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Abstract 

This study investigated the level of injury severity in crashes in right-turn lanes at 
signalized intersections. It used a dataset of 1900 injuries occurring at 275 signalized 
intersections in the Las Vegas area in the 2003 to 2005 period. An advanced random 
parameter binary logit model was used to determine the factors that significantly 
influence injury severity with PDO and severe injury in right-turn lanes. A 
comparison of this model with the traditional fixed parameter model was made to 
account for the unobserved heterogeneity. It was comparable to the two-level binary 
logistic model, which accounts for cross-group heterogeneity. The analysis showed 
that the following factors lead to a significantly higher likelihood of severe injury: 
rear-end crashes, the involvement of a vehicle going through the intersection, 
stopped and parked vehicles on main and minor streets, length of corner clearance, 
number of through lanes on minor streets, and intersection angle. 

Keywords: Injury Severity; Right-turn Lane; Random Parameter Binary Logit Model; 
Two-level Binary Logistic Model 



List of Notations 

 Acronyms 

NDOT  Nevada Department of Transportation 

AADT  Annual Average Daily Traffic 

PDO   Property Damage Only 

AIC   Akaike Information Criterion 

BIC   Bayesian Information Criterion 

Parameters 

  Yi   Dependent variable  

  ikX    Matrix of independent variable 

  0    Intercept 

  k    Regression coefficients 

ik
      Matrix of coefficient 

ik    Standard normal distribution function 

2
k    Variance 

L   Likelihood of the data 

m   Number of parameters  

n   Number of observations  

2    McFadden’s adjusted pseudo value  

( )LL 0    Log likelihood at zero 

( )LL β    Log likelihood at convergence 

   

 



Introduction 

Intersections are the main nodes in urban roadway networks, where traffic streams 
merge, turn, interact, and diverge. The interactions of traffic streams at intersections 
produce various conflict points, which increase the risk of traffic crashes.  
 
Right-turn lanes in North America are designed to provide space for the deceleration 
and storage of turning vehicles and to separate turning vehicles from through vehicles. 
Their purpose is to ameliorate safety and/or vehicle operations at intersections. 
However, crashes may even increase with the introduction of right-turn lanes due to 
collisions between right-turning vehicles and vehicles going straight through the 
intersection in the same direction or due to conflicts between right-turning vehicles 
and vehicles moving straight through the intersection in the same direction. The latter 
conflict can lead to a grid-lock of the whole intersection. Therefore, it is necessary to 
investigate the conflicts and to identify the factors that influence injury severity in 
right-turn lanes crashes.  
 

Literature Review 

A number of approaches and perspectives have been used to model crash injury 
severity. Econometric modeling approaches have focused on overall safety and 
economic implications. Savolainen et al. (2011) summarized the common models 
used in the analysis of crash injury severity including artificial neural networks, 
Bayesian hierarchical binomial logit, Bayesian-ordered logistic, bivariate 
binary/ordered logistic, classification and regression tree, generalized ordered logit, 
Markov-switching multinomial logit, mixed/generalized ordered logit, multivariate 
logit/logistic, nested logit, ordered logit/logistic models, partial proportional odds 
model, etc. The various modeling approaches are commonly categorized into two 
types for the evaluation of injury severity: ordered response types and unordered 
response types (Abay, 2013).  
 
As injury severity data are inherently ordered, the ordinal nature of response 
outcomes needs to be accounted for in the modeling framework. Therefore, most 
studies of injury severity have used ordered response models, particularly ordered 
logit or ordered probit models. Examples of previous studies that have used ordered 
response models to analyze injury severity are Abdel-Aty (2003), Eluru and Bhat 
(2007), Sze and Wong (2007), Wang and Abde-Aty (2008), Eluru et al. (2008), Clifton 
et al. (2009), Kwigizile et al. (2011), Mohamed et al. (2013), Abay (2013), and 
Saidharan and Menendez (2014). .  
 
