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Asymmetric sequential Landau-Zener dynamics of Bose-condensed atoms in a cavity
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We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose-
condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the
cavity field are identical, the interplay between atom-atom interaction and detuning may lead to a series of LZ
transitions. Unlike the conventional sequential LZ transitions, which are symmetric to the zero detuning, the LZ
transitions of Bose-condensed atoms in a cavity field are asymmetric and sensitively depend on the photon number
distribution of the cavity. In LZ processes involving single excitation numbers, both the variance of the relative
atom number and the step slope of the sequential population ladder are asymmetric, and the asymmetry becomes
more significant for smaller excitation numbers. Furthermore, in LZ processes involving multiple excitation
numbers, there may appear asymmetric population ladders with decreasing step heights. During a dynamical LZ
process, due to the atom-cavity coupling, the cavity field shows dynamical collapses and revivals. In comparison
with the symmetric LZ transitions in a classical field, the asymmetric LZ transitions in a cavity field originate
from the photon-number-dependent Rabi frequency. The asymmetric sequential LZ dynamics of Bose-condensed
atoms in a cavity field may open up a way to explore the fundamental many-body physics in coupled atom-photon
systems.
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I. INTRODUCTION

The great achievements in manipulating and probing
ultracold atoms in a cavity offer a new platform for exploring
many-body systems and their dynamics. Up to now, the strong
atom-cavity coupling has been experimentally demonstrated
in several laboratories by using an atomic Bose-Einstein
condensate (BEC) [1–6]. The BEC-cavity experiments can
be used to study the coupled atom-photon system with
both large and small atom and photon numbers [1–4]. The
BEC-cavity system provides an ideal platform for exploring
exotic many-body quantum effects, such as quantum phase
transition [5–12], many-body quantum entanglement [13–15],
precision measurement [16–18], quantum optomechanics [19–
22] and many-body quantum dynamics [23,24]. On the other
hand, as an important fundamental problem, the many-body
Landau-Zener (LZ) tunneling with BECs has attracted much
attention for a long time [25–28]. However, the many-body
LZ tunneling in the BEC-cavity system, in particular, how the
cavity field affects the LZ dynamics of atoms, is still unclear.

Due to the atom-atom interaction, the many-body LZ
tunneling is very different from the single-particle one. The
sequential LZ tunneling induced by interaction blockade have
been found in the Bose-Josephson system (BJS) [29,30], the
Bose-Hubbard ladder [31] and spinor BECs within optical
superlattices [32]. For an example, in a BJS [33–36], due to
the interplay between the intermode bias and the atom-atom
interaction, the resonant tunneling and interaction blockade
take place [29,30]. There appears a population ladder indi-
cating a series of interaction blockades. The variance of the
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relative population would exhibit several peaks representing
the single-atom resonant tunneling. Due to the fixed Josephson
coupling in such a BJS, the step slopes of the ladder and the
resonant tunneling peaks are symmetric about the zero bias
(which corresponds to the zero detuning).

In a BEC-cavity system, due to the quantization nature of
the cavity field, the picture of the sequential LZ dynamics
may have significant differences. In comparison with the BJS,
the Rabi frequency in a BEC-cavity system acts the role of
the Josephson coupling. Unlike the Josephson coupling, the
Rabi frequency is no longer fixed and it is proportional to the
square root of the cavity-photon number [37]. In the case of
few photons, as the photon number changes in the LZ process,
the Rabi frequency dramatically changes when the detuning is
tuned. Furthermore, if there are insufficient photons to excite
all the atoms to the upper level, an incomplete sequential
LZ process would occur. Thus, in addition to the atom-atom
interaction and the detuning, the photon number also plays an
important role in the LZ process of the BEC-cavity system.
Simultaneously, during the time evolution, the atoms may also
have an influence on the cavity field. Therefore, it is of great
interest to investigate (i) how the sequential LZ dynamics is
affected by the cavity field and (ii) how the cavity field changes
during such a LZ process.

In this article, we study the LZ process of an ensemble
of interacting Bose-condensed atoms trapped in a cavity.
In the framework of second quantization, the BEC-cavity
system can be described by a modified Tavis-Cummings
model with an additional nonlinear term determined by the
atom-atom interaction [24,38]. If the initial cavity field is
described by a Fock state, the BEC-cavity system only involves
a single excitation number. In the adiabatic sweeping of
the detuning, the interplay between the detuning and the
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FIG. 1. Sketch of trapped interacting Bose-condensed atoms in
an optical cavity. Each atom is identically coupled to the cavity mode
with the coupling strength g/

√
Na . Here, the frequencies of the cavity

field and the atomic transition are denoted by ω and ω0, respectively.
The detuning is δ = ω − ω0 and the effective atom-atom interaction
is characterized by Ec.

atom-atom interaction results in the asymmetric sequential
LZ transitions, in which the atoms absorb or emit photons
one by one and the sequential LZ transitions are asymmetric.
If the initial cavity field is described by a coherent state, the
BEC-cavity system will involve multiple excitation numbers.
Different from the case of single excitation numbers, in the
asymmetric sequential LZ process, the atoms may no longer
absorb entirely one photon for every population step. The
number of absorbed and/or emitted photons becomes less than
1 and it gradually decreases even in the adiabatic limit. During
the LZ process, the cavity field is no longer a coherent state
and its intermittent collapse and revival appear.

