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Abstract. In this paper, we establish asymptotics of radial limits for certain func-
tions of Wright. These functions appear in bootstrap percolation and the generating
function for partitions without sequences of k consecutive part sizes. We specifically
establish asymptotics numerically obtained by Zagier in the case k = 3.

1. Introduction and statement of results

Holroyd, Liggett, and Romik [8] introduced the following probability models: Let
0 < s < 1 and C1, C2, . . . be independent events with probabilities

Ps(Cn) := 1− e−ns

under a certain probability measure Ps. Let Ak be the event

Ak :=
∞⋂
j=1

(Cj ∪ Cj+1 ∪ · · · ∪ Cj+k−1)

that there is no sequence of k consecutive Cj that do not occur. With q := e−s

throughout the remainder of the paper, set

gk(q) := Ps(Ak).

To solve a problem in bootstrap percolation, Holroyd, Liggett, and Romik established
an asymptotic for log(gk(e

−s)).
Interestingly, the above described probability model also appears in the study of

integer partitions [4, 8]. In particular,

Gk(q) = gk(q)
∞∏
n=1

1

1− qn
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is the generating function for the number of integer partitions without k consecutive
part sizes. Partitions without 2 consecutive parts have a celebrated history in relation
to the famous Rogers-Ramanujan identities. See MacMahon’s book [10] or the works
of Andrews [1, 2, 3] for more about such partitions.

Andrews [3] found that the key to understanding the function if k = 2 lies in
Ramanujan’s mock theta function

χ(q) := 1 +
∞∑
n=1

qn
2∏n

j=1 (1− qj + q2j)
.

Namely, he proved that

g2(q) = χ(q)
∞∏
n=1

(1 + q3n)

(1− qn) (1− q2n)
.

From this, an asymptotic expansion for g2(e
−s) may obtained (see [5]). Using addi-

tional q-series identities if k > 2, Andrews made the following conjecture.

Conjecture 1.1 (Andrews [3]). For each k ≥ 2, there exists a positive constant Ck
such that, as s→ 0,

gk
(
e−s
)
∼ Cks

− 1
2 exp

(
− π2

3k(k + 1)s

)
.

This conjecture proved difficult to establish via standard q-series techniques. The
asymptotic of [8] was improved by Mahlburg and the first author [6] . Finally, Daniel
Kane and the fourth author [9], using a technique similar to the transfer matrix
method of statistical mechanics, proved Conjecture 1.1 with Ck =

√
2π/k.

Zagier [18], using a formula for gk found by Andrews [3], did extensive computations
of these asymptotics. He numerically found that, as s→ 0,

g3(e
−s) ∼

√
2π

s
e−

π2

36s
+ s

24

(
1

3
+ c1s

1
3 t1(s) + c2s

2
3 t2(s)

)
,

where

t1(s) :=1− 7

263
s− 97

2833
s2 − 40061

21534
s3 − 18915331

219365
s4 − 13796617247

227365
s5 − · · · ,

t2(s) :=5− 29

243
s +

19435

21133
s2 − 14885

21233
s3 +

51970999

21836
s4 − 28436136277

224375
s5 + · · · ,
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and

c1 :=
3−

1
6 Γ
(
1
3

)
8π

and c2 :=
3

1
6 Γ
(
2
3

)
32π

. (1.1)

The computations of Zagier are tantalizing because of the rational values appearing
in the expansion of t1(s) and t2(s) and curious because of the powers of s1/3 which
are atypical in similar partition problems. We establish Zagier’s numerics and its
generalizations for all k.

Theorem 1.2. For every k ∈ N with k > 1, and N ∈ N0, we have, as s→ 0,

gk(e
−s) =

1

k + 1

√
2π

s
e−

π2

3k(k+1)s
+ s

24

(
k + 1

k
+

kN∑
j=1

βk(j)s
j
k +O

(
sN
))

,

where

βk(j) := bk(j)(k + 1)−jk
j(k+1)
k +

∑
kr+`=j

bk(`)
∞∑
n=1

an,r(−`)n(k + 1)n−`k
`(k+1)
k
−n

with

bk(j) :=
k + 1

kπj!
(−1)j+1 sin

(
πj(k − 1)

k

)
Γ

(
j(k + 1)

k

)
(1.2)

and the an,r are rational numbers defined in (4.2). Moreover, for each 0 < j < k and
m ∈ N, the values βk(j +mk)/βk(j) ∈ Q.