However, as stated by Savolainen et al. (2011), Washington et al. (2011), Abay (2013), 
and Saidharan and Menendez (2014), one of the key assumptions of ordered response 
models is that the effects of the independent variables are fixed throughout the 



observations; this may easily lead to biased empirical inferences. Some recent studies 
have improved the ordered response models by introducing the generalized ordered 
logit model (Eluru et al., 2008; Saidharan and Menendez, 2014), generalized probit 
model (Clifton et al., 2009), and a latent class with an ordered probit model 
(Mohamed et al., 2013). These expanded approaches have taken into account the 
unobserved heterogeneity of different levels of injury severity. Unordered response 
models (multinomial, nested, and mixed logit/probit) have also been widely used to 
evaluate injury severity (Carson and Mannering, 2001; Ulfarsson and Mannering, 
2004; Kim et al., 2008, 2010; Tay et al., 2011; Abay, 2013; Aziz et al., 2013; 
Saidharan and Menendez, 2014). Although they do not capture the ordinal features of 
the injury severity levels, these models allow all of the independent variables to show 
different levels of the dependent variables distinctively, which is necessary to explain 
the more flexible variable effects on the dependent variables. However, as these 
models cannot account for the ordered nature inherent in injury severity, they may 
suffer from the assumption that unobserved heterogeneity is independent, an 
assumption that is inconsistent with an ordered framework (Train, 2009). 
 
Various approaches have been adopted to evaluate right-turn lane safety. To examine 
crashes in right-turn lanes, Villaluz (2006) used a simple bivariate regression and 
multiple regression analysis to analyze the factors related to right-turn lanes at High 
Crash Locations (HCLs) in the Las Vegas Valley. Chen et al. (2014) used simulations 
to verify that dual right-turn lanes can significantly decrease weaving conflicts 
compared to a single right-turn lane designs at frontage road intersections. Sayed et al. 
(2013) made practical improvements to right-turn safety at intersections in Edmonton, 
Alberta, Canada, which alleviated the high rate of rear-end and merging crashes. 
Using video data collected with an automated traffic safety tool, they found that the 
changes significantly decreased rear-end, merging, and total conflicts. Dabbour and 
Easa (2014) used a two-way stop-controlled pattern perceptual framework to aid 
unprotected right-turning drivers at rural intersections. 
 
A few models have been developed to examine injury severity in crashes at 
intersections. Bauer and Harwood (2000) found that right-turn channelization 
decreased the number of multiple-vehicle fatal and injury crashes. Al-Ghamdi (2002) 
used the binary logit model to investigate the relationship between crash 
characteristics and their causes and the severity of injuries in crashes involving 
right-turn vehicles. Recent studies by Autey et al. (2012) and Sacchi et al. (2013) 
conducted full Bayes safety evaluations for channelized right-turn lanes that had 
angles of approximately 70 degree in Penticton, British Columbia. Full Bayes 
univariate and multivariate linear intervention models were used and the results 
showed that the implementation of the right-turn lane produced an obvious decrease 
in collision severity. The latest study by Ale et al. (2014) investigated crashes over a 
five-year period in Minnesota’s two-lane trunk highways. Using a logistic regression 
model, they examined the effects that right-turn lanes and right-turn movements had 
on safety at uncontrolled major road approaches to intersections/driveways. The 



conclusions were that the crashes caused by right-turning vehicles were less severe 
(mostly property damage), and that injury severity levels in the crashes caused by 
right-turn-vehicles were significantly associated with posted speed limits, right-turn 
treatments, and road surface conditions. 
 
As summarized in Table 1, previous studies have not deeply explored right-turn lane 
safety. Research has focused on the use of cross-sectional modeling to identify the 
factors that influence right-turn crashes; few studies have used panel data modeling. 
Furthermore, as stated by Hauer (2010), cross-sectional studies have produced 
controversial cause-effect conclusions. This study used a panel data binary logistic 
regression model to determine the factors that significantly influence right-turn lane 
crashes, and investigated heterogeneity among the signalized intersections. 

