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Abstract

This study aims to investigate electroosmotic flow of a viscoplastic material,

modeled as either Bingham plastic or Casson fluid, through a parallel-plate chan-

nel that rotates about an axis perpendicular to the plates. A relatively small yield

stress, comparable to that of human blood, is considered in order to confine to the

condition there is only one yield surface in the flow. An iterative finite-difference

numerical scheme is developed to solve the Cauchy momentum equations and non-

linear constitutive equations. The location of the yield surface, and velocity and

stress components in both the sheared and unsheared regions are found as func-

tions of the yield stress, rotation speed and Debye parameter. Numerical results

are presented to reveal that the system rotation and yield stress may counteract

each other in controlling the resultant flow rate and flow direction. The effect of

yield stress may even be reversed for a sufficiently large rotation speed.
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1 Introduction

Electroosmotic pumping is one of the commonly used mechanisms to drive fluid flow in

microfluidic applications [1]. The so-called electroosmotic (EO) flow is induced when

free charges that are formed in an electrolyte solution near a charged solid surface are

set into motion under the action of an applied electric field [2]. Because of the two-layer

structure of the ion distribution, a near-wall layer with unbalanced charges is called an

electric double layer (EDL). Outside this layer, the solution is essentially electrically

neutral. Being charged, fluid in the EDL will be driven into motion by the electric body

force when an electric field is applied externally. Through viscous action, fluid outside

the EDL will be dragged into motion as well. Compared with pressure-driven flow, EO

flow has the advantage that, for sufficiently thin EDLs, the flow-rate is less restricted by

the geometric dimension of confinement, and EO pumping is therefore a more suitable

mechanism for transporting fluid through very narrow channels.

The increasing need to understand the behaviors of complex fluids (e.g., blood, DNA

solutions, colloidal and cell suspensions) in microfluidic analysis has spurred many re-

searchers to study EO flow of non-Newtonian fluids through microchannels in recent

years. These studies include, among others, Das and Chakraborty [3], Zimmerman et

al. [4], Zhao et al. [5], Olivares et al. [6], Zhao and Yang [7, 8], Babaie et al. [9], Vakili

et al. [10], Ng [11], Ng and Qi [12, 13], Dhar et al. [14], Zhu et al. [15], and Qi and

Ng [16, 17]. A variety of models, such as power-law, Carreau and viscoplastic models,

have been used by these authors to describe the non-Newtonian rheology of the material

under investigation.

An emerging technique in microfluidics is to mount a system on a fast spinning com-

pact disc (CD), thereby known as CD-based fluidics. The liquids therein are driven by the

centrifugal force arising from the system rotation. Centrifugal microfluidics is seen to be

a promising tool for high-efficiency flow control and mass separation. Centrifugation is a

more appropriate mechanism for transporting fluid with trapped bubbles or gas, and for

the equality of mixing fluids. Other advantages like portability, low-cost fabrication, ease

of miniaturization and multiplexing, as well as a wide range of attainable fluid pressure
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and flow rates are also the merits of centrifugal microfluidics [18, 19].

To capitalize on the advantages of centrifugal and electric forces, Wang et al. [20] pro-

posed a CD-like electrophoresis-based biomedical separation system. Their experimental

results showed that prolonged electrophoretic separation time and shortened length of

channels could be achieved by applying the two forces in opposite directions. Their sys-

tem was reported to have other advantages like low joule-heat generation, low chemistry

reaction and steady ion concentration during the process [20]. The first theoretical study

on EO flow in a rotating frame is due to Chang and Wang [21], who derived analytical

solutions for rotating EO flow in two geometries (over a single plate and between two par-

allel plates). Motivated by the work of Chang and Wang [21], Ng and Qi [22] examined

the problem for EO flow in a rotating rectangular microchannel. Analytical solutions

for the velocities of the primary and secondary flows as well as the induced pressure as

functions of electrokinetic and rotation parameters were obtained by these authors using

the method of eigenfunction expansion. More recently, Gheshlaghi et al. [23] developed

closed-form solutions for transient EO flow in a rotating channel, while Shit et al. [24] nu-

merically investigated the effect of wall slip on EO flow through a rotating parallel-plate

microchannel with a slowly varying cross-section.

As explained above, non-Newtonian models have to be used to describe the complex

rheological behaviors exhibited by biological liquids or polymeric suspensions. This has

motivated several studies on EO flow of non-Newtonian fluid in a rotating environment.

Xie and Jian [25] extended the problem of Chang and Wang [21] to rotating EO flow of

power-law fluids between two parallel flat plates. They conducted a parametric study

to look into effects of the flow behavior index, rotation speed and zeta potential on the

classical EO flow profile. More recently, Li et al. [26] and Abhimanyu et al. [27] presented

numerical models for rotating EO flows of third-grade and viscoelastic fluids, respectively.

The present study aims to investigate EO flow of a viscoplastic material under the

effect of system rotation. A viscoplastic material is characterized by the presence of a

yield stress in its constitutive relationship between stress and shear rate. The material is

not sheared until the stress is higher in magnitude than the yield stress. To determine the

motion of a viscoplastic material is in general a challenging problem because it needs to
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locate, as part of the solution, the yield surface that separates the flow into sheared and

unsheared regions, where different constitutive equations will apply. Hence, unless the

problem can simplify to a one-dimensional simple shear problem, the flow of a yield-stress

material is a strongly nonlinear problem that has to be solved numerically, typically by

means of an iterative scheme.

