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Summary 21 

 22 

Background 23 

Antivirals (e.g. oseltamivir) are important for mitigating influenza epidemics. In 2007, an 24 

oseltamivir-resistant seasonal A(H1N1) strain emerged and spread to global fixation within one 25 

year. This showed that antiviral-resistant (AVR) strains can be intrinsically more transmissible than 26 

their contemporaneous antiviral-sensitive (AVS) counterpart. Surveillance of AVR fitness is 27 

therefore essential. 28 

 29 

Methods  30 

We define the fitness of AVR strains as their reproductive number relative to their co-circulating 31 

AVS counterparts. We develop a simple method for real-time estimation of AVR fitness from 32 

surveillance data. This method requires only information on generation time without other specific 33 

details regarding transmission dynamics. We first use simulations to validate this method by 34 

showing that it yields unbiased and robust fitness estimates in most epidemic scenarios. We then 35 

apply this method to two retrospective case studies and one hypothetical case study. 36 

 37 

Findings 38 

We estimate that (i) the oseltamivir-resistant A(H1N1) strain that emerged in 2007 was 4% (3-5%) 39 

more transmissible than its oseltamivir-sensitive predecessor and (ii) the oseltamivir-resistant 40 

pandemic A(H1N1) strain that emerged and circulated in Japan during 2013-2014 was 24% (17-41 

30%) less transmissible than its oseltamivir-sensitive counterpart. We show that in the event of 42 

large-scale antiviral interventions during a pandemic with co-circulation of AVS and AVR strains, 43 

our method can be used to inform optimal use of antivirals by monitoring intrinsic AVR fitness and 44 

drug pressure on the AVS strain.  45 

 46 

Conclusions 47 

We have developed a simple method that can be easily integrated into contemporary influenza 48 

surveillance systems to provide reliable estimates of AVR fitness in real time. 49 
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Influenza antiviral drugs are important for mitigating influenza epidemics. The neuraminidase (NA) 57 

inhibitor oseltamivir is the most commonly used influenza antivirals (1) and has been extensively 58 

stockpiled by many countries for pandemic preparedness (2). The effectiveness of antivirals is 59 

threatened by emergence and spread of antiviral resistance (AVR) viruses. For oseltamivir, the 60 

most commonly detected resistance mutation in A(H1N1) viruses is the NA H275Y substitution. 61 

Before 2007, emergence of oseltamivir-resistant influenza viruses were sporadically reported, and 62 

the fitness of detected resistant viruses had always been substantially compromised (3). As such, 63 

there was a consensus that AVR influenza viruses would always be outcompeted by their antiviral-64 

sensitive (AVS) counterparts, and hence posed only minimal threat to public health.  65 

 66 

Such conventional wisdom was refuted by events in 2007-2008 – a new oseltamivir-resistant 67 

A(H1N1) virus emerged and displaced its contemporaneous oseltamivir-sensitive counterpart to 68 

become the dominant A(H1N1) strain globally within only 12 months (4). The emergence and rapid 69 

fixation of this oseltamivir-resistant virus was not driven by widespread use of oseltamivir (4, 5). 70 

This event thus proved that AVR viruses are not necessarily less transmissible than their AVS 71 

counterparts. Furthermore, in the context of large-scale antiviral intervention during a pandemic, 72 

AVR fitness may be enhanced by the drug pressure on the AVS strain such that an intrinsically less 73 

transmissible AVR strain may become more fit than the AVS strain. Timely and accurate assessment 74 

of AVR fitness is therefore essential for informing situational awareness and optimal use of 75 

antivirals during both inter-pandemic and pandemic periods (6).  76 

 77 

The spread of AVR influenza viruses can increase morbidity and mortality. For example, case-78 

fatality risk may increase because antivirals would be ineffective for treating AVR cases. 79 

Furthermore, if AVR viruses spread during the early stage of a pandemic, populations at the 80 

downstream of global spread will be subject to substantial importation and hence higher incidence 81 

of AVR cases (7). In view of such risks, national and supranational agencies, especially the WHO’s 82 

Global Influenza Surveillance and Response System (GISRS), have emphasized the need for timely 83 

and accurate assessment of AVR fitness (8). However, few advances have been made in data 84 

analytics and performance evaluation for AVR surveillance systems. Our objective is to help fill this 85 

knowledge gap by developing a simple method for estimating AVR fitness from surveillance data. 86 