 

Data Description 

This study used a dataset of injuries occurring in the 2003 to 2005 period at 275 
signalized intersections located at 27 major and minor arterials in the Las Vegas 
Metropolitan area (Clark County, City of Las Vegas, City of North Las Vegas, and 
City of Henderson) to identify the significant factors in crashes in right-turn lanes. 
Data were collected from 275 signalized intersections with right-turn lanes.  
 
A geographic information system (GIS) and Google Earth were used to examine the 
selected signalized intersections.. Although there are 400 intersections listed in Table 
2, some intersections had more than one observation, as each midblock included two 
intersections, so the intersection was counted twice. After eliminating the duplicates, 
the final sample included 275 signalized intersections (including three-legged and 
four-legged signalized intersections). Table 2 gives the number of signalized 
intersections on each arterial road, and Figure 1 shows the exact locations of the 
selected signalized intersections. 
 
The original crash dataset was obtained from the NDOT. The crashes were counted 
for each intersection using a buffer area centered at the cross-point of the intersection. 
Any crashes involving right-turning vehicles that occurred within the buffer area were 
considered to have happened within the intersections. The radius of the buffer area 
was set as 60.96 m (200 ft). Figure 2 shows the buffer area crashes for the intersection 
at Flamingo Road and Swenson Street. In 2004, there were 114 crashes at this 
intersection, including 4 right-turn crashes. 
 
The other variables of interest, including the number of lanes at each approach 
(including left-turn, through, and right-turn only lane), the average speeds, and 
average corner clearances were collected for each intersection using a GIS map 
combined with Google Earth (More details can be obtained from Xu et al. [2014]). 
The annual average daily traffic (AADT) of the approach was used as the criteria to 
determine which road was the primary road at each intersection. 



 
In this study, 1900 injuries resulting from right-turn movements were extracted from 
the dataset from more than 40,000 data bars, in which 1444 injuries (76%) and 456 
injuries (24%) are attributed to PDO and severe injury respectively, and 23 variables 
were examined as potentially significant factors in the severity of right-turn-related 
crashes. Xu et al. (2014) provided a detailed description of the variables mentioned 
above. Crash data were classified into types using the categories shown in Table 3. 
The category “angle crashes” includes crashes related to both right-angle turns from 
non-opposing angular directions and angular collisions from opposite directions; 
rear-end crashes are collisions between vehicles moving in the same direction, i.e., the 
front end of the following vehicle strikes the rear end of the leading vehicle; 
sideswipe crashes can be collisions between vehicles moving in the same directions or 
in opposite directions. Table 4 presents the descriptive statistics for the selected 
variables.  
 

Methodology 

Fixed parameter binary logit model 
 
There are two main classification systems for injury severity. The first is the 
“KABCO” scale, with “K” through “O” representing five levels of severity: fatal 
injury, incapacitating injury, non-incapacitating evident injury, possible injury, and 
non-injury. The second scale uses three categories: fatality, injury, and property 
damage only (PDO). The NDOT dataset uses the second system. As there were no 
fatalities related to right-turn crashes in the dataset used in this study, all of the 
observations were either “injury” or “PDO.” The dichotomous nature of the injury 
outcome facilitates the application of a binary logistic regression model. The response 

variable Y  for the thi  pedestrian crash only takes one of two values: 1iY   in the 

case of severe injury, and 0iY   in the case of PDO. The probability of 1iY   is 

denoted by Pr( 1)i iY   , which follows a binomial distribution, hence 
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where ikX  is the thk explanatory variable for the thi  right-turn crash, and 0  and 

( 1,..., )k k p   are the intercept and regression coefficients, respectively. 

