On the Zariski closure of a germ of totally geodesic complex submanifold on an arithmetic variety

Ngaiming Mok

July 9 - 13, 2012

Department of Mathematics, The University of Hong Kong Hong Kong E-mail:**nmok@hku.hk**

Abstract

Let Ω be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free lattice, $X := \Omega/\Gamma$. Let $Z \subset X$ be an irreducible quasi-projective variety such that Z is the Zariski closure of the germ of a totally geodesic complex submanifold $S \subset Z$ at some point $p \in Z$. Under certain non-degeneracy conditions one expects Z to be also totally geodesic, so that Z is in particular again uniformized by a bounded symmetric domain.

We explain first of all how this can be established in the special case of the complex unit ball. In this case, Z is proven to be totally geodesic without any additional hypothesis. Writing $\dim_{\mathbb{C}}(S) = d$, the idea is to generate an s-dimensional holomorphic family \mathcal{A} of d-dimensional totally geodesic complex submanifolds $S_{\alpha}, \alpha \in \mathcal{A}$, on the universal covering ball \mathbb{B}^n , so that the (s + d)-dimensional set Σ swept out by \mathcal{A} contains an open subset of an irreducible component \widetilde{Z} of $\pi^{-1}(Z), \pi : \mathbb{B}^n \to X$ being the universal covering map, and such that Σ can be extended holomorphically across $\partial \mathbb{B}^n$ at some boundary point $b \in \partial \mathbb{B}^n \cap \overline{\Sigma}$. Properties of Z are then derived from the asymptotic behavior of Σ as points approach b. A strengthening of the argument solves the problem in special cases such as the case where Ω is any bounded symmetric domain and Z is a complex surface.