 87 

Methods 88 

The model 89 
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We assume that there is only one transmissible AVR strain over the course of a single epidemic 90 

wave constituted by the A subtype or B lineage to which the AVR strain and its antiviral-sensitive 91 

counterpart (the AVS strain) belong. We define the intrinsic AVR fitness as the ratio of the basic 92 

reproductive number of the AVR strain to that of the AVS strain ( 0 0 0
R SR Rσ = ). Similarly, we define 93 

AVR fitness as the ratio of their reproductive numbers ( R SR Rσ = ) which encapsulates the 94 

combined effect of intrinsic fitness and any reduction in AVS transmissibility due to antiviral 95 

interventions. 96 

 97 

We formulate our model under the following base case assumptions: 98 

1. The AVS and AVR strains co-circulate during the epidemic. 99 

2. Without antiviral treatment, AVS and AVR infections have the same severity such that all 100 

infections are equally likely to be selected for AVR testing. 101 

3. Recovery from infection with either strain provides complete cross-protection against both 102 

strains during the epidemic. 103 

4. The effect of viral interference (if any) caused by all other circulating influenza viruses (i.e. 104 

those from other subtypes and lineages) and pathogens are the same for both strains. 105 

5. AVR fitness does not depend on age. 106 

6. Age-specific susceptibility to the AVR virus is the same as that to the AVS virus. 107 

Assumptions 5 and 6 are relatively less likely to hold, e.g. high-risk groups may be more likely to 108 

receive antiviral prophylaxis, susceptibility to the AVR virus may be different from that to the AVS 109 

virus (9). In the Appendix (see Appendix page 5), we extend our method to allow relaxation of these 110 

two assumptions. 111 

 112 

Under the base case assumptions, the next generation matrix of AVR infections is simply σ  times 113 

that of AVS infections. This remains true in the presence of seasonal forcing and interventions such 114 

as vaccination and school closure because transmission of the AVS and AVR strain are identically 115 

affected by these factors (see Appendix page 2). As the epidemic unfolds, the proportion of 116 

infections that are AVR, denoted by ( )tρ , will increase towards 1 if 1σ > , remain at the same level 117 

if 1σ = , and decline towards 0 if 1σ < . The key step of our method is to approximate ( )tρ  using 118 

the equation 119 
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where ( )i t  is the total incidence rate of AVR and AVS infections, Rg  and Sg  are the generation 121 

time distributions for AVR and AVS infections, respectively. To verify the accuracy of this 122 

approximation, we randomly generate 100 epidemic scenarios driven by the UK contact matrix 123 

(10) with four age groups (0-5, 6-18, 18-65, and >65) using Latin-hypercube sampling from the 124 

following parameter space which covers a wide range of plausible epidemics: 125 

• Initial susceptible proportion of each age group between 0.3 and 1; 126 

• Initial reproductive number of the AVS strain ( (0)SR ) between 1.2 and 3; 127 

• Mean generation time (Tg) between 2 and 4 days; 128 

• Intrinsic AVR fitness ( 0σ ) between 0.8 and 1.2; 129 

• The proportion of seeding infections that are AVR between 0.1 and 0.9; 130 

Figure A1 (see Appendix page 8) shows that the approximation in equation (1) is very accurate. As 131 

such, given ( )i t  or a proxy of it (see below) and the generation time distribution for both strains, 132 

equation (1) allows us to accurately describe ( )tρ  without knowing other epidemiologic details 133 

such as basic reproductive number, contact matrix, symptomatic proportion, seasonality, etc. 134 

 135 

Inference of AVR fitness 136 

Our method requires the following two streams of data (for the subtype or lineage under 137 

investigation): 138 

1. The incidence rate ( )i t  or its proxy, e.g. based on the daily number of laboratory confirmed 139 

infections in the Hong Kong E-Flu system (11), Flu Near You (12), or other proxies used for 140 

calculating influenza excess mortality (13). We denote this data stream by ( )i t . These data 141 

are typically confounded with temporal fluctuation in reporting rate and laboratory testing 142 

capacity. Our method, however, is robust against such fluctuation (see Results).   143 