 
Random parameter binary logit model 
 



As demonstrated in Milton et al. (2008) and Washington et al. (2011), the random 
parameter logit model can be used to evaluate the crash severity levels of specific 
roadway segments within a certain time period, while also accounting for unobserved 
heterogeneity, even with limited data. In this study, the random parameter binary logit 
model was used to account for crash-specific variations in the effects of the 
explanatory variables on the propensity for injury in right-turn lane crashes. The 
model can be expressed as 
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where ik  is the coefficient of the thk explanatory variable for the thi  crash, and 

ik is a randomly distributed term (e.g., a normally distributed term with mean 0 and 

variance 2
k ). Practically, a random parameter ik is used whenever 

k is 

significantly greater than 0, otherwise the parameter k is fixed across the 

observations. 
 
The estimation of the above random parameter binary logit model was undertaken 
using the simulated maximum likelihood approach with 200 Halton draws 
(Anastasopoulos and Mannering, 2011).. 
 
As the coefficients of a random parameter binary logit model cannot directly explain 
variation in the variables, the influence of the thk  attribute on injury severity levels 
was determined using the odds ratio: 

odd ratio exp( )k .                    (3) 

A value significantly larger than 1 implied that the variable included may induce a 
higher risk of injury. 
 
Measures of goodness of fit 
 
Generally, more predictors improve the likelihood value of the proposed model; 
however, too many variables may lead to over-fitting (Saidharan and Menendez, 
2014). To prevent this problem, AIC and BIC are introduced by including a penalty 
term for the number of predictors along with the likelihood values of the model.. The 
lower the AIC and BIC values, the better the statistical fit of the model. The AIC and 
BIC can be estimated by 

AIC = -2log (L) + 2m and                       (4) 

    BIC = -2log (L) + mlogn,                        (5) 



where L is the likelihood of the data given the proposed model, m is the number of 
parameters, and n is the number of observations.  
 

The overall fit of the models can also be determined by calculating McFadden’s 

adjusted pseudo 2  (Abay 2013), which compares the log-likelihood value at 

convergence and the log-likelihood value at zero. More explicitly, it can be calculated 
as  

2 ( )
1

( )

LL m

LL
 
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0
 ,                      

(6) 

where ( )LL β  and ( )LL 0  are the log-likelihood values at convergence and at zero, 

respectively. 

 

Results and Discussion 

Each of the explanatory variables given in Tables 3 and 4 were checked for statistical 
correlations. Both the fixed parameter binary logit model and random parameter 
binary logit model were run using STATA 12.0 software. The correlation test between 
selected variables identified four variables, number of lanes on main street and minor 
street, land use type, , and average speed on minor street, which were highly 
correlated with other variables, so they were removed to avoid the interaction between 
them. Table 5 gives the final model results for the fixed parameter binary logit model 
and random parameter binary logit model at the 95% confidence interval.   
 
The results of the likelihood-ratio test, shown in Table 5, showed that the random 
parameter model provided a slightly superior fit. The McFadden’s adjusted pseudo 

2 , AIC, and BIC values revealed that the random parameter partner had better 

goodness of fit. 
 
Given the existence of heterogeneity in the dataset, cross-group heterogeneities 
needed to be addressed to avoid underestimating the standard errors in the regression 
coefficients (Huang and Abdel-Aty, 2010). Following the multilevel data structure 
presented by Huang and Abdel-Aty (2010), a two-level binary logistic model was 
established to address the potential cross-intersection heterogeneity, and the results 
were compared with the models above. Table 6 presents the results. 
 
Table 6 shows  that the two-level binary logistic model is similar to the fixed 
parameter binary logit model, but is a bit different from the random parameter binary 



logit model. The fixed parameter binary logit model and the two-level binary logistic 
model had the same number of parameters; the random parameter binary logit model 

had more than either of them. McFadden’s adjusted pseudo 2  for the two-level 

binary logistic model was larger than the pseudo 2 value of the two other models, 

but the AIC value (AIC=602.37) for the two-level binary logistic model was smaller, 
and the BIC (BIC=658.78) value was higher than for the two other models. The AIC 
and BIC values for the random parameter model were smaller than those for the fixed 
parameter model. These results indicated that the two-level binary logistic model was 
comparable to the two other models. 
 