Remark. Theorem 1.2 confirms Zagier’s numerics in the case k = 3.

As is the case of g2, modular forms (and mock modular forms) arise as generating
functions in many partition problems. Knowing that certain generating functions are
modular gives one access to deep theoretical tools to prove results in other areas. On
the other hand our knowledge of q-hypergeometric series currently fall far short of a
comprehensive theory to describe the interplay between them and modular forms. A
recent conjecture of W. Nahm [12] relates the modularity of such series to K-theory. In
the situation of interest, with the exception of the case k = 2, there are no modularity
results for gk.

Our proof technique demonstrates the connection between the series gk and Wright’s
generalization of the Bessel function

φ(ρ, β; z) :=
∞∑
n=0

zn

n!Γ(β − ρn)
(1.3)
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with ρ < 1 and β ∈ C. In particular, as s → 0, we establish that the leading term
in the relative error Rk (equation (3.2)) is proportional to the real part of a Wright
function

gk(q) ∼
2

k + 1

√
2π

s
e−

π2

3k(k+1)s
+ s

24 Re

(
φ

(
k

k + 1
, 1;

(k + 1)
k
k+1

k
e
πik
k+1 s−

1
k+1

))
.

In particular, for k = 3, a result of Wright [17, equation (3.5) and Section 4] gives,
as s→ 0

1

2
Re

(
φ

(
3

4
, 1;

4
3
4

3
e

3πi
4 s−

1
4

))
∼ 1

3
+ c1s

1
3 + 5c2s

2
3 +O(s), (1.4)

where c1 and c2 are as in (1.1). These are Zagier’s asymptotics up to O(s). We
believe that such comparison and application of other q analogues of generalized
hypergeometric functions may be useful in other asymptotic problems.

The paper is organized as follows. Section 2 contains notation and basic results
about the q-functions used throughout the paper. Section 3 defines the relative error
between the series gk and the expected main term. Section 4 shows that the relative
error can be approximated by the Wright function and its “moments”.
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2. Notation and Preliminary Results

This section contains some preliminary results that we require for the proof of The-
orem 1.2 as well as some q-series notation. Wright [14, 15, 17] established asymptotics
for φ(ρ, β; z), defined in (1.3), in all domains. Unfortunately, a direct application of
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these asymptotics in our setting (see equation (1.4)) produces a degenerate answer.
Namely, from [17, Theorem 1] with Y = − 1

k(k+1)s

φ

(
k

k + 1
, 1;

(k + 1)
k
k+1

k
e
πik
k+1 s−

1
k+1

)
∼ i
√
k(k + 1)se

1
k(k+1)s

M−1∑
m=0

Am(−1)m(k(k+ 1)s)m,

where the coefficients Am are given in [17]. Taking real parts shows that

Re

(
φ

(
k

k + 1
, 1;

(k + 1)
k
k+1

k
e
πik
k+1 s−

1
k+1

))
= O(1).

A little more nuance needs to be applied to Wright’s work to obtain a meaningful
estimate.

Proposition 2.1. If 1
2
≤ ρ < 1 with | arg(−e2πiρ)| < π

2
(1 + ρ) and z > 0, then, for

L ∈ N,

Re
(
φ
(
ρ, 1; zeπiρ

))
=

1

2ρ
+

1

2πρ

L−1∑
`=1

(−1)`+1

`!
Γ

(
`

ρ

)
z−

`
ρ sin

(
π`(2ρ− 1)

ρ

)
+O

(
z−

L
ρ

)
.

Proof. We apply the identity

1

Γ(z)Γ(1− z)
=

1

π
sin(πz) (2.1)

and the double angle formula to show that

Re
(
φ(ρ, 1; zeπiρ)

)
=

1

2ρ
+

1

2π
Im
(
D
(
ze2πiρ

))
,

where

D(w) := γ

(
1

ρ
− 1

)
+

1

ρ
log(−w) +

∞∑
m=1

wmΓ(ρm)

m!
.