This article is organized as follows. In Sec. II, we de-
scribe the model and give its Hamiltonian. In Sec. III, we
investigate the asymmetric sequential LZ process involving
single excitation numbers. In Sec. IV, we consider the atoms
initially coupled with a coherent cavity field and then study
the asymmetric sequential LZ process involving multiple
excitation numbers. We derive an analytical formula for
sequential ladders of the photon number and the relative
atom number. The adiabaticity conditions for the sequential
LZ transitions are also analytically estimated. An intriguing
finding of fractional steps is observed when the average
number is small compared with atom number. In addition, we
analyze the effects of the cavity photon loss on the sequential
LZ dynamics. The phenomenon of collapses and revivals of
the cavity field is also revealed. Finally, in Sec. V, we give a
brief summary and discussion.

II. MODEL

We consider an ensemble of two-state Bose-condensed
atoms confined in an optical cavity. The schematic diagram
is shown in Fig. 1. As in the experiments of 87Rb atoms [1,2],
the two internal states can be chosen as 5 2S1/2|F = 2〉 and
5 2P3/2|F ′ = 3〉, where the transition is at λ = 780.2 nm. The
atoms are coupled with the cavity mode, in which one atom
in the lower level may absorb a photon and jump to the
upper level, or may be taken from the upper level into the
lower level with a photon emitted. The Bose-condensed atoms

are confined in a sufficiently deep dipole trap so that all the
atoms may only occupy the lowest motional state. Assuming
that the coupling fields are spatially uniform and that the
atom-atom collision does not change the internal states. Each
atom identically couples with a single-mode cavity field [39].
Therefore, the system obeys a second quantized Hamiltonian
within a single-mode approximation (in the unit of � = 1
throughout the paper):

H = ωâ†â +
∑

j=↑,↓

(
E0j b̂

†
j b̂j + 1

2
Gjj b̂

†
j b̂

†
j b̂j b̂j

)

+G↑↓b̂
†
↓b̂

†
↑b̂↑b̂↓ + g√

Na

(âb̂
†
↑b̂↓ + â†b̂†↓b̂↑), (1)

where ω is the frequency of cavity mode, Na = N↑ + N↓ =
b̂
†
↑b̂↑ + b̂

†
↓b̂↓ is the atom number, E0j is the energy of the

atoms in state |j 〉, Gjj is the atom-atom interaction energies
of state |j 〉, G↑↓ is the atom-atom interaction energy between
states |↑〉 and |↓〉, and g is the homogenous coupling strength
between the cavity mode and the Bose-condensed atoms.

Regarding all the atoms as spin- 1
2 particles, one can define

the angular momentum operators as

Ĵx = b̂
†
↑b̂↓ + b̂↑b̂

†
↓

2
, (2)

Ĵy = b̂
†
↑b̂↓ − b̂↑b̂

†
↓

2i
, (3)

Ĵz = b̂
†
↑b̂↑ − b̂

†
↓b̂↓

2
. (4)

The system has two good quantum numbers: the atom
number Na and the excitation number Ne = â†â + N↑ =
â†â + Ĵz + Na

2 , satisfying the commutation [Na,H ] = 0 and
[Ne,H ] = 0. Here, when the excitation number is much larger
than the atom number, i.e., Ne � Na , it corresponds to the
large excitation number condition, which is close to the
classical field limit. However, if the excitation number is
comparable with or smaller than the atom number, i.e., Ne �
Na , it refers to the small excitation number condition. The
quantization of the cavity mode would make a difference with a
classical field and the photon number may affect the properties
of the whole system. We carefully compare the results under
large and small excitation conditions in the following.

Since Na and Ne are conserved quantities, the constant
terms O(Na) and O(N2

a ) can be eliminated and the Hamilto-
nian becomes

H = ω0Ĵz + ωâ†â + Ec

2
Ĵ 2

z + g√
Na

(â†Ĵ− + âĴ+), (5)

where Ĵ± = Ĵx ± iĴy are the raising and lowering operators
of atoms, the atomic transition frequency ω0 = E0↑ − E0↓ +
1
2 (Na − 1)(G↑↑ − G↓↓), and the effective atom-atom interac-
tion Ec = G↑↑ + G↓↓ − 2G↑↓. Further, shifting the zero point
of the Hamiltonian (5), one gets

H = − δ

2
Ĵz + δ

2
â†â + Ec

2
Ĵ 2

z + g√
Na

(â†Ĵ− + âĴ+), (6)

with the detuning δ = ω − ω0. According to the last term, for
fixed g and Na , the Rabi frequency is proportional to the square
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root of the photon number (i.e., � ∝ √
n), which is changeable

with respect to the state of the cavity field.
The state of the system can be expanded as

|ψ〉 =
∑
n,m

Cn,m|n,m〉, (7)

where n is the photon number of the Fock state, m = (N↑ −
N↓)/2 is the relative atom number, and Cn,m are the coefficients
of basis |n,m〉. Due to the conservation of the excitation
number, when Ne < Na , the number of bases can be reduced
to Ne + 1, and the state of the system can be expanded as

|ψ〉 =
Ne∑
l=0

C
Ne

l

∣∣∣∣Ne − l, − Na

2
+ l

〉
. (8)

For Ne � Na , only Na + 1 bases are enough, and the state of
the system can be expanded as

|ψ〉 =
Na∑
l=0

C
Ne

l

∣∣∣∣Ne − l, − Na

2
+ l

〉
. (9)

Here, C
Ne

l in Eqs. (8) and (9) denotes the coefficient with
Ne − l photons and l atoms populating in the upper level.