The results for the random parameter binary logit model, given in Table 5, show that 
the following variables were statistically significant: crash type (CRTYP), movement 
of vehicle on main streets (MAINRT), movement of vehicle on minor streets 
(MINORRT), number of through lanes on minor streets (TRMINOR), length of 
corner clearance (NOCC), and intersection angle (ANGLE). 
 
The results for the random parameter binary logit model, given in Table 5, show that 
the following factors were significantly related to a higher probability of severe injury: 
rear-end crash type (odds ratio=1.370), going straight (6.143), and stopped and parked 
vehicles on main streets (5.100), going straight (3.360), and stopped and parked 
vehicles on minor streets (3.720), number of through lanes on minor streets (1.990), 
length of corner clearances (2.450), and intersection angle (2.960). 
 
The results for the rear-end crashes were normally distributed with a mean of 0.311 
and a standard error 0.126. The odds ratio was larger than 1, indicating that rear-end 
crashes may be associated with a higher injury risk. Rear-end crashes were the most 
frequent type of crashes in the right-turn lanes, and were mainly due to the drivers’ 
inattention, inappropriate braking, or speeding while turning right at a signalized 
intersection. Similar findings were reported in a previous study by Ale et al. (2014). 
 
The movement of vehicles on main streets and minor streets was significantly 
associated with higher injury risk; incidents in which the vehicle was going straight or 
stopped/parked were more severe when the vehicle swerved abnormally rather than 
turning right. Collisions between right-turning vehicles and straight-through vehicles 
or between right-turning vehicles and opposing straight-through vehicles were equally 
likely to lead to a severe injury, and the worst cases could cause a grid-lock of the 
whole intersection. If a driver behaves in a disorderly or aggressive manner, other 
drivers may not have sufficient time to react, even if the vehicles are already 
stopped/parked. In these scenarios, crashes are more likely to be severe.  
 
Unexpectedly, another significant factor related to injury severity was the number of 
through lanes on minor streets. The fewer the number of through lanes on the minor 



streets, the greater the chance of conflicts and the more dangerous the vehicles’ 
movements. In these environments, drivers need to be more careful when turning 
right. 
 
Another significant variable was the length of the corner clearance, which is a factor 
that can be controlled through access management. A longer corner clearance may 
help drivers of through traffic perceive and respond more adequately to other drivers 
and to turn into adjacent accesses, thus decreasing the number of crashes. A shorter 
corner clearance may not allow drivers enough time to react, thus causing more 
conflicts between turning and through traffic. Similar findings were reported in a 
previous study by Xu et al. (2014). 
 
Among all of the geometric design factors, the intersection angle had the strongest 
association with injury risk, implying that drivers’ visual range may be affected by the 
angle. Inadequate angles result in less response time. Various right-turn treatments 
have been presented to address this issue; Smart Channels developed by Autey et al. 
(2012) and Sacchi et al. (2013) provided empirical evidence for the benefits of a 
channelized right-turn of approximately 70 degrees. 
  

Conclusions 

This study evaluated the effects of various factors on injury severity in right-turn lane 
crashes. The unobserved missing factors were investigated using random parameter 
binary logit models and a crash dataset from the Las Vegas area. Although right-turn 
crashes are usually not severe, in this database more than three quarters were PDOs; 
therefore, it is important to identify the factors that influence crash severity as the 
number of car owners is increasing sharply. Once the significant factors are confirmed, 
measures can be taken to reduce crash severity. 
 
The analysis revealed some key findings. First, rear-end crashes, crashes involving 
vehicles going straight or stopped/parked on main and minor streets, the number of 
through lanes on minor streets, the length of corner clearance, and the intersection 
angle significantly affected the severity of right-turn lane crashes.  
 