2. Data from AVR surveillance where R
dZ  and S

dZ are the number of influenza positive isolates 144 

tested on day d that are found to be positive and negative for AVR, respectively. The 145 

subjects selected for AVR testing should (i) have not been treated with antivirals for their 146 

infection and (ii) have no recent travel history to avoid misclassifying imported cases as 147 

local cases.  148 
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We substitute ( )i t  with its proxy ( )i t  in equation (1) and denote the resulting approximation by 149 

( )tρ . The approximate likelihood is   150 

(1 )
R S
d d

S R
Z Zd d

d dR
d d

Z Z
p p

Z
 +
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where  , psens and pspec are the sensitivity and 152 

specificity of AVR testing. With this likelihood and uniform priors, we estimate AVR fitness σ  using 153 

Markov Chain Monte Carlo methods (see Appendix page 3). 154 

 155 

Validation of the AVR fitness inference method 156 

To validate our method, we simulate 100 stochastic realizations of the data streams for each of the 157 

100 epidemic scenarios generated earlier assuming that (i) daily reporting proportions are uniform 158 

random variables ranging between 0.5% and 2%; and (ii) daily AVR testing capacity is 2, 5, 10, 20 159 

or 80 isolates. AVR fitness is then inferred at the end of each epidemic. 160 

 161 

Case Studies 162 

After validating our method, we apply it to three case studies: 163 

1. A retrospective study of the oseltamivir-resistant influenza A(H1N1) virus in 2007 – 2008. To 164 

estimate the (intrinsic) fitness of this oseltamivir-resistant strain in comparison to its 165 

oseltamivir-sensitive predecessor, we retrieve the data on influenza virus activity and AVR 166 

surveillance for 10 countries/regions from published literature and public online data 167 

(Tables A1-A3 on page 13-17 of Appendix, Figure 3). We assume that AVS and AVR 168 

infections had the same generation time distribution because there is no published evidence 169 

that indicates the contrary. Based on published serial interval estimates, we assume that the 170 

generation time distribution was lognormal with mean 2.8 days and coefficient of variation 171 

0.54 (14). We first obtain a pooled estimate of AVR fitness by assuming that AVR fitness was 172 

the same in all populations. We then estimate AVR fitness in each population separately and 173 

compare them.  174 

2. A retrospective study of the oseltamivir-resistant influenza A(H1N1)pdm09 virus in Japan 175 

during 2013-2014. Although 98% of the tested A(H1N1)pdm09 virus isolates were sensitive 176 

to oseltamivir by 2014 (8), large clusters of oseltamivir-resistant variants were detected in 177 
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Newcastle, Australia in 2011 (15) and Hokkaido, Japan in 2013-2014 (16). In the Japan 178 

cluster, the oseltamivir-resistant virus was causing community outbreaks until it was 179 

displaced by its oseltamivir-sensitive counterpart (Figure 2). We apply our method to 180 

estimate the fitness of this oseltamivir-resistant strain using published data (16) and the 181 

generation time distribution in case study 1. 182 

3. A hypothetical study of AVR fitness and drug pressure under large-scale antiviral interventions 183 

during a pandemic. Oseltamivir resistance is not uncommon among influenza viruses with 184 

pandemic potential, e.g. avian influenza A(H5N1) (17) and A(H7N9) viruses (18). We 185 

consider a hypothetical but realistic situation in which large-scale antiviral interventions, 186 

comprising both prophylaxis and treatment, are implemented during a pandemic that 187 

comprises co-circulation of AVS and AVR viruses (7, 19-21). The epidemic parameters are 188 

the same as that in Figure 2 with all individuals susceptible at time 0. We consider 189 

situations in which (i) the AVR strain is intrinsically less transmissible than the AVS strain 190 

with 0 0.95σ = ; and (ii) large-scale antiviral interventions reduce the AVS reproductive 191 

number by a proportion μ such that drug pressure renders the AVS strain less transmissible 192 

than the AVR strain, i.e. 0 (1 ) 1σ σ µ= − > . We consider 10%, 15% and 20% coverage of 193 

antiviral prophylaxis that reduces susceptibility to the AVS virus by 81% (22); this 194 

corresponds to μ = 0.08, 0.12 and 0.16, respectively. We assume that 0σ , σ  and μ are 195 

unknown a priori and demonstrate how our method can be used to estimate them in real-196 

time to inform optimal use of antivirals. Specifically, if AVR fitness is consistently estimated 197 

to exceed 1 with high probability (say, above 0.9 for one week), then there is compelling 198 

evidence that an increasing proportion of severe cases would be AVR and hence not 199 

treatable with the antiviral. We assume that in response to this alert, antiviral use would be 200 

suspended except for treating high-risk and severe cases as policymakers deliberate (i) how 201 

to strategically adjust antiviral use to strike a balance between reducing transmission of 202 