III. LANDAU-ZENER PROCESS INVOLVING SINGLE
EXCITATION NUMBERS

First, we consider the system with fixed single excitation
numbers and study the static properties of the system under
small and large excitation number conditions. Starting from
Hamiltonian (6), we choose atom number Na = 10 and
investigate the situations with the excitation numbers Ne = 5,
Ne = 10, and Ne = 1000. Here, the system state |�〉 can
be expressed according to Eq. (8) or Eq. (9). We vary δ

from negative detuning to positive detuning and obtain the
corresponding ground states. The detuning δ tends to populate
the atoms into the upper level while the repulsive atom-atom
interaction (Ec > 0) tends to populate the atoms equally
in both levels. For far negative detuning, i.e., ω 	 ω0 and
δ → −∞, the ground state is |Ne, − Na

2 〉, which corresponds
to all atoms being in the lower level and the photon number
equals the excitation number Ne. For far positive detuning, i.e.,
ω � ω0 and δ → ∞, the form of the ground state is related
to the excitation number. When Ne � Na , the ground state is
|Ne − Na,

Na

2 〉, which is the state in which all atoms occupy
the upper level and the photon number becomes Ne − Na .
When Ne < Na , it becomes |0, − Na

2 + Ne〉, where only a
portion of atoms occupy the upper level and no photons
remain. In other regions of detuning, the ground state depends
sensitively on the parameters g, δ, and Ec. To better reveal
the properties of the system, the expectations of the photon
number 〈n〉 = 〈ψ |â†â|ψ〉 and the half relative atom number
〈N↑ − N↓〉/2 = 〈ψ |Ĵz|ψ〉 and the variance of relative atom
number Var(N↑ − N↓) = 4(〈Ĵ 2

z 〉 − 〈Ĵz〉2) for the ground state
are calculated and shown in Fig. 2.

A. Asymmetric sequential population ladders

There is a series of ladderlike steps for the half relative atom
number. These sequential population ladders are induced by

the atom-atom interaction. The steps become steeper and the
plateaus get more smooth when the atom-atom interaction
becomes larger. The height of every step equals exactly 1. For
every step, one of the atoms in the lower level can absorb
one photon and be excited to the upper level. The appearance
of sequential population ladders is similar to the interaction
blockade observed in the Bose-Josephson junctions [29,30].
For a two-component Bose-Einstein condensate linked by
classical Raman fields, the competition between detuning and
nonlinear interaction will result in a sequential population
ladder for the relative atom number, where the slopes of the
steps are exactly symmetric about δ = 0.

However, for the two-state Bose-condensed atoms coupled
with a quantized cavity mode, the number of photons makes
the shape of the ladders significantly different. When the
excitation number is smaller than the atom number, Ne < Na ,
the structure is totally asymmetric since there are not enough
photons to excite all the atoms and the population ladder ceases
to increase when there are no photons inside the cavity [see
Fig. 2(a)]. In the situation of Ne = 10, the step slopes of the
population ladders are also no longer symmetric about δ = 0.
For the same magnitude of detuning |δ|, the step slope under
negative detuning, −δ, is always less sharper than the one
under positive detuning, +δ.

The asymmetry of the step slopes comes from the changing
Rabi frequency during the sequential LZ processes. Adiabat-
ically sweeping the detuning from negative to positive, the
photon number decreases downstairs from Ne to 0. Therefore,
the Rabi frequency � is getting smaller. The sharpness is
determined by the ratio between the Rabi frequency and
the atom-atom interaction �/Ec, where the smaller �/Ec

corresponds to the sharper step slope. Specially, when the
photon number decreases to 0, the Rabi frequency vanishes,
and no transitions happen. Since the photon number under
negative detuning, −δ, is always larger than the one under
positive detuning, +δ, the step slopes of the ladder for
〈N↑ − N↓〉/2 are asymmetric about δ = 0. The first and the
last step slopes have the biggest difference because they,
respectively, correspond to the largest and the smallest photon
numbers [see the insets of Fig. 2(c)]. For other pairs of step
slopes, the difference is smaller.

As the excitation number increases, the photon number
difference under −δ and +δ becomes less dramatic and the
Rabi frequency � tends to be uniform. For a large excitation
number, Ne = 1000, the step slopes of the ladder become
almost symmetric about δ = 0 [see the insets of Fig. 2(e)].
This is because when the photon number is extremely large
compared with the atom number, the cavity field can be treated
as a classical field with a fixed complex number, and the
sequential behaviors would return to the symmetric one in
a BJS.

B. Asymmetric variance of relative atom number

For further investigation, we look in the variance of relative
atom number Var(N↑ − N↓). There are a series of peaks for
Var(N↑ − N↓). The locations of the peaks correspond to the
locations of the step slopes in the ladder of 〈N↑ − N↓〉/2.
The stronger atom-atom interaction Ec induces sharper and
narrower peaks, which is consistent with the sharpness of
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FIG. 2. Static properties of the system involving single excitation numbers. The top, middle, and bottom rows of panels correspond to
the cases of Ne = 5, Ne = 10, and Ne = 1000, respectively. The left and right columns represent the expectations of the half relative atom
number 〈N↑ − N↓〉/2 = 〈Ĵz〉 and the variance of the relative atom number Var(N↑ − N↓) = 4(〈Ĵ 2

z 〉 − 〈Ĵz〉2) versus detuning, respectively.
Here, Na = 10 and g = 1.

the step slopes. When Ne = 5, the peaks are completely
asymmetric. Several peaks appear when δ < 0 and no peaks
appear when δ > 0 [see Fig. 2(b)].