Second, both the fixed parameter binary logit model and random parameter binary 
logit model were estimated and then compared with the two-level binary logit model. 
The random parameter binary logit model provided a more sensitive result than the 
fixed parameter model and was comparable to the two-level binary logit model in 
terms of goodness of fit. One advantage of the two-level binary logit model is its 
ability to account for the cross-group heterogeneities among different signalized 
intersections. An approach that integrates these two models should be developed in 
future studies.  
 



Finally, the findings of the modeling analysis suggest that safety planners need to 
improve the markings or signs at intersections where rear-end crashes in right-turn 
lanes are common. Safety policymakers also need to consider providing education 
programs for drivers with risky behavior to reduce the potential risk of right-turn 
crashes at signalized intersections. Furthermore, longer corner clearances need to be 
designed around the signalized intersections to reduce the severity of injuries in 
crashes. Designers also need to control the number of through lanes on minor streets 
and choose appropriate intersection angles when designing right-turn lanes. All of 
these countermeasures could increase safety and mobility, and alleviate the risks of 
right-turn lane crashes at signalized intersections. 
 
Future studies should examine the combined effects of these factors. It is beneficial to 
have engineers make evaluations before an intersection is built, to help detect 
potential risks. With the increasing number of automobiles, traffic crashes have 
become a more urgent social problem, and more studies on injury severity are 
necessary. Furthermore, more detailed crash information would help researchers to 
identify more factors that influence traffic crashes.  
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Table1. Summary of Previous Studies 
Perspective Authors Features 

General injury severity

Summary Savolainent et al. (2011) Summarized the models and methods used to assess injury severity. 

Ordered response 
framework 

Abdel-Aty (2003), Eluru and Bhat (2007), Sze 
and Wong (2007), Wang and Abde-Aty 
(2008), Eluru et al. (2008), Clifton et al. 
(2009), Kwigizile et al. (2011), Mohamed et 
al. (2013), Abay (2013), Saidharan and 
Menendez (2014) 

When the different severity levels are inherently ordered, it is easy to 
capture the relations between different severity levels. 

Improved ordered 
response framework 

Eluru et al. (2008), Saidharan and Menendez 
(2014), Clifton et al. (2009), Mohamed et al. 
(2013) 

They take into account the unobserved heterogeneity across different 
injury severity levels. 

Unordered response 
framework 

Carson and Mannering (2001), Ulfarsson and 
Mannering (2004), Kim et al. (2008, 2010), 
Tay et al. (2011), Abay (2013), Aziz et al. 
(2013), Saidharan and Menendez (2014) 

These models allow all of the independent variables to show different 
levels of the dependent variables distinctively. 

 

Unsignalized 
intersection 

Crashes 
Villaluz (2006) Bivariate regression analysis and multiple regression analysis were 

used to analyze the right-turn related crashes. 
Simulation Chen et al. (2014) They evaluated right-turn lane safety using microscopic simulation. 

Practice 
Sayed et al. (2013), Dabbour and Easa (2014) Video data were used to measure traffic conflicts with an automated 

traffic safety tool. 

Signalized 
intersection 

Channelization 
Bauer and Harwood (2000) Right-turn channelization led to a decrease in multiple-vehicle 

fatalities and injuries.  
Binary logit model Al-Ghamdi (2002) Right-turn vehicles were found to influence injury levels. 
Linear intervention 
models 

Autey et al. (2012), Sacchi et al. (2013) The implementation of the right-turn treatment has considerably 
decreased collision severity.  

Logistic regression 
model 

Ale et al. (2014) The severity of injuries was significantly associated with posted 
speed limits, right-turn treatments, and road surface conditions. 