Equation (3.5) of [17] states that if | arg(−w)| < π/2(1 + ρ), then

D(w) =
1

ρ

L−1∑
m=1

(−1)m

m!
Γ

(
m

ρ

)
(−w)−

m
ρ +O

(
w−

L
ρ

)
.

Note that Wright [17] used the notation σ = ρ and β = 1. Moreover, our D(w) is
d(w) adjusted for the t = 0 singularity. This adjustment is discussed Section 4 of the
same paper.

�
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Throughout, we use the following q-notation (z ∈ C):

(z; q)∞ :=
∞∏
m=0

(1− zqm),

(q; q)z :=
(q; q)∞

(qz+1; q)∞
, (2.2)

θ(z, q) :=
∑
n∈Z

(−1)nznqn
2

,

Γq(z) := (q; q)z−1(1− q)1−z.

The Jacobi function has the product expansion (see (100.2) of [13])

θ(z, q) =
∞∏
n=1

(
1− q2n

) (
1− zq2n−1

) (
1− z−1q2n−1

)
, (2.3)

and satisfies the following inversion formula (with z := e2πiu) (see (38.2) of [13])

θ(z, q) =

√
π

s

∑
n odd

e−
π2

4s
(n+2u)2 . (2.4)

Next, we recall two identities due to Euler, which state that [2, equations (2.25) and
(2.2.6)]

1

(z; q)∞
=
∞∑
n=0

zn

(q; q)n
,

(z; q)∞ =
∞∑
n=0

(−1)nznq
n(n−1)

2

(q; q)n
.

Moreover, we require the following asymptotic behavior

(q; q)∞ =
√

2πs−
1
2 exp

(
−π

2

6s
+

s

24

)(
1 +O

(
e−

4π2

s

))
, (2.5)

which is easily derived from the transformation formula

(q; q)∞ =

√
2π

s
e−

π2

6s
+ s

24

∞∏
n=1

(
1− e−

4π2n
s

)
(2.6)

(see (118.5) of [13]).
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The following lemma is used in Section 3 to identify terms which can be asymp-
totically ignored in a q-hypergeometric expression for gk.

Lemma 2.2. As s→ 0 and x→∞, we have

1

(q; q)x−3(q; q)−x
= O

(
sq−

x(x−3)
2

)
.

Proof. By (2.3) (
qx−2; q

)
∞

(
q1−x; q

)
∞ (q; q)∞ = θ

(
qx−

3
2 , q

1
2

)
.

Dividing by (q; q)3∞ and using (2.2) then results in

1

(q)x−3(q)−x
=
θ
(
qx−

3
2 , q

1
2

)
(q; q)3∞

. (2.7)

By (2.5)

1

(q; q)3∞
=

s
3
2

√
8π3

exp

(
π2

2s
− s

8

)(
1 +O

(
e−

4π2

s

))
.

Moreover (2.4) yields

θ
(
qx−

3
2 , q

1
2

)
=

√
8π

s
Re

(
exp

((
πi+ s

(
x− 3

2

))2
2s

))(
1 +O

(
e−

4π2

s

))
.

Combining these approximations with (2.7) gives

1

(q; q)x−3(q; q)−x
=
s

π
Re

(
exp

((
πi+ s

(
x− 3

2

))2
+ π2

2s

))(
1 +O

(
e−

4π2

s

))

= −sq
−

(x− 3
2)

2

2

π
sin(πx)

(
1 +O

(
e−

4π2

s

))
= O

(
sq−

x(x−3)
2

)
.

�

The following is derived from [11, Theorem 2] after applying (2.5) (see also [19]).

Theorem 2.3. For x ∈ R\{−N0} and N ∈ N0, as |s| → 0,

Γ(x)

Γq(x)

(
1− q
s

)1−x

q
x(x−1)

2 = q
x(x−1)

4 exp

(
−

N∑
j=1

B2jB2j+1(x)

2j(2j + 1)!
s2j +ON

(
|s|2N+1

))
,
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where Bk(x) are the Bernoulli polynomials and Bk are the Bernoulli numbers. More-
over, this asymptotic can be taken to hold on compact subsets of the complex s-plane.