Viscoplastic models are often used to describe the rheology of blood [28,29]. The mag-

nitude of yield stress in human blood is typically on the order of 5 mPa (or 0.05 dyne/cm2)

at room temperature [30–34]. Such a small value of yield stress is often thought to be

physiologically insignificant for blood flow in large vessels. However, in EO flow even

a small yield stress can result in appreciable effect. As is known, a pure EO flow has

a plug-like velocity profile: the velocity grows sharply in the near-wall EDL region and

is uniform (called the Helmholtz–Smoluchowski velocity) in the core. For Casson fluid,

Ng [11] found that the presence of even a small yield stress can materially lower the

Helmholtz–Smoluchowski velocity. Ng and Qi [12] further examined various effects of the

yield stress of three kinds of viscoplastic materials, namely Casson, Herschel–Bulkley and

Bingham plastic, on EO flow in a non-rotating slit channel with walls of arbitrary zeta

potential. Based on these previous studies, it is the intention of the present work to find

out how the yield stress of two particular kinds of viscoplastic materials, viz. Bingham

plastic and Casson fluid, may influence EO flow in a rotating slit channel.

The problems considered by Ng [11] and Ng and Qi [12], for EO flow in a non-

rotating channel, involve only simple shear flows, and hence the stress distribution can

be determined prior to finding the velocity. Consequently, the location of the yield

surface, where the stress equals the yield stress, can also be determined in advance. This

facilitates the division of the flow into sheared (or yielded) and unsheared (or unyielded)

regions, and the velocity can then be found straightforwardly by integrating the stress–

shear rate relationship. The problem becomes more complicated when the flow is subject

to system rotation. In addition to the primary flow along the axial direction, there is also

secondary flow induced by the Coriolis force in the transverse direction. The problem

formulation consists of multi-dimensional Cauchy momentum equations and nonlinear

constitutive equations, with velocity and stress components being the variables. The
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location of the yield stress is also an unknown that has to be found simultaneously with

the other unknowns (velocity and stress components). Solving for these unknowns can

therefore be a very onerous process.

One objective of the present work is to devise an iterative numerical scheme to solve

for the unknowns (including the location the yield stress, velocity and stress components)

in the problem of EO flow of Bingham plastic and Casson fluid in a rotating slit chan-

nel. To circumvent the difficulty arising from the yield stress, many researchers have

adopted the so-called regularization method to approximate the sheared/unsheared con-

stitutive equations by a modified smooth constitutive equation that works everywhere

in the flow field without the need to distinguish between sheared and unsheared regions.

Some notable modified constitutive equations for Bingham plastic have been proposed

by Papanastasiou [35], Bercovier and Engelman [36], and Allouche et al. [37]. A regu-

larization scheme is essentially to replace a viscoplastic model, of which the viscosity is

finite/infinite in the sheared/unsheared regions and hence a non-smooth function of the

shear rate, by a modified model with an effective viscosity that is a smooth function of

the shear rate. Through a numerical regularization parameter, the effective viscosity can

be adjusted to change sharply with a small departure of the shear rate from zero, like a

true viscoplastic material, but in a smooth manner. An advantage of the regularization

method is that, in the process of finding solution, the differentiation between sheared and

unsheared regions is not necessary. This convenience, however, brings forth a drawback:

the position of the yield surface cannot be accurately determined using this method,

especially when the yield stress is small. Furthermore, despite the smoothness, the sharp

change of the effective viscosity at small shear rates can cause slow convergence, or even

divergence, when numerically solving the equations. In this study, the regularization

method is not used, and we shall use the original two-region constitutive equations to

model Bingham plastic and Casson fluid in our problems. This will facilitate us to find

out how the yield stress may modify the flow under the effect of system rotation. A small

yield stress comparable to that of human blood is considered. We shall show that even

a small yield stress may lead to appreciable effect in rotating EO flow.

It is also for a technical reason that we should limit the yield stress to a certain
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value. This is because a rotation of high speed may result in a non-monotonic stress

distribution. Therefore, there is a single yield surface only when the yield stress is not

too large. Otherwise, there can be multiple yield surfaces in the flow, which will make

the problem more difficult to solve.

Our problem is similar in geometrical configuration to that considered by Chang and

Wang [21] and Xie et al. [25]. EO flow of a viscoplastic material, modeled as either

Bingham plastic or Casson fluid, through a slit channel bounded by two parallel flat

plates that rotate about an axis perpendicular to themselves is considered. The zeta

potentials on the upper and lower walls are assumed to be so small that the linearized

Poisson–Boltzmann equation can be used to determine the electric potential distribution.

For simplicity, we also assume negligible effects due to a near-wall depletion layer. This

assumption is reasonable when the EDL is thick enough to encapsulate a depletion layer, if

any. The problem formulation is described in further detail in Sec. 2. Analytical solutions

for two limiting cases are deduced in Sec. 3, which may be used to check the accuracy

of our numerical method. The numerical algorithm consisting of finite-differencing and

iterative processes is detailed in Sec. 4. Finally, numerical results and discussions are

presented in Sec. 5. We shall in particular look into how the velocity profiles and flow

rates may change differently, depending on the viscoplastic model, the yield stress, and

the rotation speed.

2 Problem formulation

The present problem is to consider EO flow of a viscoplastic material in a parallel-plate

channel that rotates about an axis perpendicular to the two parallel plates, which are

at a distance of 2h apart. As is shown in Fig. 1, a right-handed Cartesian coordinate

system is introduced such that the origin is located at a midpoint between the two plates.

