can learn from Tables A.1 and A.2 that there are 9 +9 = 18
combinations of Boolean functions where we need to control either y or z. Denote
the possibility that a node needs to be controlled as p», we have

- W) 18 sV -2
? &) 196  49N(N —1)

()
(%)
and % is the probability that such a pair of nodes with only nonconstant Boolean

functions needs to be controlled.
Since there are () pairs of nodes and this case occurs with probability 11, the

expected number of control nodes is

ma = (o om) < ()

- <49N(2]\E;— 1) 4;?\([%_—21)) 8 (J;f) - 18A§)§3_ =

where is the probability that two nodes have only one same input node

(17)

To sum up, the expected number of control nodes needed is at least ny + nas,
denoted as a new function {(N).
Therefore,
N 18N —11

l(N):n1+n2:—+

16 98 (18)

Since the case that constant functions and nonconstant functions can all be

assigned to nodes is not included here, the [(N) can only provide an estimate of
the lower bound of minimum number of control nodes (See Table 2).

Table 2. Comparison between lower bound function I(IN) and stable n in simulation.

N 10 20 30 40 50 60 70 8 90 100 110 120 130 140 150

Stable n 2.3 5.6 82 11.8 126 15.7 17.6 21.8 235 27.4 284 325 36.1 38.8 39.2
I(N) 23 48 73 9.7 122 14.7 171 19.6 22.0 245 27.0 294 31.9 344 36.8
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5. Computational Experiment
5.1. How n changes by N (fized M, K)

We implement the ILP problem with different in-degree upper bound K, and dif-
ferent time steps M. We start with random initial states and the target state is
(0,0,...,0).

The curve of Eq. (16) is called as Upper Bound Curve. Figure A.1 shows the
comparison among the upper bound curves and ILP implementation results for the
case of M = 2 with different K. We can see that Eq. (16) gives a very good bound
of the number of control nodes n for the case of K = 2.

However, the upper bound curve is less tight when K increases. The reason is
as follows. On one hand, note that in Eq. (12) n < g(mq) + g(%) When KT we
have my |, % 1, then g(mq) T, g(%) |, and |Ag(fn—1\i)| < |Ag(ma)| (because: (1)
my < fn—Ai; (2) although g(m) is a discrete function, it has a convex shape as shown
in Fig. A.2). Here, A is defined as: Ag(m) = g(m) — g(m+ Am), m € R. Therefore,
the upper bound estimate of n will increase when K 1 (for fixed N, M = 2). On
the other hand, the computer experiment results show that n | when K 1 (for fixed
N, M = 2). As a result, the upper bound curve is less tight for K = 3,4,....
However, things will not get worse. The upper bound curve is almost the same for
K = 4,5, ... because the power 2171 (L = %) in Eq. (16) almost stays the same
(at around 0.5000) when K > 4. Furthermore, we fit the dots of (N,n) for fixed K
and M with curves, as shown in Figs. A.3 and A.4. We find that n approximately
follows a linear relationship with N for K = 2 and K = 3. The slopes of these
fitting lines decrease as the number of time steps M increases.

5.2. How n changes by M (fized N, K)

From Figs. A.3 and A.4, we can find that the slopes of those fitting lines decrease as
the number of time steps M increases, for fixed K. This result is in accordance with
our theoretical analysis in Sec. 4.2. Figures 4 and 5 show the relationship between
n and M with a fixed N more specifically. Here we post further explanations of
the ILP implementation results. We catch global states at each time ¢ and the
corresponding number of control nodes newly selected at that time. We find some
rules of the selection of control nodes, e.g., the selection of control nodes finishes in
rather early several time steps; and in most of cases some control nodes are selected
at final step, which means the target state has no predecessor.

We set the times of repetition as 100. We apply the average of the results of 100
randomly generated networks. We try BNs with 10, 20 nodes. Then we get some
conclusions from computer simulation results as follows:

(1) Control nodes are selected at very limited time steps. Take K = 2, N = 10,
M = 10 as an example. Control nodes are selected at up to three time step. That
is, if we denote n; as the number of control nodes newly selected at time ¢ = ¢, then
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we have only up to three n; # 0. Note that this n; is different from the number of
control nodes needed in the ith time step.

(2) The time steps mentioned above are almost early time steps. Take K = 2,
N =10, M = 10 as an example, in 91% iterations nz ~ ng = 0, in 96% iterations
ng ~ ng = 0, and in 92% iterations niy = 0.

(3) After finishing the selection of control nodes (note that the control nodes selected
may be in use for more than one time step), it takes only 3 to 5 more time steps
for the Boolean network to achieve the target state. Therefore, the target state can
be achieved within around 8 time steps. In other time steps, the networks states
are just repetitive (the same or in a loop). This explains why curves stabilize from
around M = 8 in Figs. 4 and 5.