3. The Relative Error

In this section, we asymptotically approximate gk and define a relative error term
which is then compared to the Wright function.

We start by representing gk as an infinite sum of theta functions (see equation (3.3)
in [3])

gk(q) =
1

(qk; qk)∞

∞∑
m=0

(−1)mq
km(m+1)

2

(
qk+1−km; qk+1

)
∞

(qk; qk)m
θ
(
qkm, q

k(k+1)
2

)
. (3.1)

Turning to the asymptotic expansion of gk, it follows from Conjecture 1.1, with the
constant as established in [9], and (2.5) that

gk
(
e−s
)
∼
k + 1

k

(
qk+1; qk+1

)
∞

(qk; qk)∞

√
2π

k(k + 1)s
e−

π2

2k(k+1)s .

Thus it is natural to define the relative error

Rk(q) := gk(q)

(
qk; qk

)
∞

(qk+1; qk+1)∞

√
k(k + 1)s

2π
e

π2

2k(k+1)s (3.2)

and hence limq→1Rk(q) = (k + 1)/k.
The next lemma transforms the theta term in (3.1) to identify a leading term for

the relative error Rk in terms of the q-series

In(s) :=
∞∑
m=0

(−1)me
πimn
k+1 q

km(m+1)
2

− km2

2(k+1)

(qk; qk)m(qk+1; qk+1)− km
k+1

.

Remark. The function I1 is closely related to the q-Wright function defined in [7].
The main difference is that (k + 1)/k is not an integer in our case.

Lemma 3.1. For every q ∈ (0, 1), we have

Rk(q) =
∑
n odd

e−
π2(n2−1)
2k(k+1)s In(s).
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Proof. Rewriting (3.1), we obtain that

gk(q) =

(
qk+1; qk+1

)
∞

(qk; qk)∞

∞∑
m=0

(−1)mq
km(m+1)

2 θ
(
qkm, q

k(k+1)
2

)
(qk; qk)m (qk+1; qk+1)− km

k+1

.

Lemma 3.1 now follows by applying the transformation law (2.4), to yield that

θ
(
qkm, q

k(k+1)
2

)
=

√
2π

k(k + 1)s
q−

km2

2(k+1)

∑
n odd

e
πimn
k+1 e−

π2n2

2k(k+1)s .

�

The next lemma bounds the terms in the summation for Rk in Lemma 3.1.

Lemma 3.2. For all n ∈ N and s > 0, we have, as s→ 0,

In(s) = O

(
1

s3
exp

(
π2

6k(k + 1)s

))
uniformly in n.

Proof. Let us first note that for x > 1, (1− qx)−1 < (1− q)−1, so that

(q; q)x =
(q; q)x+3

(1− qx+3) (1− qx+2) (1− qx+1)
= O

(
(q; q)x+3

s3

)
. (3.3)

Applying Lemma 2.2 with x = km/ (k + 1), yields, using (3.3),

1

(qk; qk)m (qk+1; qk+1)− km
k+1

= O

s
(
qk+1; qk+1

)
km
k+1
−3

(qk; qk)m
q−

k2m2

2(k+1)
+ 3km

2


= O

(qk+1; qk+1
)
km
k+1

s2 (qk; qk)m
q−

k2m2

2(k+1)


= O

((
qk+1; qk+1

)
∞

(qk; qk)∞

1

s2

(
qkqkm; qk

)
∞

(qkm+k+1; qk+1)∞
q−

k2m2

2(k+1)

)

= O

((
qk+1; qk+1

)
∞

(qk; qk)∞ s
2
q−

k2m2

2(k+1)

)
.
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The last equality follows since(
1− qk(m+j)

)
<
(
1− q(k+1)(m+j)

)
,

which implies that (
qkqkm; qk

)
∞

(qkm+k+1; qk+1)∞
< 1.

Combining the above gives

In(s) = O

(
(qk+1; qk+1)∞
(qk; qk)∞s2

1

1− q k2

)
.