The channel rotates at a constant angular velocity Ω about an axis parallel to z. The

two walls at z = ±h are charged with the same uniform zeta potential ζ0. Primary

or axial flow occurs in the x-direction, as a result of electrokinetic pumping due to an

applied steady electric field Ex in this direction. Meanwhile, secondary or transverse flow
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Figure 1: Schematic diagram of the problem: electro-osmotic flow through a parallel-

plate channel of height 2h rotating about the z-axis with angular velocity Ω. A steady

electric field is applied along the x-axis.

happens in the y-direction, as driven by the Coriolis force due to the system rotation.

Assuming steady and fully-developed flow, the variables (stress, velocity, and electric

potential) are all functions of z only, and by virtue of symmetry, it suffices to consider

the upper half of the channel (0 ≤ z ≤ h) in the following analysis.

For simplicity, it is assumed that there is no pressure gradient (except the one to

balance the centrifugal force) in the flow field. It is further assumed that the Rossby

number is so low that the nonlinear inertia can be ignored. Ignoring gravity as well, the

Cauchy momentum equation for the rotating flow can be written as

2ρ~Ω × ~u = ∇ · τ + ρe
~E, (1)

where τ is the stress tensor, ~u = (u, v, 0) is the velocity vector seen in the rotating frame

with u and v being the axial and transverse velocity components, ~Ω = (0, 0,Ω) is the

rotation vector, ~E = (Ex, 0, 0) is the applied electric field, ρ is the fluid density, and ρe is

the free charge density in the fluid. It is clear from the equation that the flow results from

a balance between viscous stress, electric body force (ρe
~E) and Coriolis force (2ρ~Ω × ~u).

The electric potential ψ(z) in the electric double layer (EDL) is governed by the
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Poisson equation:
d2ψ

dz2
= −

ρe

ε
, (2)

where ε is the dielectric permittivity of the electrolyte. With the assumptions of a

symmetric electrolyte of valence Z and a Boltzmann distribution of ions within the EDL,

the relation between the free charge density ρe and the electric potential is given by

ρe = −2Zen∞ sinh

(

Zeψ

kBT

)

, (3)

in which e is the fundamental charge, n∞ is the bulk electric concentration, kB is the

Boltzmann constant, and T is the absolute temperature. Here we invoke the well-known

Debye–Hückel approximation on assuming a very small potential, i.e., Zeψ/kBT � 1 so

that sinh(Zeψ/kBT ) ≈ Zeψ/kBT . This approximation, together with Eqs. (2) and (3),

gives the linearized Poisson–Boltzmann (PB) equation

d2ψ

dz2
= κ2ψ, (4)

where κ = (2Z2e2n∞/εkBT )1/2 is the Debye parameter, or the reciprocal of the Debye

shielding thickness of the EDL. The solution of the PB equation can be readily obtained

as

ψ(z) = ζ0
cosh(κz)

cosh(κh)
for 0 ≤ z ≤ h, (5)

upon using the boundary condition ψ = ζ0 at the upper plate (z = h). In a dimensionless

form, the potential distribution can be written as

ψ̂(ẑ) =
cosh(κ̂ẑ)

cosh(κ̂)
for 0 ≤ ẑ ≤ 1, (6)

where ψ̂ = ψ/ζ0, ẑ = z/h, κ̂ = κh. From Eqs. (2) and (4), the free charge density is

given by

ρe = −εκ2ψ = −εκ2ζ0
cosh(κz)

cosh(κh)
. (7)

To close the problem, we need to specify a constitutive equation to relate stress and

shear rate. Here, two kinds of viscoplastic materials are considered: Bingham plastic and

Casson fluid. The Bingham plastic model is






τ = [µ0 + τ0/|γ̇|] γ̇ for |τ | > τ0

γ̇ = 0 for |τ | ≤ τ0
, (8)
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while the Casson model is






τ =
[

µ
1/2
0 + (τ0/|γ̇|)

1/2
]2

γ̇ for |τ | > τ0

γ̇ = 0 for |τ | ≤ τ0
, (9)

where τ and γ̇ are, respectively, the stress tensor and the rate-of-deformation tensor.

Their magnitudes are given by |τ | = [(τ : τ )/2]1/2 and |γ̇| = [(γ̇ : γ̇)/2]1/2. The two

rheological parameters τ0 and µ0 are the yield stress and the plastic viscosity, respectively.

If the yield stress is identically zero, τ0 ≡ 0, the Bingham and Casson models will both

reduce to the Newtonian model. The presence of a yield stress imposes a threshold for

the motion of the material: sheared or unsheared, depending on whether or not the stress

is higher in magnitude than the yield stress. The flow domain is accordingly divided into

sheared and unsheared regions. The material may flow like a viscous fluid in the former,

and may be static or move like a rigid body in the latter.

In the sheared or yielded region, where |τ | > τ0, the constitutive equation can be

written in component form as follows:

τxz = µ
du

dz
, τyz = µ

dv

dz
, (10)

in which the effective viscosity µ is

µBn = µ0 +
τ0
|γ̇|

for Bingham plastic, (11)

or

µCa =

[

µ
1/2
0 +

(

τ0
|γ̇|

)1/2
]2

for Casson fluid, (12)

and

|τ | =
√

τ 2
xz + τ 2

yz and |γ̇| =

√

(

du

dz

)2

+

(

dv

dz

)2

. (13)

In the unsheared or unyielded region, where |τ | ≤ τ0, the condition of zero shear rate

implies
du

dz
=

dv

dz
= 0. (14)

Alternatively, one can take the effective viscosity to be infinite in the unsheared region.