Table2. Summary of Selected intersections 

No. Arterial 
Section 

Direction
Intersection

number Begin End 
1 Ann Road N. Rainbow Boulevard N. Simmons Street WE 6 
2 Bonanza N. Maryland Parkway N. Hollywood Boulevard WE 11 
3 Buffalo Drive W. Charleston Boulevard W. Sahara Avenue NS 6 
4 Charleston Boulevard Pavilion Center Drive Tree Line Drive WE 32 
5 Cheyenne Avenue N. Hualapai Way N. Rancho Drive WE 13 
6 Craig Road N. Buffalo Drive Las Vegas Boulevard WE 21 
7 Decatur Boulevard Meadow Lane W. Hacienda Avenue NS 16 
8 Desert Inn Road S. Rainbow Boulevard S. Sandhill Road WE 17 
9 Eastern Avenue E. Pebble Road E. Owens Avenue NS 22 
10 Flamingo Road S. Fort Apache Road S. Sandhill Road WE 27 
11 Jones Boulevard W. Oakey Boulevard Foothill Boulevard NS 11 
12 Lake Mead Boulevard N. Rainbow Boulevard N. Hollywood Boulevard WE 17 
13 Lamb Boulevard E. Lake Mead Boulevard E. Charleston Boulevard NS 7 

14 Martin L King Boulevard W. Craig Road 
W. Lake Mead 

Boulevard 
NS 6 

15 Maryland Parkway Franklin Avenue E. Russell Road NS 14 
16 Nellis Boulevard E. Lake Mead Boulevard E. Hacienda Avenue NS 17 
17 Owens Avenue Main Street N. Hollywood Boulevard WE 12 
18 Pecos Road E. Flamingo Road Pebbles Road NS 13 
19 Rainbow Boulevard Westcliff Drive W. Hacienda Avenue NS 13 
20 Sahara Avenue Blue Willow Lane S. Mojave Road WE 30 
21 Spring Mountain Road Rainbow Boulevard Valley View Boulevard WE 8 
22 Stephanie Street Galleria Drive American Pacific Drive NS 6 
23 Sunset Road S. Eastern Avenue Mountain Vista Street WE 8 
24 Tropicana Avenue S. Durango Drive Andover Drive WE 27 
25 Valley View Boulevard Meadows Lane W. Flamingo Road NS 13 
26 Warm Spring Road S. Eastern Avenue N. Stephanie Streets WE 5 
27 Washington Avenue N. Durango Drive N. Hollywood Boulevard WE 23 

 
 

 



Table 3. Classification of Variables 
Abbreviation Variable description Count Proportion (%) 

Cash type  Angle 1302 68.55 
Rear-end 447 23.53 
Sideswipe, overtaking 84 4.42 
Others 67 3.50 

MAINRT  
 

Turning right 1209 63.63 
Going straight 407 21.42 
Turning left 81 4.26 
Stopped/Parked 68 3.58 
Others  135 7.11 

MINORRT  
 

Turning right 893 47.00 
Going straight 534 28.11 
Turning left 78 4.11 
Stopped/Parked 195 10.26 
Others  200 10.52 

 
 
Table 4. Summary of Descriptive Statistics 

Abbreviation Variable description Mean Std. Dev. Min. Max.
RTTNMAIN Number of right-turn lanes on 

main streets 
0.566 0.547 0 2 

RTMINOR  Number of right-turn lanes on 
minor streets 

0.434 0.530 0 2 

LANDUSE Land use types; 1 is for 
commercial, 0 is for residential 

0.912 0.201 0 1 

NOCC  Length of corner clearances 6.446 1.717 1 8 
NOMAINLN Number of lanes on main street 8.029 1.126 3 11 
LFTNMAIN Number of left-turn lanes on main 

street 
1.689 0.615 0 2 

TRMAIN Number of through lanes on main 
street 

5.774 0.900 0 8 

NOMINORLN Number of lanes on minor street 6.660 1.571 2 9 
LFTNMINOR Number of left-turn lanes on 