The claim then follows by (2.6). �

The next lemma determines the main terms in the summation for Rk in Lemma
3.1 explicitly.

Lemma 3.3. For s > 0 and N ∈ N, we have

Rk(q) = I1(s) + I−1(s) +O
(
sN
)

= 2Re (I1(s)) +O
(
sN
)
.

Proof. We have, using Lemma 3.1, Lemma 3.2, and the integral comparison test,

|Rk(q)− I1(s)− I−1(s)| ≤ 2
1

s3
e

π2

6k(k+1)s

∑
n odd
n≥3

e−
π2(n2−1)
2k(k+1)s

=O

(
1

s3
e

2π2

3k(k+1)s

∫ ∞
2

e−
π2x2

2k(k+1)sdx

)
= O

(
sN
)
.

�

4. Relative Error in terms of the Wright Function

In this section, we continue the study of I1(s), relating it, and thus the relative
error Rk, to the Wright function. By definition

I−1(s) =
∞∑
m=0

e
πimk
k+1 q

k2m2

2(k+1)

Γqk(m+ 1)Γqk+1

(
1− km

k+1

)
(1− qk+1

) k
k+1 q

k
2

1− qk

m

.

Define w by

(1− qk+1)
k
k+1 q

k
2

1− qk
∼ (k + 1)

k
k+1

ks
1
k+1

=: w as q → 1
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and write

I−1(s) =
∞∑
m=0

wme
πimk
k+1 hq(m)

Γ(m+ 1)Γ
(
1− km

k+1

) ,
where, for z ∈ C,

hq(z) := q
k2z2

2(k+1)
+ kz

2
Γ(z + 1)Γ

(
1− kz

k+1

)
Γqk(z + 1)Γqk+1

(
1− kz

k+1

) (1− qk+1

(k + 1)s

) kz
k+1
(

ks

1− qk

)z
.

For every s > 0, Γq(z) is, as a function of z, a nonzero meromorphic function
with simple poles only if qz+m = 1 for some m ∈ N0. Therefore, Γ(z)/Γq(z) can be
continued to an entire function in z and thus the same is true for hq(z). Hence, it is
possible to define z-Taylor coefficients for hq(z). Namely,

hq(z) = a0(s) + a1(s)z + a2(s)z
2 + a3(s)z

3 + · · · . (4.1)

We must then expand each an(s) in terms of powers of s and show that while a0(s) = 1,
an(s) = O(s) as s→ 0.

Lemma 4.1. With an(s) defined in (4.1), there exists numbers an,j, such that

an(s) =

{
1 if n = 0,

an,dn2 es
dn2 e + an,dn2 e+1s

dn2 e+1 + · · ·+ an,Ns
N +ON

(
sN+1

)
if n > 0,

for N ∈ N0. Furthermore an(s)� s
n
2 uniformly in n as s→ 0.

Proof. Since the z-Taylor series of hq(z) converges uniformly on compact subsets, we
obtain hq(z) =

∑∞
n=0

∑∞
j=0 an,js

jzn. Applying Theorem 2.3 twice gives

hq(z) = q−
kz2

4(k+1)
+ kz

2 exp

(
−

N∑
j=1

f2j(z)s2j +O
(
|s|2N+2

))
, (4.2)

where

f2j(z) :=
B2j

(
B2j+1(1 + z)k2j +B2j+1

(
1− kz

k+1

)
(k + 1)2j

)
2j(2j + 1)!

.

Since

lim
s→0

hq

(
z√
s

)
= e

k
4(k+1)

z2
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by Cauchy’s Theorem one obtains

a2j(s) ∼ sj
(

k

4(k + 1)

)j
and a2j+1(s) = o(sj). It then follows that aj(s) � s

j
2 uniformly in j. This is the

claimed expansion for an(s) with n ≥ 1. Finally, observe that hq(0) = a0(s) = 1. In
particular,

hq(z) = 1− k

2
sz − s k2

4(k + 1)
z2 +O

(
s2
)
.