Let us introduce the following scales for the stress and velocity:

τE = −εκζ0Ex, Us = −εζ0Ex/µ0, (15)
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by which the following normalized variables (distinguished by overhead carets) can be

defined:

(û, v̂) = (u, v)/Us, (τ̂xz, τ̂yz , τ̂0) = (τxz, τyz , τ0)/τE . (16)

Note that Us is similar in form to the Helmholtz–Smoluchowski velocity. On substituting

Eq. (7) and the normalized variables into Eq. (1), we get the following dimensionless

component form of the Cauchy momentum equation:

−ωv̂ = κ̂
dτ̂xz

dẑ
+ κ̂2ψ̂, (17)

ωû = κ̂
dτ̂yz

dẑ
, (18)

where ω is the rotation parameter

ω =
2ρh2Ω

µ0
, (19)

which is also known as the inverse Ekman number.

In terms of the normalized variables, the constitutive equations for the sheared region

(|τ̂ | > τ̂0) are

τ̂xz =

(

µ̂

κ̂

)

dû

dẑ
, τ̂yz =

(

µ̂

κ̂

)

dv̂

dẑ
, (20)

where the normalized effective viscosity µ̂ is given by either

µ̂Bn = 1 +
κ̂τ̂0

|ˆ̇γ|
for Bingham plastic, (21)

or

µ̂Ca =

[

1 +

(

κ̂τ̂0

|ˆ̇γ|

)1/2
]2

for Casson fluid, (22)

in which

|τ̂ | =
√

τ̂ 2
xz + τ̂ 2

yz and |ˆ̇γ| =

√

(

dû

dẑ

)2

+

(

dv̂

dẑ

)2

. (23)

When the yield stress is zero, the plastic viscosity becomes the Newtonian viscosity:

lim
τ̂0→0

µ̂Bn = lim
τ̂0→0

µ̂Ca = 1. (24)

Again, in the unsheared region (|τ̂ | ≤ τ̂0),

dû

dẑ
=

dv̂

dẑ
= 0 or µ̂ = ∞. (25)
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3 Limiting cases

Let us first review two limiting cases, for which analytical solutions can be deduced. We

shall use these analytical solutions to check the accuracy of our numerical method, as is

presented in Fig. 2.

3.1 EO flow of viscoplastic material in a non-rotating channel

Ng and Qi [12] have studied EO flow of viscoplastic materials in a non-rotating parallel-

plate channel with arbitrary wall potentials. Let us revisit the problem here, considering

a small wall potential only.

Without rotation (ω = 0), the secondary flow vanishes exactly or v̂ ≡ 0. Also, Eqs.

(6) and (17) give
dτ̂xz

dẑ
= −κ̂

cosh(κ̂ẑ)

cosh(κ̂)
, (26)

from which we get the following stress distribution, after using the symmetry condition

of zero stress at ẑ = 0,

τ̂xz = −
sinh(κ̂ẑ)

cosh(κ̂)
. (27)

Note that this stress distribution is valid for any fluid, Newtonian or non-Newtonian.

The stress is maximum in magnitude at the wall (ẑ = 1), given by

τ̂c = tanh(κ̂). (28)

When the electric forcing is so small that τ̂c < τ̂0, the material will remain static. Flow will

happen only when the forcing is strong enough to have the wall stress larger in magnitude

than the yield stress, τ̂c > τ̂0. When this happens, because of the monotonicity of the

stress distribution, there is one and only one yield surface in the flow. The yield surface

is located at ẑ = ẑ0, which can be readily found as

ẑ0 =
1

κ̂
sinh−1 [τ̂0 cosh(κ̂)] where τ̂0 < tanh(κ̂). (29)

It follows that the flow is unsheared (hence a uniform flow) in the center region 0 ≤ ẑ < ẑ0,

and is sheared in the near-wall region ẑ0 < ẑ ≤ 1.
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As the velocity gradient is negative in the upper half of the channel, the magnitude

of the shear rate is

|ˆ̇γ| =

∣

∣

∣

∣

dû

dẑ

∣

∣

∣

∣

= −
dû

dẑ
. (30)

3.1.1 Bingham plastic

For a Bingham plastic, the velocity in the sheared region can be found from Eq. (20)

after substituting Eqs. (21) and (27):

ûs(ẑ) = κ̂

∫ 1

ẑ

[

sinh(κ̂ẑ)

cosh(κ̂)
− τ̂0

]

dẑ (31)

= 1 − κ̂τ̂0 (1 − ẑ) − cosh(κ̂ẑ)/ cosh(κ̂) for ẑ0 < ẑ ≤ 1.

In the unsheared region, the plug-like flow has a uniform velocity:

ûus = ûs(ẑ0)

= 1 − κ̂τ̂0 (1 − ẑ0) − cosh(κ̂ẑ0)/ cosh(κ̂) for 0 ≤ ẑ < ẑ0, (32)

where ẑ0 is given by Eq. (29).

3.1.2 Casson fluid

Likewise, the velocity profile for a Casson fluid can be found from Eqs. (20), (22) and

(27):

ûs(ẑ) = 1 − cosh(κ̂ẑ)/ cosh(κ̂) + κ̂τ̂0(1 − ẑ) − 2κ̂I(ẑ) for ẑ0 < ẑ ≤ 1, (33)

and ûus = ûs(ẑ0) for 0 ≤ ẑ < ẑ0, where

I(ẑ) =

∫ 1

ẑ

[

τ̂0 sinh(κ̂ẑ)

cosh(ẑ)

]
1

2

dẑ, (34)

which can be numerically evaluated, say by Simpson’s rule.