5.3. Stmulation for realistic BNs

For further evaluation of our algorithm as well as our analysis on the size of
the minimum set of driver nodes, we examined six realistic BNs from litera-
tures [15, 23, 25, 26, 43, 52, 62]. We applied our algorithm to control the above
realistic BNs from a random initial state to any one of attractor states. The num-
ber (#) of control nodes describes the nodes needed to drive the realistic BN from
a random initial state to an attractor state for the case M = 2. We took the
average over 10 repetitions since the set of driver nodes depends on the initial
state. The upper bound function u(N) is from Eq. (16) (note that L = 22K—N+1,
and u(N, L)|g=2 < u(N, L)|x=3, therefore we apply u(N) = u(N, L)|x=2 here).
The lower bound function is from Eq. (18). The simulation results are shown in
Tables 3-8.

As can been seen from Tables 3-8, our algorithm and the analysis in the mini-
mum set of control nodes work very well even for realistic BNs. The upper bound
function and lower bound function give very good boundaries for the minimum
number of driver nodes. More importantly, the genes most frequently identified as
driver nodes (shown in table captions) are biologically meaningful. In flower mor-
phogenesis in arabidopsis thaliana network, genes UFO, WUS and AP1 are most
frequently selected. Since UFO is related to ectopic activation, and WUS and AP1
are related to meristem, the obtained control genes seem to have important control

Table 3. Control of realistic BNs: Arabidopsis thaliana.

Attractor state 1 2 3 4 5 6 7 8 9 10  u(15) 1(15)

Number of 58 6.0 59 52 54 63 50 59 58 53 7.6 3.6
control nodes

Notes: BN model of the control of flower morphogenesis in Arabidobis thaliana from [15]. N =
15. There are 10 single attractors. Nodes most frequently identified as driver nodes: vo =
UFO: when expressed constitutively, Unusual Floral Organs (UFO) causes ectopic activation
of AP3 within flowers; vg = WUS: WUSCHEL gene (WUS) controls meristem function by
direct regulation of cytokinin-inducible response regulators [51]; vs = AP1: plays central roles
in determining floral meristem identity [47].
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Table 4. Control of realistic BNs: T-cell receptor signaling pathway.

Attractor state 1 2 3 4 5 6 7 8
Number of control nodes 14.5 15.8 15.7 14.7 13.9 14.4 15.6 15.4
Attractor state 9 10 11 12 13 14 u(40) 1(40)

Number of control nodes 14.9 15.3 15.3 14.7 14.4 14.6 17.7 9.7

Notes: BN model of the T-cell receptor signaling pathway from [43]. N = 40. There are 1
attractor of length 6 and 8 single attractors. Nodes most frequently identified as driver nodes:
v14 = Gads: GRB2-related adaptor protein (Gads) is related to growth factor receptor signaling,
where it couples activated receptors with downstream effector pathways [59]; v3o = Calcin: a
key signaling enzyme in T-lympocyte activation [20]; vsg = NFkB: nuclear factor kappa B (NF-
xB) is an inducible and ubiquitously expressed transcription factor for genes involved in cell
survival, cell adhesion, inflammation, differentiation, and growth [14].

Table 5. Control of realistic BNs: Mammalian cell cycle.

Attractor state 1 2 3 4 5 6 7 8 u(10) 1(10)
Number of control nodes 3.8 43 38 35 36 37 40 38 5.4 2.3

Notes: BN model of the control of the mammalian cell cycle from [26]. N = 10. There are two
attractors: one of length 7 and another one is a single attractor. Nodes most frequently identi-
fied as driver nodes: v4 = E2F: E2F transcription factor can regulate expression of numerous
cellular genes controlling proliferation, including porto-oncogenes and genes regulating cell cycle
progression [82]; vs = CycA: cell cycle regulation of the cyclin A gene promoter is mediated
by a variant E2F site [78]; vg = UbcH10: UbcH10 gene codes for a protein that belongs to the
ubiquitin-conjugating enzyme family [79].

Table 6. Control of realistic BNs: Budding yeast cell cycle.

Attractor state 1 2 3 4 5 6 7 u(12) 1(12)
Number of control nodes 4.8 4.4 4.3 4.5 5 4.6 5.3 6.3 2.8

Notes: BN model of the control of the budding yeast cell cycle regulation from [52]. N = 12.
There are 7 attractors of length 1. Nodes most frequently identified as driver nodes: va =
Cln3: the cell-cycle sequence starts when the cell commits to division by activating Cln3 [52].
vz = SBF: when the cell grows large enough, transcription factors including SBF is activated
to trigger cyclin genes [52]; vi1 = Cdc20/cdcl4: budding yeast Cdc20 is a target of the spindle
checkpoint [35].

Table 7. Control of realistic BNs: T-helper cell differentiation.