�

Using Lemma 3.3 the relative error becomes

Rk(q) =
∞∑
j=0

aj(s)2Re

(
φj

(
k

k + 1
, 1; e−

πik
k+1w

))
+O

(
sN
)
,

where

φj(ρ, β; z) :=
∞∑
m=0

mjzm

Γ(m+ 1)Γ(β − ρm)
.

Note that φ0(ρ, β; z) = φ(ρ, β; z) is the usual Wright function given in the introduc-
tion. Define

Wj(w) := 2Re

(
φj

(
k

k + 1
, 1; e−

πik
k+1w

))
.

In this notation, (4.1) and Lemma 4.1 yield

Rk(q) = W0(w) +
∞∑
j=1

aj(s)Wj(w) +O
(
sN
)
. (4.3)

Since 1
2
≤ k/(k + 1) ≤ 1 and w → ∞ as s → 0 we are interested in the behavior of

the Wright function for 1
2
≤ ρ < 1 as w → ∞. Proposition 2.1 applies directly with

ρ = k
k+1

and yields the following.

Proposition 4.2. For z > 0 and L ∈ N,

W0(z) =
k + 1

k
+

L∑
`=1

bk(`)z
− `(k+1)

k +O
(
z−

L(k+1)
k

)
,

where bk(`) is defined in (1.2).
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The following theorem is a generalization of Proposition 4.2.

Proposition 4.3. For every z > 0 and j, L ∈ N

Wj(z) =

L−b jk
k+1c−1∑
`=1

(
−`k + 1

k

)j
bk(`)z

− `(k+1)
k

+ 2

bj−L(k+1)
k c∑

m=1

mjzm

m!
cos

(
− πmk
k + 1

)
+O

(
zj−

L(k+1)
k

)
,

where the implied constant is uniform in j.

Remark. If j ≤ L(k+1)
k

, then the second sum is empty, while if j ≥ L(k+1)
k

, then the
first sum is empty.

Proof. The proof is similar to the proof of Proposition 2.1. We first use (2.1) to
rewrite

Wj(z) =
1

2π
Im
(
Dj

(
ze2πiρ

))
,

where ρ = k
k+1

and, setting δj,1 = 1 if j = 1 and δj,1 = 0 otherwise,

Dj(w) := δj,1 +
∞∑
m=1

mjwmΓ(ρm)

m!
.

Note that since tj vanishes at t = 0, we do not need the modification for the t = 0
singularity which occurred in the proof of Proposition 2.1. The goal now is to use a
result similar to (3.5) of [17] for the modified function Dj(w) instead of D(w). As
pointed out by Wright, equation (3.5) of [17] is a direct application of Theorem 6 of
[16].

Theorem 6 of [16] may also be directly applied to Dj(w), but unfortunately the
error term is not necessarily uniform in j. In order to obtain a uniform bound in
j, we investigate Theorem 6 of [16] further. Wright proved Theorem 6 as a direct
corollary of Theorem 5 of [16], which is more general and a careful analysis of the
proof of Theorem 5 yields the desired uniform bound. Setting κ := 1 − ρ, define for
j ∈ N0

ϕj(t) :=
Γ(1− κt)Γ(ρt)tj

Γ(t+ 1)
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and

kj(t) :=
πϕj(t)(−w)t

sin(πt)Γ(1− κt)
.

Then for j ≥ 1

Dj(w) =
∞∑
m=0

Rest=m (kj(t)) .

Setting hj := j − L
ρ
, we claim that

Dj(w) =

⌊
hj
ρ

⌋∑
`=1

Rest=−`ρ (kj(t)) + δj,1δhj≥0 +
∑
m=1

bhjc
mjwjΓ(ρm)

m!

=
1

ρ

L−bjρc−1∑
`=1

(−1)`

`!