minor street 
1.504 0.524 0 2 

TRMINOR Number of through lanes on minor 
street 

4.720 1.373 0 6 

EWAVGCC Average corner clearance in 
eastbound-west bound, ft 

171.667 103.481 0 636.00

NSAVGCC Average corner clearance in 
northbound-south bound, ft 

166.039 80.328 0 752.00

EWFL/1000 Total traffic flow in 
eastbound-westbound by 1000 

85.970 39.840 2.02 175.7

NSFL/1000  Total traffic flow in 
northbound-southbound by 1000 

69.486 34.111 1.82 147 

MAINAVGSP Average speed on main street, 
mph 

43.091 4.158 25 45 

MINORAVGSP Average speed on minor street, 
mph 

36.268 7.747 15 45 

ANGLE  Intersection angle, degree 86.533 6.431 33.47 90.00
EWGRADE Eastbound-westbound grade 0.051 0.650 -1.73 4.69 
NSGRADE  Northbound-southbound grade 0.028 0.624 -2.36 1.99 

 



Table 5 Estimation Results of the Two Final Models 

 

 Fixed parameter Random parameter 

Variables Control Coefficient Std. Err. Odds ratio Coefficient Std. Err. Odds ratio 

Crash type β1       

Angle,β1.1 Others -0.369 0.229 0.691 -0.373 0.214 0.687 

Rear-end, β1.2  0.357 0.166 1.430* 0.311 0.126 1.370* 

Sideswipe, overtaking, β1.3  -0.467 0.129 0.627 -0.580 0.110 0.559 

MAINRT β2 Others       

Turning right, β2.1  1.118 0.115 3.089 1.159 0.113 3.186 

Going straight, β2.2  1.814 0.249 6.140* 1.816 0.224 6.143* 

Turning left,β2.3  0.190 0.164 1.209 0.212 0.182 1.235 

Stopped/Parked,β2.4  1.668 0.193 4.800* 1.630 0.200 5.100* 

MINORRT β3 Others       

Turning right, β3.1  0.924 0.180 2.280 0.954 0.134 2.594 

Going straight,β3.2  1.234 0.158 3.200* 1.212 0.154 3.360* 

Turning left, β3.3  0.027 0.186 1.091 0.021 0.194 1.022 

Stopped/Parked, β3.4  1.394 0.172 3.300* 1.314 0.136 3.720* 

TRMINOR, β5  - - - -0.400 0.148 1.990* 

NOCC, β6  - - - -0.134 0.150 2.450* 

ANGLE, β12  - - - -0.017 0.005 2.960* 

Constant  -3.203 0.185 0.410* -3.206 0.183 0.405* 

Goodness-of-fit       

Number of observations, n   1900  1900  

Number of parameters, m   11  14  

Log likelihood at zero, ( )LL 0   -312.100  -303.050  

Log likelihood at convergence, ( )LL β   -303.400  -299.415  

McFadden’s adjusted pseudo
2  0.058  0.063  

AIC  614.80  610.83  

BIC  632.20  615.40   



Table 6. Results for the Two-Level Binary Logistic Model 
Variables Control Coefficient Std.Err. Odds ratio 

Crash type β1    

Angle,β1.1 Others -0.374 0.207 0.688 

Rear-end, β1.2  0.311* 0.141 1.366* 

Sideswipe, overtaking, β1.3  -0.580 0.115 0.560 

MAINRT β2 Others    

Turning right, β2.1  1.158 0.110 3.187 

Going straight, β2.2  1.815* 0.244 6.144* 

Turning left,β2.3  0.212 0.161 1.236 

Stopped/Parked,β2.4  1.630* 0.185 5.102* 

MINORRT β3 Others    

Turning right, β3.1  0.953 0.174 2.595 

Going straight,β3.2  1.211* 0.104 3.358* 

Turning left, β3.3  0.021 0.179 1.022 

Stopped/Parked, β3.4  1.314* 0.167 3.720* 

Constant  -3.205* 0.180 0.405* 

Goodness-of-fit     

Number of observations, n   1900  

Number of parameters, m   11  

Log likelihood at zero, ( )LL 0   -296.690  

Log likelihood at convergence, ( )LL β   -288.190  

McFadden's adjusted pseudo 
2   0.65  

AIC  602.37  

BIC  658.78  

Note: * indicates the variable is significant at the 5% level of significance.
 

 