Attractor state 1 2 3 u(23) 1(23)
Number of control nodes 8.9 9.1 8.8 11.0 5.5

Notes: BN model of the control of T-helper cell differentiation from [62]. N = 23. There are
3 single-point attractors. Nodes most frequently identified as driver nodes: vig = STATI:
one of the firstly identified (Signal Transducer and Activator of Transcription) STAT genes
in the interferon (IFN) signal transduction pathways in mammalian cells. Identified as key
components linking cytokine signals to transcriptional events in cells [32], STAT proteins
possess the ability to transduce signals from the cell membrane to the nucleus to activate
gene transcription [57]; vis = JAKI: activation of the Janus kinase/signal transducers and
activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors
is one of the most well-studied intracellular signaling networks [42]; vg = IL-12: Interleukin-12
(IL-12) is an important immune regulatory cytokine that exerts potent anti-tumor activity
and a member of a small family of heterodimeric cytokines [44].
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Table 8. Control of realistic BNs: Fission yeast cell cycle regulation.

Attractor state 1 2 3 4 5 6 7 8
Number of control nodes 3.4 3.6 3.2 3.8 4.0 3.7 4.0 3.4
Attractor state 9 10 11 12 13 u(10) 1(10)
Number of control nodes 4.2 3.8 3.7 3.7 3.6 5.4 2.3

Notes: BN model of the control of the fission yeast cell cycle regulation from [23]. N = 10.
There are 13 single-point attractors. Nodes most frequently identified as driver nodes: vs =
Ruml: an inhibitor of Cdc2/Cdc13 [79]; v4 = Cdc2/Cdcl3: in lower eukaryotes, like fission
yeast, a single Cdk-cyclin complex, called Cdc2/Cdcl3 in fission yeast [69], can drive the
whole cell cycle; vg = Slp1: an effector of the mad2-dependent spindle checkpoint [39].

roles since morphogenesis should be related to ectopic activation and meristem. In
T-cell receptor signaling pathway network, since NF-x£B is known to play a central
role in various types of cell activity, it is appropriate that NF-xB is included by
the control process. In mammalian cell cycle network, since cyclin A is involved in
the control of S phase and mitosis in mammalian cells [78] and mediated by E2F,
it is likely that both E2F and CycA work as the control genes. As for T-helper cell
differentiation network, since the JAK/STAT pathway plays an important role in
control of cells in vivo, using STAT1 and JAK1 as control nodes is considered to
be reasonable.

6. Conclusions

In this paper, we have studied the minimum set of driver nodes for control of BNs.
We showed that the problem of computing the minimum driver set is NP-hard. In
order to cope with this difficulty, we developed an ILP-based method that works
efficiently for medium scale BNs (e.g., BNs with more than a hundred nodes). We
also analyzed the average size of the minimum driver set for random BNs with
bounded in-degree. Since it is quite hard to perform theoretical analysis for general
cases, we focused on the cases where the number of time steps is one and two (i.e.,
M =1 and M = 2). Although the case of M = 1 can be analyzed in a straight-
forward manner, analysis is hard even for the case of M = 2. Based on some
assumptions, we derived an upper bound of the average number of the minimum
driver set for M = 2. The derived bound shows a very good agreement with the
results of computational experiments using the developed ILP-based method for
the case of K = 2 (i.e., the maximum in-degree is 2) and a good agreement for
the case of K = 3. It was observed from the results of computational experiments
that the number of driver nodes approaches not to 0 but to some positive constant
as the number of time steps increases. In order to explain this phenomena, we
gave an estimate of the lower bound of the number of minimum driver set, which
showed a good agreement with the result of a computational experiment. Although
we could analyze restricted cases only, interesting findings were obtained, which
include (almost) the linear increase of the minimum number of driver nodes to the
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total number of nodes, and the existence of a lower limit of the number of driver
nodes against the increase of the number of time steps.

Although we have focused on random BNs in this paper, it is also important
to study controllability of realistic BNs. To this end, we further test our algorithm
as well as the analysis on the minimum set of driver nodes with 6 realistic BNs.
Simulation results have shown that the upper bound and lower bound function
derived in Sec. 4 not only works for mathematically constructed BNs but also
works very well for realistic BNs, in which cases they gave a very good bounds for
the minimum number of control nodes to drive a BN from a random initial state
to a target state.

An improved computation method should be developed because the computa-
tion time of the proposed ILP-based method increases rapidly as the maximum
in-degree increases. As mentioned in Sec. 2, there is no ordering among the selected
driver nodes. However, giving a way to prioritize them may be useful in medical
applications because it is practically impossible to control many nodes simulta-
neously. Therefore, prioritization methods should be studied. In this paper, the
theoretical analysis of the minimum number of driver nodes was limited up to
M = 2. Therefore, the theoretical analysis of more general cases, even for the case
of M = 3, is left as an open problem.
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Fig. A.1. Comparison of ILP implementation results and upper bound function Eq. (16) when
M = 2 with different K.

Fig. A.2. Plot of function g(m) for N = 20.
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