(
− `
ρ

)j
Γ

(
`

ρ

)
(−w)

`
ρ+δj,1δhj≥0+

bj−Lρ c∑
m=1

mjwjΓ(ρm)

m!
+O

(
wj−

L
ρ

)
,

(4.4)

where the implied constant is independent of j and δhj≥0 = 1 if and only if hj ≥ 0.
Wright’s asymptotic in Theorem 5 (see page 444 of [16]) is obtained by choosing some
h ∈ R and taking a contour integral of kj(t) along Re(t) = h with |t| < m + 1

2
and

then along the arc Cm of the circle |t| = m + 1
2

with Re(t) ≥ h. Letting m → ∞,
Lemma 11 (ii) of [16] states that

lim
m→∞

∫
Cm
kj(t)dt,

and hence (note that kj has a removable singularity at t = 0), as given in the last
equation on page 444 of [16],

1

2πi

∫ h+i∞

h−i∞
kj(t)dt = Dj(w)−

bhc∑
m=1

mjwmΓ(ρm)

m!
+

bhρc∑
`=1

Rest=−`ρ (kj(t)) .

Choosing h = hj and computing the residues, one obtains

bhρc∑
`=1

Rest=−`ρ (kj(t)) = −1

ρ

L−bjρc−1∑
`=1

(−1)`

`!

(
− `
ρ

)j
Γ

(
`

ρ

)
(−w)

`
ρ ,
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which is precisely the negative of the main terms in the first sum on the right-hand
side of (4.4).

It hence remains to show that for this choice of h

1

2πi

∫ h+i∞

h−i∞
kj(t)dt = O

(
wj−

L
ρ

)
uniformly in j. To show this, we use Lemma 11 (i) of [16]. Suppose no poles of kj(t)
occur in the region Re(t) ∈ (hj − ε, hj + ε). Then, under the assumption that there
exist constants C0 > 0 and σ > 0 (independent of j) for which (for |t| � 1)

|ϕj(t)| < C0|t|hj−ε−
1
2 eκσ|t|, (4.5)

Lemma 11 (i) states that for t with Re(t) = hj, there exists a constant C, depending
only on σ and C0, for which

|kj(t)| < C|t|−1−εκhj (ρρ|w|)
hj
ρ . (4.6)

Since D(w) satisfies the conditions of Theorem 6 of [16], ϕ0(t) satisfies condition (4.5).
We may hence choose C0 and σ appropriately, depending on ϕ0 and L (choosing
h = h0 = −L

ρ
for the j = 0 case). Since hj = h0 + j,

|ϕj(t)| = |t|j |ϕ0(t)|

implies that ϕj also satisfies (4.5) with the same constants C0 and σ. Therefore (4.6)
implies that (by slightly altering the integration path, we may assume without loss
of generality that hj 6= 0 for Im(t) < 1)

1

2πi

∫ hj+i∞

hj−i∞
|kj(t)| dt < Cκhj (ρρ|w|)

hj
ρ

∫
R

1(
y2 + h2j

) 1
2
+ε
dy.

Bounding |hj| > δ > 0, the remaining integral may be bound independent of j.
Furthermore, since 0 < κ ≤ ρ < 1, we have κj < 1 and ρρj < 1, so κhj and ρhj may
be bound independently of j. Hence we obtain

1

2πi

∫ hj+i∞

hj−i∞
|kj(t)| dt = O

(
|w|

hj
ρ

)
with the implied constant independent of j. This completes the proof. �

We have now proven what we set out to prove.
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Proof of Theorem 1.2. Recall that hq(z), as given in (4.2), represents an entire func-
tion which converges absolutely and uniformly in all compact subsets of the complex
plane. A precise application of this is that

w
(kN)(k+1)

k

∞∑
n=0

|an(s)|
(

2
(kN)(k + 1)

k

)n
= ON

(
wN(k+1)

)
= O

(
sN
)
.

Furthermore, since for k ≥ 1 we obtain from Lemma 4.1 that

aj(s)w
j = O

(
s
j
2 s−

j
k+1

)
= O(1),

the terms in the second sum of Proposition 4.3 do not contribute to the main asymp-
totic and for L = kN the error term becomes O(sN). It then follows from Proposition
4.3, (4.2), and (4.3) that

Rk(q) =
k + 1

k
+

kN−1∑
`=1

bk(`)w
− k+1

k hq

(
−`(k + 1)

k

)
+ON

(
sN
)
.

Theorem 1.2 now follows directly from (2.5), (3.2), (4.3), and Proposition 4.3. �
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