3.2 Rotating EO flow of Newtonian fluid

Chang and Wang [21] and Ng and Qi [22] already developed solutions for EO flow of

Newtonian fluid in a rotating slit channel. Let us briefly re-examine the problem here,

deriving solutions in terms of the present notation.
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When the yield stress is zero, τ̂ = 0, the momentum equations simplify to

− ωv̂0 =
d2û0

dẑ2
+ κ̂2 cosh(κ̂ẑ)

cosh(κ̂)
, (35)

ωû0 =
d2v̂0

dẑ2
, (36)

where we have used the subscript “0” to denote the case of zero yield stress. The general

solution to these equations can be expressed as

û0(ẑ) = −A cosh(κ̂ẑ)/ cosh(κ̂) + 2C1 cosh(ηẑ) cos(ηẑ) + 2C2 sinh(ηẑ) sin(ηẑ), (37)

v̂0(ẑ) = −B cosh(κ̂ẑ)/ cosh(κ̂) + 2C1 sinh(ηẑ) sin(ηẑ) − 2C2 cosh(ηẑ) cos(ηẑ), (38)

where η = (ω/2)1/2,

A =
κ̂4

κ̂4 + ω2
, and B =

ωκ̂2

κ̂4 + ω2
. (39)

Using the no-slip condition at the wall, the coefficients C1,2 can be determined as follows:

C1 =
A cosh(η) cos(η) +B sinh(η) sin(η)

cosh(2η) + cos(2η)
, (40)

C2 =
A sinh(η) sin(η) − B cosh(η) cos(η)

cosh(2η) + cos(2η)
. (41)

Integrating the velocities across the channel gives the primary and secondary flow rates:

q̂0x = 2

∫ 1

0

û0(ẑ) dẑ

= −
2A tanh(κ̂)

κ̂
+

2

η
[(C1 −C2) sinh(η) cos(η) + (C1 + C2) cosh(η) sin(η)] , (42)

q̂0y = 2

∫ 1

0

v̂0(ẑ) dẑ

= −
2B tanh(κ̂)

κ̂
+

2

η
[(−C1 − C2) sinh(η) cos(η) + (C1 − C2) cosh(η) sin(η)] .(43)

The stress components are also found as follows:

τ̂0xz =
1

κ̂

dû0

dẑ

= −A
sinh(κ̂ẑ)

cosh(κ̂)
+

2η

κ̂
[(−C1 + C2) cosh(ηẑ) sin(ηẑ)

+ (C1 + C2) sinh(ηẑ) cos(ηẑ)] , (44)

τ̂0yz =
1

κ̂

dv̂0

dẑ

= −B
sinh(κ̂ẑ)

cosh(κ̂)
+

2η

κ̂
[(C1 + C2) cosh(ηẑ) sin(ηẑ)

+ (C1 − C2) sinh(ηẑ) cos(ηẑ)] . (45)
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4 Numerical solution method

One can reason that, by comparing Eq. (27) with Eqs. (44) and (45), the stress field can

be materially modified by the system rotation. With rotation, the stress magnitude may

no longer be a monotonous function of ẑ. As will be shown later, there can be a local

maximum in the distribution of |τ̂ |. Hence, in principle, there can be more than one

position where the stress magnitude is equal to the yield stress, implying that there can

be multiple sheared or unsheared regions in the rotating flow of a viscoplastic material.

To avoid this complicated situation, let us assume that the material under consider-

ation has a relatively small yield stress. This will limit the yield surface to be located

at a point in the center region, within which the stress distribution still maintains a

monotonous increasing trend with ẑ. In other words, we consider only cases in which

the stress has a monotonous distribution in the unyielded region. This will also ensure a

one-to-one relationship between yield stress and position of the yield surface.

Normally, one would first specify the yield stress, as this is one of the fluid properties,

before solving the problem for the velocity and stress components. However, this way

of finding solutions for a yield-stress material could be rather cumbersome as it would

involve in each iteration the adjustment of the yield surface position.

In this work, we shall adopt a reverse approach: first prescribe a value for the yield

surface position, and then solve for the corresponding yield stress. This is legitimate as

long as there exists a unique mapping between the two quantities. This is why we need

to assume a relatively small yield stress, as explained above. We remark that this is not

an unrealistic assumption, because many fluids of practical interest (e.g., blood) have

indeed a small yield stress.

The reverse approach will enable us to separate in advance the domain into the

sheared and unsheared regions, where different governing equations are to be applied.

The ensuing numerical analysis can be performed without the need for the adjustment

of the yield surface position in each iteration.

To facilitate the seeking of solution by iteration, let us put the unsteady term back to
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the momentum equations. In the sheared region (ẑ0 < ẑ ≤ 1), the momentum equations

read as follows:
∂û

∂t̂
− ωv̂ =

∂

∂ẑ

(

µ̂
∂û

∂ẑ

)

+ κ̂2ψ̂, (46)

∂v̂

∂t̂
+ ωû =

∂

∂ẑ

(

µ̂
∂v̂

∂ẑ

)

, (47)

where the effective viscosity µ̂ is given by Eq. (21) for Bingham plastic, or Eq. (22)

for Casson fluid. The problem is now discretized, and an iterative scheme is to be

devised through the local acceleration term, which should diminish toward zero to achieve

convergence to the solution.

The sheared region (ẑ0 < ẑ ≤ 1) is discretized into a number of evenly spaced points,

i.e., zi = ẑ0 + (i − 1)∆z (i = 1, 2, · · · , N,N + 1) with the grid spacing ∆z = (1 −

ẑ0)/N . The axial and transverse velocity components at ẑ = zi are denoted by ui and vi.