The asymmetry is also obvious for Ne = 10 [see Fig. 2(d)].
The total structure is asymmetric about δ = 0. The width
and the height of the first and the last peaks are totally
different. The last peak is much sharper than the first
one, which is in accordance with the situation of the step
slopes of the population ladder. The plateaus in the ladder
of 〈N↑ − N↓〉/2 indicate the interaction blockades. In the
regions of the plateaus, the system is approximately in the
state |n,m〉 with a definite photon number and a relative
atom number. Therefore, the variance of the relative atom
number is suppressed. The resonance peaks are caused by the
quasidegeneracy between the two states |Ne − k + 1, − Na

2 +

k − 1〉 and |Ne − k, − Na

2 + k〉, with k = 1, . . . ,min(Na,Ne)
in the neighboring plateaus. In the intermediate region of
the step slopes, the superposition of these two states leads
to Var(N↑ − N↓) increasing dramatically. One can treat the
atom-photon coupling term as a perturbation [29,30] and
obtain the locations of the peaks with δ/Ec = l + 1/2 for l =
{−Na/2, − Na/2 + 1, . . . ,Na/2 − 1}, which is in agreement
with the numerical results.

More importantly, since the Rabi frequency becomes
weaker when the photon number decreases, the relative atom
number also shows asymmetric properties. When the Rabi
frequency decreases, the perturbation term becomes smaller,
and the two neighboring states |Ne − k + 1, − Na

2 + k − 1〉
and |Ne − k, − Na

2 + k〉 are closer to degeneracy. Therefore,
the variance of the relative atom number would occur narrower
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and sharper peaks at the degeneracy location. However, for
a large excitation number, the asymmetry becomes much
smaller. Under Ne = 1000, the structure of the variance
Var(N↑ − N↓) becomes more symmetric about δ = 0 [see
Fig. 2(f)].

The set of peaks that indicate the single-atom resonance
transition can be used to design the single-atom device. For
this system, varying the photon number in the cavity can adjust
the sensitivity of the response and the atom-atom interaction
need not be too strong, which can be promising for application
in sensitive detection and high-precision metrology.

IV. LANDAU-ZENER DYNAMICS INVOLVING
MULTIPLE EXCITATION NUMBERS

In the following, we consider the ensemble of interacting
Bose-condensed atoms coupled with a cavity field in a coherent
state. The coherent state of photons is natural and it is easily
prepared in experiments. We sweep the detuning to investigate
the LZ dynamics of the system. Initially, the atoms are all
prepared in the lower level. The cavity field is a coherent state,
which is the eigenstate of the annihilation operator â and can

be written as |α〉 = e− |α|2
2

∑∞
n=0

αn√
n!

|n〉, with |α|2 being the
average photon number of the coherent state. Therefore, the
initial state of the whole system can be expressed as

|�(0)〉 = |α, − Na

2
〉 =

∞∑
Ne=0

wNe

∣∣∣∣Ne, − Na

2

〉
, (10)

which involves multiple excitation numbers with wNe
=

e− |α|2
2

αNe√
Ne!

. During the sweeping, the time evolution of the
system state |�(t)〉 obeys the Schrödinger equation,

i
∂|�(t)〉

∂t
= H (t)|�(t)〉, (11)

where H (t) is the Hamiltonian (5) with the time-dependent
detuning δ(t). The system state can be expanded as

|�(t)〉 =
∞∑

Ne=0

wNe

(∑
l

C
Ne

l (t)|Ne − l, − Na

2
+ l〉

)
, (12)

where C
Ne

l (t) is the time-dependent coefficient of the basis
in subspace with the excitation number Ne. There are Ne

subspaces with different excitation numbers and the bases
of each subspace depend on the excitation numbers. Each
subspace with different Ne is orthogonal and decoupled
from others. Therefore, the dynamics in each subspace is
independent and we can deal with the time-evolution problem
individually and then sum up together according to the weight
factor of each subspace wNe

. In addition, the average excitation
number of the system is always conserved and equals the initial
average photon number.

In our calculation, we fix the atom number Na = 4, the
coupling strength g = 1, and atom-atom interaction Ec =
100. Meanwhile, the detuning δ is linearly swept according
to δ(t) = δ0 + βt with the initial detuning δ0 < 0 and the
sweeping rate β = 2|δ0|

τ
, where τ is the total sweeping time.

Here, we use β to characterize the nonadiabaticity of the
sweeping. The smaller sweeping rate β refers to a slower

sweeping of detuning, which means a greater probability of
staying in the instantaneous ground state when the LZ process
occurs. The properties of the LZ dynamics with multiple
excitation numbers may differ according to the distribution
of the excitation numbers which is related to the average
photon number of the initial coherent state. Here, for the initial
coherent states, we choose the average photon number to be
|α|2 = 4 and |α|2 = 25.