AVS infections and increasing the number of severe AVR infections , and (ii) whether 203 

alternative treatment options such as convalescent plasma and antivirals with different 204 

resistance mechanisms should be considered (7, 20, 21, 23). The objective of this case study 205 

is to demonstrate how estimates of 0σ  and μ can be used to build an evidence base for this 206 

decision-making process.  207 

 208 

Role of the funding sources 209 
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The sponsors of the study had no role in study design, data collection, data analysis, data 210 

interpretation, or writing of the report. The corresponding author had full access to all the data in 211 

the study and had final responsibility for the decision to submit for publication. 212 

 213 

Results 214 

Validating the method for estimating AVR fitness 215 

Figure 1 summarizes the accuracy and precision of AVR fitness estimates across a wide range of 216 

plausible epidemic scenarios when AVR testing sensitivity and specificity are both 100% (a 217 

reasonable assumption for genotypic testing). The reliability of fitness estimates depends on 218 

epidemic characteristics mainly via the time span, expressed in terms of number of generation 219 

intervals, during which the AVS and AVR strains are both circulating in significant proportions. 220 

Fitness estimates are largely unbiased unless this time span is below 10 generation intervals 221 

(around 30 days) and AVR testing capacity is low (<5 samples per day). Increasing the daily testing 222 

capacity beyond 20 samples provides little improvement in the fitness estimates. The accuracy and 223 

precision of fitness estimates deteriorate significantly when testing sensitivity and specificity are 224 

both reduced to 90% which has a similar effect as halving the testing capacity (Figure A2 on page 225 

9 of Appendix).  226 

 227 

Timeliness of AVR fitness estimates 228 

Figure 2 illustrates the timeliness of reliable AVR fitness estimates for one stochastic realization of 229 

an exemplary epidemic scenario. The AVS and AVR reproductive numbers differ by 5% which is 230 

sufficiently high to result in fixation within a single epidemic wave. The daily AVR testing capacity is 231 

10 samples, a modest level for well-resourced populations like Hong Kong. Our method correctly 232 

predicts which virus would become dominant with posterior probability consistently above 0.9 as 233 

early as three weeks before the epidemic peak. However, stochasticity has a strong impact on the 234 

timeliness of reliable fitness estimates. Figures A3 (see Appendix page 10) shows two alternative 235 

realizations of the same epidemic scenarios in which reliable fitness estimates are available a 236 

couple of weeks sooner or later than in Figure 2. 237 

 238 

Case study 1: Oseltamivir-resistant influenza A(H1N1) virus, 2007 – 2008 239 

The pooled (intrinsic) AVR fitness estimate is 1.04 (95% credible interval 1.03-1.05), i.e. the 240 

oseltamivir-resistant strain was 4% (3%-5%) more transmissible than its contemporaneous 241 

oseltamivir-sensitive counterpart (Figure 3). The fitness estimate increases (decreases) by 0.01 242 
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when we increase (decrease) Tg by one day. If the data were available in real-time, reliable fitness 243 

estimates would have been available by late February 2008, which was 15 weeks after the 244 

oseltamivir-resistant virus was first identified in Norway and months before it became dominant in 245 

populations outside Europe (24). If we estimate AVR fitness in each population separately, the 246 

results suggest that the oseltamivir-resistant strain was more transmissible than the oseltamivir-247 

sensitive strain only in Canada, Luxembourg, the UK, Germany and France, but not in the other five 248 

populations (Figure 3). In particular, there is no strong evidence that the oseltamivir-resistant 249 

strain was more transmissible than its oseltamivir-sensitive counterpart in Japan (25). The intrinsic 250 