Using forward-time central-space difference, the two momentum equations above can be

approximated by the following difference equations:

u
(n+1)
i − u

(n)
i

∆t
− ωv

(n)
i =

µ̂
(n)
i+1/2

(

u
(n)
i+1 − u

(n)
i

)

− µ̂
(n)
i−1/2

(

u
(n)
i − u

(n)
i−1

)

∆z2
+ κ̂2ψ̂i, (48)

v
(n+1)
i − v

(n)
i

∆t
+ ωu

(n)
i =

µ̂
(n)
i+1/2

(

v
(n)
i+1 − v

(n)
i

)

− µ̂
(n)
i−1/2

(

v
(n)
i − v

(n)
i−1

)

∆z2
, (49)

where n denotes the time level and ∆t is the time step such that t̂ = n∆t, and µ̂i±1/2 =

(µ̂i±1 + µ̂i) /2. Here, the time step is a parameter that can be used to control the rate

of convergence of the iterative process. To compute the effective viscosity, we need

the magnitude of the shear rate, which can be determined using second-order central

difference as follows:

|ˆ̇γi| =

√

(

ui+1 − ui−1

2∆z

)2

+

(

vi+1 − vi−1

2∆z

)2

. (50)

The flow is to satisfy continuity of velocity gradients and no-slip conditions at the yield

surface and the wall, respectively. Accurate to the second order, these boundary condi-

tions are
−3u1 + 4u2 − u3

2∆z
=

−3v1 + 4v2 − v3

2∆z
= 0 at ẑ = z1, (51)

uN+1 = vN+1 = 0 at ẑ = zN+1. (52)
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In the unsheared region (0 ≤ ẑ < ẑ0), the velocity gradients are zero, implying

constant velocity components in this region. Denoting the axial and transverse velocity

components by ûus and v̂us, we may get the stress components in the unsheared region

by integrating Eqs. (17) and (18):

τ̂xz = −

(

ωv̂us

κ̂

)

ẑ −
sinh(κ̂ẑ)

cosh(κ̂)
, (53)

τ̂yz =

(

ωûus

κ̂

)

ẑ, (54)

where the symmetry condition of zero stress at the centerline (ẑ = 0) has been used. At

the yield surface (ẑ = z1), the continuity of velocity and stress implies

ûus = u1, v̂us = v1, (55)

and

|τ̂ |ẑ=z1
=

√

τ̂ 2
xz + τ̂ 2

yz

∣

∣

∣

ẑ=z1

= τ̂0. (56)

After substitution, the equation above can be written as

τ̂0 =

√

[

ωv1z1

κ̂
+

sinh(κ̂z1)

cosh(κ̂)

]2

+
(ωu1z1

κ̂

)2

. (57)

To kick off the iteration, we use the solution for Newtonian fluid as the initial guess

values: µ̂
(0)
i = 1, τ̂

(0)
0 = 0, u

(0)
i = û0(ẑ = zi) and v

(0)
i = v̂0(ẑ = zi), where û0(ẑ) and

v̂0(ẑ) are given in Eqs. (37) and (38). For the given input parameters κ̂, ω and ẑ0, we

may get from Eqs. (48) and (49), in an explicit manner, the next-time-level values for

the velocities ui and vi where i = 2, · · · , N . The velocities (uN+1, vN+1) are zero, while

(u1, v1) are determined from Eq. (51). The magnitude of the shear rate, and the yield

stress can then be updated using Eqs. (50) and (57). The effective viscosity, given by

either Eq. (21) or (22), can be updated as well. With these updated values, we may

start another round of time advancement. These iterative steps are to be repeated until

the maximum relative difference between values of axial and transverse velocities at two

consecutive time levels is below a prescribed tolerance level.
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5 Discussion

We choose values of the input parameters based on the following consideration: the

permittivity of the electrolyte solution ε = 709 × 10−12 F/m, the half-channel-height

h ∼ 100 µm, the constant electric field E ∼ 5 × 104 V/m, and the wall potential

ζ0 ∼ −20 mV. The shielding depth of the EDL (κ−1) is typically in a range of 10 nm to

10 µm. Therefore, κ̂ ≥ O(10). In all the cases presented below, a fixed value of κ̂ = 10 is

considered. In addition, the magnitude of yield stress τ0, comparable to that of human

blood, is of the order 5 mPa at a room temperature, corresponding to a normalized value

(τ̂0 = τ0/τE) of the order 0.1. The rotation speed can vary over a wide range, depending

on the application. As in Chang and Wang [21] and Ng and Qi [22], a rotation rate in

the range of 0 ≤ ω < 100 will be considered.

5.1 Velocity and stress profiles

We first show in Fig. 2 the profiles of axial velocity û(ẑ), transverse velocity v̂(ẑ) and

stress magnitude |τ̂ |(ẑ) for EO flow of Newtonian, Bingham and Casson fluids under a

system rotation of speed ω = 0, 5, 10, 50. For the Bingham and Casson fluids, a yield

stress of τ̂0 = 0.05 is considered. The position of the yield surface, ẑ0, where the stress

magnitude equals the yield stress, is denoted by a cross bar in the velocity distributions

for the Bingham and Casson fluids, as shown in Figs. 2(d, e, g, h). To the left of the yield

surface is the unsheared region where the flow is uniform or plug-like.

Also shown in Fig. 2 is a comparison of results generated by our numerical model

(solid lines) and those generated by the analytical models (circles) as described above

for rotating EO flow of Newtonian fluid and EO flow of Bingham and Casson fluids in

a non-rotating channel. Clearly, the two sets of results are in close agreement with each

other. This provides some support to the accuracy of our numerical model.