A. Asymmetric sequential Landau-Zener dynamics

The evolution of the photon number, the variance of the
relative atom number, and the half relative atom number versus
the detuning δ(t) for different sweeping rates β are shown in
Fig. 3. The three observables of the evolved state can be,
respectively, calculated according to

〈n(t)〉 = 〈�(t)|â†â|�(t)〉
=

∑
Ne,l

(Ne − l)
∣∣wNe

C
Ne

l (t)
∣∣2

, (13)

〈N↑(t) − N↓(t)〉
2

= 〈�(t)|Ĵz|�(t)〉

=
∑
Ne,l

(
− Na

2
+ l

)∣∣wNe
C

Ne

l (t)
∣∣2

, (14)

and

Var[N↑(t) − N↓(t)]

= 4
[〈�(t)|Ĵ 2

z |�(t)〉 − (〈�(t)|Ĵz|�(t)〉)2]
= 4

{ ∑
Ne,l

(
−Na

2
+ l

)2∣∣wNe
C

Ne

l (t)
∣∣2

−
[ ∑

Ne,l

(
−Na

2
+ l

)∣∣wNe
C

Ne

l (t)
∣∣2

]2}
. (15)

For |α|2 = 4, where the average photon number equals
the atom number, the population ladder for the half relative
atom number coincides with the one in the adiabatic limit
when the sweeping rate is sufficiently small (e.g., β = 2) [see
Fig. 3(a)]. When the sweeping becomes fast (e.g., β = 10),
the population ladder oscillates and the heights of the steps
become less obvious. The sequential LZ transitions gradually
disappear when the nonadiabatic effect is strong enough for
extremely fast driving (e.g., β = 100). For |α|2 = 25, where
the average photon number is much greater than the atom
number, the sequential LZ dynamics versus the nonadiabatic
effect is similar [see Fig. 3(b)]. However, it does not require
such slow driving to attain its adiabatic limit (e.g., β = 20 is
slow enough while for |α|2 = 4 it is not). That is because when
the average photon number increases, the Rabi frequency and
the gaps of the avoided energy level crossings become larger.
The analytical analysis for the adiabaticity condition is given
in the next subsection.

The variances of the relative atom number for small and
large |α|2 are very different [see Figs. 3(c) and 3(d)]. For the
adiabatic sweeping with |α|2 = 25, the variance Var(N↑ − N↓)
is similar to the one with a large single excitation number
shown in Fig. 2(f). For the adiabatic sweeping with |α|2 = 4,
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FIG. 3. Dynamical evolution of the half relative atom number, the variance of relative atom number, and the photon number. The atom
number Na = 4 and the initial cavity field is in a coherent state with average photon numbers |α|2 = 4 and |α|2 = 25. The detuning is linearly
swept according to δ(t) = δ0 + βt . The black solid lines are the adiabatic limit and the other lines are numerical results with different sweeping
rates β. In order to ensure the initial detuning is large enough, we choose δ0 = −3Ec with Ec = 100 for calculation.

the variance Var(N↑ − N↓) shows two peaks for the first and
second LZ transitions and then shows a ladderlike structure
with unequal step heights. If the sequential LZ transitions for
small Ne are incomplete, the atomic state is a superposition
state of different m = (N↑ − N↓)/2 and the corresponding
variance Var(N↑ − N↓) becomes large. Thus, as the detuning
increases, the system is dominated by the incomplete sequen-
tial LZ transitions for small Ne, and the atomic number vari-
ance changes from peaks to ladderlike steps. However, for large
|α|2, the atomic state in every subspace changes synchronously

and the variance appears as a series of peaks due to the
quasidegeneracy.

When taking the nonadiabatic effects into account, the
variances change dramatically. For both |α|2 = 4 and |α|2 =
25, under a very slow sweeping, the variances approach their
adiabatic limits. Under intermediate sweeping, the atomic
state becomes a superposition state of different m = (N↑ −
N↓)/2 after every LZ transition. As the LZ transitions occur
sequentially, more different m = (N↑ − N↓)/2 components
accumulate and induce the variance Var(N↑ − N↓) to increase
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in ladderlike steps [e.g., the blue dash-dotted lines in Figs. 3(c)
and 3(d)]. For the fast sweeping, the system states hardly
follow the instantaneous ground state and change slightly and
the variances change more smoothly.

More interestingly, the sequential population ladders for
small average photon numbers exhibit another kind of asym-
metric property. The heights (but not the slopes) of the steps
are obviously unequal and become fractional [see Figs. 3(a)
and 3(e)]. For |α|2 = 4, even though in the adiabatic limit,
the height of each step is less than 1 and different from others.
The relative atom population ladder increases upstairs with the
height of the steps gradually becomeing smaller and smaller.
The four photons on average could not be entirely absorbed
by the four atoms even after four times of LZ transitions.

In contrast, for |α|2 = 25 in the adiabatic limit, the
population ladder of the half relative atom number increases
upstairs with each step’s height equal to nearly 1, which is
similar to the LZ process with single excitation numbers shown
in Fig. 2. The coherent state with a large average photon
number can be approximately treated as a classical field. When
the average photon number is large enough, the initial atoms
in the lower level could gradually absorb the photon one by
one through every LZ transition [see Figs. 3(b) and 3(f)].

It is worth mentioning that, when δ(t) is swept adiabatically
to 0, the evolved atomic state becomes a twin Fock state, in
which the populations in the upper and lower levels are exactly
equal (〈N↑ − N↓〉 = 0) and the variance of the relative atom
number Var(N↑ − N↓) = 0. The atomic twin Fock state is a
highly entangled state that can be used to implement quantum
metrology [40,41]. In our system, preparing the initial atomic
state in | − Na

2 〉 and the cavity photon field in a coherent state
with large |α|2, an atomic twin Fock state can be generated
via an adiabatic linear sweeping from negative detuning to 0.
This offers a scheme for quantum state engineering in highly
entangled state preparation.