AVR fitness estimates remain unchanged when the effect of drug pressure in Japan is explicitly 251 

modelled (see Appendix page 4). 252 

 253 

Case study 2: Oseltamivir-resistant influenza A(H1N1)pdm09 virus in Japan, 2013-2014 254 

We estimate that this oseltamivir-resistant A(H1N1)pdm09 virus was 24% (17%-30%) less 255 

transmissible than the oseltamivir-sensitive strain that displaced it (Figure 4). Such differential 256 

transmissibility was not detected by in vitro competitive growth and in vivo ferret transmission 257 

experiments (16). In retrospect, our method could have correctly predicted that the AVR virus was 258 

less transmissible that its AVS counterpart (with posterior probability > 0.95) after both viruses 259 

had co-circulated for two weeks, which corresponds to four weeks before the AVR virus was 260 

displaced. 261 

  262 

Case study 3: Estimating AVR fitness and drug pressure on the AVS strain under large-scale 263 

antiviral interventions during a pandemic 264 

Figure 5 shows that reliable estimates of 0σ  and μ are typically available within one to two weeks 265 

after antiviral interventions are suspended. These estimates can be used to inform the optimal use 266 

of antivirals. For example, if policymakers resume large-scale antiviral prophylaxis with coverage 267 

equal to γ times the baseline level, then the resulting AVR fitness would be 0 (1 )σ γµ−  which can 268 

be used to assess the downstream effect of increased AVR incidence, e.g. increase in case-fatality 269 

risk due to more cases not treatable with antivirals. 270 

 271 

Discussion 272 

We have developed a simple method for estimating AVR fitness from influenza AVR surveillance 273 

data. Characterization of the nonlinear epidemic dynamics underlying surveillance data typically 274 
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requires inference of multiple parameters in transmission models (e.g. basic reproductive number, 275 

reporting rate, etc.) (26). Our method bypasses such complexity and is therefore easy to implement. 276 

 277 

Conventionally, AVR fitness is assessed based on in vitro experiments examining kinetics of 278 

neuraminidases and virus replications in cell cultures, or in vivo experiments examining viral load 279 

and virus transmission in animal models (27). As illustrated in our second case study, fitness 280 

estimates from such laboratory settings do not necessarily conform with that observed in actual 281 

community transmission settings (16). Moreover, as the 2007 experience showed, experiments 282 

performed using different genetic background may give different results (28). Nonetheless, these 283 

experiments are indispensable for early detection of transmissible AVR viruses. Our method 284 

complements these experiments by providing population-level fitness estimates when both AVS 285 

and AVR viruses co-circulate.  286 

 287 

Timeliness of AVR surveillance depends on the capacity and turnaround time of AVR testing. 288 

Current influenza AVR surveillance mainly relies on the WHO Collaborating Centers (WHO CCs) in 289 

GISRS with antiviral susceptibility testing capacity available mainly in five WHO CCs, namely 290 

Atlanta, Beijing, London, Melbourne and Tokyo (8). National influenza centers collect clinical 291 

specimens and send representative virus isolates to one of the WHO CCs for more advanced 292 

analyses. However, patient-specific clinical and epidemiological data for these isolates, such as 293 

gender, age, geographic location, healthcare setting, antiviral treatment history and vaccination 294 

status, are often incomplete or missing, especially when these samples are not collected by the 295 

sentinel surveillance systems. Routine collection of these data (e.g. antiviral treatment history) can 296 

enhance the performance of AVR surveillance.  297 

 298 

The turnaround time of AVR testing depends on our knowledge regarding the genetic mechanisms 299 

that confer AVR. If the genetic markers associated with AVR are known a priori (e.g. the NA H275Y 300 

mutation (27)), the turnaround time for genotypic tests are usually 1-2 days. In contrast, 301 

phenotypic tests for antiviral susceptibility (e.g. neuraminidase inhibition assay (8)) are necessary 302 

for monitoring emergence of  AVR strains with previously unknown AVR mechanisms (27). 303 

Phenotypic tests are much more labor intensive than genotypic tests with a turnaround time of 1-2 304 

weeks. Following the discovery of a new strain with unknown AVR mechanism, further 305 

investigations would be needed to characterize the associated genetic markers. As such, real-time 306 

surveillance for novel AVR strains will likely incur a lead time of at least several weeks.  307 
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 308 