In the case of Newtonian fluid, the results are essentially the same as those presented

previously by Chang and Wang [21], as is expected. Note that there is a change in the

flow structure as the rotation speed varies from ω = 0 to ω � 1. In the absence of
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rotation, the velocity profile is that of classical EO flow: the flow is sheared in a near-

wall region encompassing the EDL, and has a uniform velocity, known as the Helmholtz–

Smoluchowski velocity, in the core region where the electric forcing is zero. The system

rotation is to reduce the axial velocity in the core region. For an intermediate value of ω,

a reflux (negative û) of axial flow may even happen in the center region. At the limiting

ω � 1, an Ekman–EDL layer shows up near the wall, while an inviscid geostrophic core

shows up in the interior. The Ekman–EDL layer results from a balance between viscous,

electric and Coriolis forces [22]. This is a thin layer formed near the wall when both

κ̂ and ω are large. The geostrophic core is essentially a non-viscous region where the

Coriolis force can only be balanced by pressure gradient, if any. In the present problem,

the pressure gradient is zero in both the axial and transverse directions, and hence the

flow in these directions will tend to a zero velocity in the center region as ω → ∞.

The change in flow structure also leads to a change in the stress distribution as ω

varies. At ω = 0, the velocity and stress are all monotonic functions of ẑ. When ω 6= 0,

the emergence of the Ekman–EDL layer causes a non-monotonic variation of the stress

magnitude near the wall. The stress magnitude has a local minimum near the point

where the axial velocity is maximum in magnitude. Such a non-monotonic variation of

the stress magnitude also shows up in the case of a viscoplastic material. Figure 2 shows

that the introduction of a yield stress into the shearing does not materially change the

stress magnitude distribution as a function of the rotation speed. In sharp contrast,

the presence of a yield stress may dramatically change the velocity profiles. A direct

consequence of the yield stress is a plug flow in the interior. At ω = 0, the plug flow

velocity of Bingham plastic or Casson fluid is smaller than the Helmholtz–Smoluchowski

velocity of the corresponding Newtonian fluid flow. Because of the square roots in the

constitutive relationship, a Casson fluid is subject to a larger reducing effect of the yield

stress on the plug flow velocity, as has been found previously by Ng [11] and Ng and

Qi [12]. A yield stress as small as τ̂0 = 0.05 is already large enough to result in a plug

flow velocity that is 20% and 60% smaller than the Helmholtz–Smoluchowski velocity, for

Bingham and Casson fluids, respectively; see Figs. 2(d, g). When ω 6= 0, the yield stress

will, however, tend to lessen the decreasing effect of the system rotation on the axial flow

velocity. This is especially true for Casson fluid. On comparing Figs. 2(a) and 2(g), it
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Figure 2: Profiles of axial velocity û(ẑ), transverse velocity v̂(ẑ) and stress magnitude

|τ̂ |(ẑ) for several values of rotation speed ω, where the material is Newtonian fluid in

(a–c), Bingham plastic in (d–f), and Casson fluid in (g–i). The yield stress for the latter

two materials is τ̂0 = 0.05. The circles denote analytical solutions and the cross bars

denote the position of the yield surface ẑ0.
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is seen that the change in the flow structure as ω varies is more gradual in the case of

Casson fluid than in the case of Newtonian fluid. The overall effect is that the yield stress

is to delay the attainment of the geostrophic limit as ω increases. At an intermediate

ω = 10, both the axial and transverse velocities for the viscoplastic materials are more

uniformly distributed than the Newtonian counterparts. It is possible that, with ω 6= 0,

the near-center velocity of a viscoplastic material is higher in magnitude than that of a

Newtonian fluid. This is in sharp contrast to what happens when ω = 0.

5.2 Position of yield surface

We next show in Fig. 3 how the position of the yield surface ẑ0 may change as a function of

the rotation speed ω and the yield stress τ̂0 for Bingham plastic and Casson fluid. When

ω = 0, ẑ0 can be determined analytically, as given by Eq. (29), which is independent

of whether the material is Bingham plastic or Casson fluid. As is expected, a larger

yield stress corresponds to a larger unsheared or plug flow region. System rotation is to

diminish this unsheared region, however. In the case of Bingham plastic, the effect of

ω on ẑ0 is most prominent in the range 0 < ω < 5: there is a sharp drop-off of ẑ0 as

the rotation speed varies slightly from zero. After reaching a minimum, ẑ0 may increase,

but very mildly, as ω increases toward a large value. In the case of Casson fluid, the

sharp decline of ẑ0 tends to happen at larger values of ω, especially for large τ̂0. Also,

the decreasing trend of ẑ0 may persist even when ω � 1. The overall effect is that, at an

intermediate ω, ẑ0 for Casson fluid can be larger than that for Bingham plastic, but at a

larger ω, the opposite can be true. Physically, this implies that, for a finite yield stress,

a Casson fluid may maintain a larger unsheared region (compared with Bingham plastic)

when the rotation speed is only moderately large. In other words, a Casson fluid is less

susceptible to the decreasing effect of the system rotation on the flow when the rotation

speed is not too large. This echoes to what has been inferred from Fig. 2, as remarked

above.
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Figure 3: Position of the yield surface ẑ0 as a function of rotation speed ω for several

values of yield stress τ̂0, where the material is Bingham plastic in (a), and Casson fluid

in (b).