B. Analytical analysis for sequential Landau-Zener dynamics

To explore the sequential LZ dynamics, we derive an
analytical formula for ladders of the photon number and
the relative atom number. In our model, the whole Hilbert
space can be divided into several decoupled subspaces and we
can investigate the dynamics individually in every subspace
and finally sum them up together. For a subspace with
excitation number Ne and atom number Na , LZ transitions
would respectively occur Na and Ne times for Ne � Na

and Ne < Na . The kth LZ transition happens between the
states |Ne − k + 1, − Na

2 + k − 1〉 and |Ne − k, − Na

2 + k〉,
with k = 1, . . . , min(Na,Ne). Therefore, the sequential LZ
transitions in a subspace can be treated as a sequence of
conventional two-level LZ transitions. In a conventional LZ
transition with a sweeping rate β with the minimum gap � for
its avoided energy level crossing, and starting from its ground
state at time t → −∞, the probability of finding the system
remaining in the ground state at time t → +∞ is given by the
LZ formula [42,43]

P (�,β) = 1 − exp

(
−π�2

2β

)
. (16)

By applying the conventional two-level LZ formula to each
avoided energy level crossing, the probability of staying in the
instant ground state at the kth LZ transition reads

P
(
�

Ne

k ,β
) = 1 − exp

[
−π

(
�

Ne

k

)2

2β

]
, (17)

where �k denotes the minimum gap of the kth LZ transition,
which corresponds to the energy gap at δk/Ec = −(Na +
1)/2 + k, with k = 1,2, . . . , min(Na,Ne). The kth minimum
gap is proportional to the atom-photon coupling term of the
Hamiltonian (6), and it can be expressed in the form of

�
Ne

k = 2g

√
k(Na − k + 1)(Ne − k + 1)

Na

. (18)

By applying the LZ formula (17) one by one, we can obtain
the final probability of staying in the instant ground state after
k times of LZ transitions, which is given as

PNe,k(β) =
k∏

l=1

P
(
�

Ne

l ,β
)
. (19)

For every LZ transition, the probability of remaining in the
ground state also corresponds to the probability of absorbing
one photon. From this point, we can figure out the heights
of every population step of the photon number during the
sweeping. The height of the kth step equals exactly PNe,k(β).
Therefore, the photon number of the plateaus in the ladder can
be obtained analytically:

〈n〉Ne
=

⎧⎪⎨
⎪⎩

Ne, δ < δ1,

Ne − ∑min(k,Ne)
m=1 PNe,m(β), δk � δ < δk+1,

Ne − ∑min(Ne,Na)
m=1 PNe,m(β), δ � δNa

,

(20)

Correspondingly, the half relative atom number can be ex-
pressed as

〈N↑ − N↓〉Ne

2

=

⎧⎪⎪⎨
⎪⎪⎩

−Na

2 , δ < δ1,

−Na

2 + ∑min(k,Ne)
m=0 PNe,m(β), δk � δ < δk+1,

−Na

2 + ∑min(Ne,Na)
m=0 PNe,m(β), δ � δNa

,

(21)

where δk = [−(Na + 1)/2 + k]Ec and the index k =
1,2, . . . , min(Na,Ne). Given the sweeping rate β, one can
figure out the population ladders analytically. In Fig. 4,
we plot the population ladders of the photon numbers for
Ne = {1,2, . . . ,10} under sweeping rates β = {10,100}. The
dashed lines are the numerical results while the solid lines
are obtained analytically according to Eq. (20). It is obvious
that the analytical population ladders are consistent with the
numerical ones. Since the minimum gap �k increases with the
excitation number Ne, it needs slower driving for smaller Ne.
For fast sweeping β = 100, the step height decreases obviously
when Ne changes from 10 to 1, while for slow sweeping
β = 10 the step heights for most Ne approach 1. Therefore,
for small |α|2, the dominated Ne is small and requires slower
sweeping to access the adiabaticity condition.
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FIG. 4. The sequential LZ dynamics for photon numbers in
subspaces under different sweeping rates β. Here, Ne are chosen
from 1 to 10, Na = 4, g = 1, and Ec = 100. The solid lines are
obtained analytically according to Eq. (20). The dashed lines are the
numerical results.

By summing up the results of all subspaces, the average
photon number and the half relative atom number of the system
are given as

〈n〉 =
∞∑

Ne=0

w2
Ne

〈n〉Ne
(22)

and

〈N↑ − N↓〉
2

=
∞∑

Ne=0

w2
Ne

〈N↑ − N↓〉Ne

2
. (23)

In our system, the adiabatic condition can be estimated
approximately according to[

mink

(
�

|α|2−min(|α|2,Na)+1
k

)]2

2β
� 2. (24)

For |α|2 = 4, β � 1; for |α|2 = 25, β � 21. This estimation
can be confirmed by the comparison with numerical calcula-
tions [see Fig. 3].

One of the interesting findings is the appearance of
fractional steps in population ladders for small |α|2 even
under adiabatic sweeping. This peculiar phenomenon results
from the property of the coherent state with few average
photon numbers. The initial coherent state is a superposition
of the infinite Fock state including the vacuum state with
different weight coefficients wNe

. For small Ne, there are
insufficient photons to excite all the atoms to the upper level,
and this incomplete sequential LZ process would contribute
to the fractional steps if the weight coefficient wNe

were not
ignorable.

Below we give an analytical explanation for the fractional
steps. When the sweeping is adiabatic (β → 0), all PNe,k(β) →
1 and so the average photon number in subspace of Ne becomes

〈n〉Ne
=

⎧⎪⎨
⎪⎩

Ne, δ < δ1,

Ne − min(k,Ne), δk � δ < δk+1,

Ne − min(Ne,Na), δ � δNa
.