5.3 Flow rate

Figures 4–6 show the flow rates and flow direction as functions of the yield stress and

rotation speed for Bingham plastic and Casson fluid. In these figures, the various fluxes

and flow direction are computed as follows:

q̂x = 2

∫ 1

0

ûdẑ, q̂y = 2

∫ 1

0

v̂dẑ, q̂ =
(

q̂2
x + q̂2

y

)1/2
, β = tan−1(q̂y/q̂x). (58)

Figures 4 and 5 further reveal how the presence of a yield stress may lessen the

decreasing effect of system rotation on the flow, and conversely, how the system rotation

may weaken or even reverse the effect of the yield stress. We first point out that, for

any yield stress, increasing the rotation speed is always to decrease the axial flow rate;

see Figs. 6(a, d). The transverse flow rate may first increase in magnitude as ω increases

from 0, but will eventually diminish to zero as ω → ∞; see Figs. 6(b, e). Despite the

non-monotonicity in the transverse flow rate, the resultant flow rate will always decrease

monotonically as ω increases, for any yield stress. We also recall that, in the absence of

rotation (ω = 0), increasing the yield stress is always to decrease the flow rate. Such

decrease in flow rate with increasing yield stress is much more dramatic in the case of
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Figure 4: Axial flux q̂x, transverse flux q̂y, resultant flux q̂ and flow direction β as functions

of yield stress τ̂0 for several values of rotation speed ω, where the material is Bingham

plastic.
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of yield stress τ̂0 for several values of rotation speed ω, where the material is Casson fluid.
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Casson fluid, as can be seen by comparing the top curves in Figs. 4(a) and 5(a). This is,

however, not necessarily true when the rotation speed is not zero. From Figs. 4(a) and

5(a), it is interesting to find that, when ω 6= 0, the axial flow rate does not necessarily

decrease with increasing yield stress. For either Bingham plastic or Casson fluid, when

ω is sufficiently large, the axial flow rate q̂x may, to the contrary, increase as the yield

stress increases up to a certain value. For example, in the case of Bingham plastic, as τ̂0

increases from 0 to 0.1, the axial flow rate q̂x decreases from 1.8 to 1.26 (30% decrease)

when ω = 0, but increases from 0.52 to 0.76 (46% increase) when ω = 5; see Fig. 4(a).

Such quantitative and qualitative change in the effect of the yield stress owing to the

system rotation is manifested even in the resultant flow rate; see Fig. 4(c). One can see

from Figs. 4(c) and 5(c) that the system rotation is in general to weaken, if not to reverse,

the decreasing effect of the yield stress on the resultant flow rate. As a consequence, the

decreasing effect of the system rotation on the flow is also weakened by the presence of a

yield stress. For example, in the case of Bingham plastic, as ω increases from 0 to 10, the

resultant flow rate q̂ drops from 1.8 to 0.52 (71% decrease) when τ̂0 = 0, but drops only

from 1.26 to 0.60 (52% decrease) when τ̂0 = 0.1; see Fig. 4(c). In the case of Casson fluid,

the resultant flow rate drops by an even smaller amount (from 0.51 to 0.44, i.e., 14%) at

τ̂0 = 0.1; see Fig. 5(c). This confirms our earlier finding that the flow of a Casson fluid

becomes increasingly unaffected by the system rotation as its yield stress increases. On

comparing Figs. 6(a, b) with 6(d, e), one can clearly see that, when τ̂0 = 0.1, the axial

and transverse flow rates of a Casson fluid are much less sensitive to the rotation speed

than those of a Bingham plastic.

From Figs. 4(d), 5(d) and 6(c, f), we also see that increasing the yield stress will in

general decrease the angle of inclination of the resultant flow with respect to the axial

direction. This effect is more pronounced for Casson fluid than Bingham plastic. Hence,

for any finite values of ω and τ̂0, the flow of a Casson fluid is more directed toward the

axial direction than the flow of a Bingham plastic.
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Figure 6: Axial flux q̂x, transverse flux q̂y, and flow direction β as functions of rotation

speed ω for several values of yield stress τ̂0, where the material is Bingham plastic in

(a–c), and Casson fluid in (d–f).
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6 Concluding remarks

We have developed an iterative numerical scheme to solve the problem of electroosmotic

flow of a viscoplastic material modeled as either Bingham plastic or Casson fluid in

a parallel-plate channel that rotates about an axis perpendicular to the plates. For

a given yield stress, the location of the yield surface together with the velocity and

stress components can be found by solving the Cauchy momentum equations, which are

approximated by finite differences, by means of an iterative process. We have also looked

into numerical results illustrating how the primary and secondary flows are differently

affected by the yield stress of the material, depending on the viscoplastic model and the

rotation speed.

Some key findings are summarized as follows. First, in the presence of system rotation

of sufficiently high speed, the stress distribution can be non-monotonic near the outer

edge of the EDL. Therefore, if the material has a yield stress, there is a single yield

surface only when the yield stress is not too large. A large yield stress may result in

multiple yield surfaces, hence multiple sheared and unsheared regions, in the flow. In

this study, only the case of a single yield surface is considered. We leave it to a future

study to investigate the case of multiple yield surfaces. Second, the presence of a yield

stress may slow down the attainment of the inviscid geostrophic interior as the rotation

speed increases toward a large value. This effect is more pronounced for a Casson fluid.

Third, for a non-zero rotation speed, the axial flow rate may possibly increase as the

yield stress increases. This is in sharp contrast to the case of zero rotation, for which

the flow rate can only be decreased by a yield stress. This has led us to conclude that

system rotation may weaken or even reverse the decreasing effect of yield stress on the

flow. Fourth, larger the yield stress, smaller the decreasing effect of system rotation on

the flow rate. The rate and direction of flow of a Casson fluid are much less sensitive to

the rotation speed than those of a Bingham plastic of the same yield stress.
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