(25)

According to Eq. (22), the average photon number of the
system can be obtained by

〈n〉 =

⎧⎪⎨
⎪⎩

∑∞
Ne=0 w2

Ne
Ne, δ < δ1,∑∞

Ne=k w2
Ne

(Ne − k), δk � δ < δk+1,∑∞
Ne=Na

w2
Ne

(Ne − Na), δ � δNa
.

(26)

Using the condition
∑∞

Ne=0 w2
Ne

Ne = |α|2, we can simplify
Eq. (26) to

〈n〉=

⎧⎪⎨
⎪⎩

|α|2, δ < δ1,

|α|2 − k − ∑k−1
Ne=0 w2

Ne
(Ne − k), δk � δ < δk+1,

|α|2 − Na − ∑Na−1
Ne=0 w2

Ne
(Ne − Na), δ � δNa

.

(27)

From Eq. (27), we can further obtain the kth step height of the
photon number (as well as the relative atom number):

hk = 1 −
k−1∑
Ne=0

w2
Ne

. (28)

As a result, for small |α|2, the weight coefficients w2
Ne

of small
Ne are dominated, which leads to the fractional steps. For
example, |α|2 = 4, w2

0 = 0.0183, w2
1 = 0.0733, w2

2 = 0.1465,
and w2

3 = 0.1954 and we can get h1 = 0.9817, h2 = 0.9084,
h3 = 0.7619, and h4 = 0.5665. The results are the same with
the numerical findings. Moreover, for large |α|2, the weight
coefficients w2

Ne
of small Ne are nearly 0, and the height

of every step equals 1. Since the total excitation number of
the system is conserved, the explanation is also valid for the
relative atom number.

C. Dissipative sequential Landau-Zener dynamics

In cavity QED experiments, the system would suffer
decoherence induced by the escape of photons out of the cavity
or the decay of the atoms without emitting photons [44,45].
These decoherence effects may affect the sequential LZ
transitions. In this subsection, we mainly discuss the effect of
dissipation (cavity photon loss) on the sequential LZ dynamics.
During the sweeping, the cavity photons may escape from the
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FIG. 5. The sequential LZ dynamics under cavity photon losses. The influences of damping rates κ on the photon number and the relative
atom number under different sweeping rates β are shown. Here, the parameters are chosen as Na = 4, |α2| = 4, g = 1, and Ec = 100.

cavity and the total excitation number would no longer be
conserved. Therefore, it is necessary to describe the system
state by the reduced density matrix ρ = |�̃〉〈�̃|, where the
bases of |�̃〉 include different total excitation numbers and
differ from the ones in Eq. (12). The sequential dynamics under
the cavity photon loss can be characterized by the Lindblad
master equation [44–46]:

∂ρ

∂t
= −i[H (t),ρ] + Lκ [ρ], (29)

with

Lκ [ρ] = κ

2
(2âρâ† − â†âρ − ρâ†â), (30)

where κ is the cavity photon loss rate.
In our calculation, the reduced density matrix of the system

is broken up into different density matrices ρNe
in subspaces.

Then we solve the master equation (29) independently and
calculate the observable expectation by 〈ÔNe

〉 = Tr(ÔρNe
)

and sum up together according to 〈Ô〉 = w2
Ne

〈ÔNe
〉. The time
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FIG. 6. Collapses and revivals of cavity field coherence. The evolution of the cavity field coherence 〈a(t)〉 during the LZ dynamics with
different sweeping rates β for (a) |α|2 = 4 and (b) |α|2 = 25. The final cavity field coherence 〈a(∞)〉 versus the inverse of the sweeping rate
1/β for (c) |α|2 = 4 and (d) |α|2 = 25. Here, Na = 4, g = 1, and Ec = 100.

evolutions of the photon number and the half relative atom
number under dissipation for |α|2 = 4 are shown in Fig. 5.

For κ = 0, it returns to the ideal case, where the total
excitation number is conserved. For κ > 0, the influences
of the dissipation become obvious when the sweeping rates
get smaller. Given β = 100 and β = 10, the influences of
dissipation are very small and the sequential LZ dynamics are
almost unchanged [see Figs. 5(a)–5(d)].

When the sweeping becomes slower, the total evolution
time becomes longer and more photon losses accumulate.
For β = 2, which approaches the adiabatic limit for |α|2 = 4,
although the cavity photon loss decreases the photon number,
it only changes the step heights of the fractional ladders
slightly [see Fig. 5(e)]. The cavity photon loss affects the
ladder of the half relative atom number gradually, but the
step heights shrink only a little during the whole process [see
Fig. 5(f)].

It is shown that the cavity photon loss may also affect
the sequential population ladders. Obviously, the sequential
population ladders will disappear if the number of lost photons
is large compared with |α|2. However, if the number of lost
photons is small compared with |α|2, which may be realized
in the strong coupling regime [44,45], the fractional steps of
the half relative atom number can still be observed.

D. Collapse and revivals of cavity field coherence

We further investigate how the coherence of the cavity field
varies during the LZ processes with different sweeping rates.
Since the evolution of each photon Fock state will accumulate
a phase dependent on the photon number, the phase differences
between different Fock states will also play an important role
during the LZ dynamics. In order to study the effect of this
phase difference during the evolution, a common quantity to
measure is the expectation of the photon field annihilation
operator [46]:

〈a(t)〉 = 〈�(t)|â|�(t)〉
=

∑
Ne,l

√
Ne − lw∗

Ne−1wNe
C

Ne−1∗
l (t)CNe

l (t), (31)

which well describes the coherence of the cavity field. The
coherence of the photon field 〈a(t)〉 versus the evolution time
t with different sweeping rates β are shown in Figs. 6(a)
and 6(b). The dynamical behaviors of 〈a(t)〉 are much different
than the those of the photon number 〈n(t)〉.

When |α|2 = 25, for very fast sweeping β = 100, the co-
herence of the cavity field 〈a(t)〉 changes slightly. For modest
sweeping β = 1, 〈a(t)〉 oscillates in ladder shape. For slower
sweeping β = 0.1, 〈a(t)〉 drops dramatically and remains 0
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when passing through all the LZ transitions. However, for
very slow sweeping β = 0.025, 〈a(t)〉 drops rapidly to 0 when
the first LZ transition happens and begins to increase and
oscillate after the second LZ transition. Finally, the coherence
remains a certain value after all the LZ transitions. This is
the collapse and revival of the cavity field coherence due to
the long-time accumulated phase difference between different
Fock state components of the coherent state.

The change of the cavity field coherence for |α|2 = 4
is similar to that for |α|2 = 25. For fast sweeping, the
coherence of the photon field 〈a(t)〉 changes slightly with
small oscillations. For modest sweeping, 〈a(t)〉 oscillates in
a downstairs ladderlike shape. For very slow sweeping, the
coherence of the cavity field 〈a(t)〉 first collapses and then
revives. It drops quickly at the first LZ transition point and
oscillates a lot afterwards until all the LZ transitions are
finished. However, for |α|2 = 4, the coherence of the cavity
field seldom decreases to 0 and the oscillations are more
dramatic compared with the ones for |α|2 = 25.

The coherence of the cavity field will tend to a steady value
after all the LZ transitions and the final coherence 〈a(∞)〉
depends on the sweeping rate. The dependence of 〈a(∞)〉 on
the inverse sweeping rate 1/β is shown in Figs. 6(c) and 6(d).
Obviously, the final coherence of the cavity field versus the
inverse sweeping rate also exhibits the behavior of collapses
and revivals. For |α|2 = 25, with fast sweeping, the collapse
occurs as the difference between different Fock states grows,
leading to a destructive interference. With slower sweeping,
the coherence drops to death and remains 0 for a wide range.
For much slower sweeping, the phase differences grow back in
phase and the coherence gradually begins to revive. However,
the revival will oscillate and finally cease for extremely slow
sweeping. For |α|2 = 4, the coherence changes more rapidly.
The final coherence of the cavity field drops dramatically
at first but revives quickly and then begins to oscillate in
disorder around a modest range. It may be seen that the cavity
field coherence for a small average photon number would
not exhibit obvious collapses and revivals, which is different
from the cavity field coherence for a large average photon
number.

V. SUMMARY AND DISCUSSIONS

In summary, we have explored the phenomenon of the
asymmetric sequential LZ dynamics in an ensemble of
interacting two-level Bose-condensed atoms trapped in an
optical cavity. Instead of directly coupling two atomic states
with an optical cavity mode, the Hamiltonian (5) may also
be effectively achieved in a �-type three-level configuration
where an external microwave field is applied to drive the
transition between two internal atomic states [18,47,48]. The
features of Bose-condensed atoms in a cavity with a small

photon number are extremely different from the those of
Bose-condensed atoms in a cavity with a large photon number.
For a relatively small photon number, the interplay between the
detuning and the atom-atom interaction leads to asymmetric
sequential LZ transitions. There appears to be asymmetric
interaction blockade and single-atom resonance tunneling
when the LZ process involves only a single excitation number,
which is mainly due to the photon-number-dependent Rabi
frequency. The single-atom resonance may be used to design
high-precision devices and sensitive detectors.

Instead of an initial Fock state, considering an initial
coherent cavity field with a small average photon number, an
asymmetric population ladder with unequal fractional height
steps is observed. The asymmetric sequential LZ dynamics of
the system are also studied. We derive an analytical formula
for sequential population ladders. The adiabaticity conditions
for the sequential LZ transitions are analytically estimated.
The intriguing finding of fractional steps is also explained. In
addition, we analyze the effects of the cavity dissipation on
the sequential LZ dynamics. On the other hand, the state of
the cavity field changes dramatically during the time-evolution
process. The behaviors of collapses and revivals of the cavity
field coherence are revealed.

Further, for an initial coherent state with a large average
cavity-photon number, the sequential LZ dynamics in a cavity
approach the sequential LZ dynamics in a continuous laser
field. Starting from all atoms in the lower energy level, the
atoms can absorb photons one by one in the sequential LZ
process if the detuning is swept sufficiently slowly. When
the detuning is swept to 0, an atomic twin Fock state can be
generated. In addition, the photon state is no longer a coherent
state and its coherence changes dramatically. This may be
associated with the generation of photon-deleted coherent
states [49], which is totally nonclassical. Similarly, if one
sweeps the detuning oppositely, and the atoms are initially in
the upper level, there would be the phenomenon that the atoms
emit photons one by one during the sequential LZ process. This
may be related to the creation of the photon-added coherent
states [50]. Different from most previous schemes which add or
subtract only a single photon, our scheme can add or subtract
the desired number of photons by dynamically controlling
the detuning. This indicates that it may provide a tool for
preparing nonclassical photon states and also may be applied
to demonstrate the bosonic commutation relations [51–53].

ACKNOWLEDGMENTS

The authors thank B. Lu and F. Mei for useful discussions
and suggestions. This work is supported by the National
Basic Research Program of China (NBRPC) under Grant
No. 2012CB821305 and the National Natural Science Foun-
dation of China (NNSFC) under Grants No. 11374375, No.
11465008, and No. 11574405.

[1] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T.
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