In our first case study, we estimate that the oseltamivir-resistant influenza A(H1N1) virus that 309 

emerged and became globally dominant in 2007-2008 was 4% more transmissible than its 310 

oseltamivir-sensitive predecessor. This is consistent with the findings in Chao et al (29) in which 311 

the fitness advantage of the oseltamivir-resistant strain was estimated to be 1.7% to 2.4% based on 312 

the rate at which it spread around the globe. Both studies indicate that an AVR strain with a fitness 313 

advantage of as little as 2% to 4% would spread to fixation both locally and globally within months. 314 

If large-scale antiviral intervention is implemented during a pandemic, the resulting drug pressure 315 

on the AVS strain might confer such magnitude of fitness advantage to an intrinsically less 316 

transmissible AVR strain. In such context, timely and robust surveillance of AVR fitness is essential 317 

for informing optimal use of antivirals. For example, given that antiviral therapy will likely be the 318 

first-line treatment for severe cases during a pandemic, an increase in AVR/AVS incidence ratio and 319 

growing ineffectiveness of antivirals in treating AVR cases might increase the overall pandemic 320 

mortality. Estimates of intrinsic AVR fitness and drug pressure on the AVS strain provided by our 321 

method would thus be useful for assessing the risk of such outcome, though a comprehensive 322 

evaluation of optimal antiviral use would require knowledge of additional parameters (e.g. 323 

reproductive number, antiviral efficacy in reducing mortality, etc.) (30).      324 

 325 

In our method, AVR fitness corresponds to the combined effect of intrinsic AVR fitness and the drug 326 

pressure posed on the AVS strain by population-wide antiviral interventions. AVR fitness will vary 327 

across populations if the drug pressure in each localities are different. Therefore, comparison of 328 

AVR fitness estimates from different populations should account for heterogeneities in drug 329 

pressure. We have demonstrated how to do this in our case study 1 in which we jointly estimate 330 

intrinsic AVR fitness and drug pressure in Japan using data from 10 populations (see Appendix page 331 

4). 332 

 333 

Our study has several important limitations. First, our method is applicable only when AVS and AVR 334 

strains co-circulate and hence cannot be used to estimate the fitness of a newly emerged AVR strain 335 

that has not yet spread in the community. Second, our method requires accurate specification of the 336 

generation time distribution. If data on exposure or onset times of infector-infectee pairs are 337 

available, our method can be extended to jointly infer the generation time distribution (see 338 

Appendix page 4). The resulting fitness estimate remains largely unbiased, but its precision would 339 

be lower due to uncertainty in the generation time distribution. Third, our method has not 340 
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accounted for importation of AVS and AVR viruses. In the presence of such importation, our method 341 

would still be valid if (i) cases with recent travel history are excluded from AVR surveillance and (ii) 342 

the number of imported cases is small compared to incidence from local transmission (which is 343 

generally the case after the local epidemic has undergone exponential growth for 1-2 weeks).  344 

 345 

Timely and accurate estimates of AVR fitness is important during both inter-pandemic and 346 

pandemic periods because the spread of AVR viruses can substantially attenuate the effectiveness 347 

of antivirals. Robust real-time interpretation of AVR surveillance data for estimating AVR fitness is 348 

thus an essential but currently missing function of AVR surveillance. Our method has the potential 349 

to fill this knowledge gap and can be easily integrated into contemporary surveillance systems. 350 
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Figure 1. Validating the accuracy and precision of AVR fitness estimates when the sensitivity 

and specificity of AVR testing are both 100%. One hundred epidemic scenarios are randomly 

generated and 100 stochastic realizations of the data streams are simulated for each scenario (see 

Methods). AVR fitness is inferred at the end of each simulated epidemic. A Frequency distribution of 

the relative error in the fitness estimates σ̂  (i.e. ˆ1 [ ]E σ σ− )) across all scenarios and realizations 

when the daily AVR testing capacity is 2, 5, 10, 20 and 80 samples. The smaller the relative error, 

the more accurate the estimates. B Frequency distribution of the coefficient of variation of σ̂ . The 

smaller the coefficient of variation, the more precise the estimates.
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Figure 2. A simulated example to illustrate the timeliness of reliable AVR fitness estimates. 

The epidemic parameters are (0) 1.4SR =  and  2.8 daysgT = . At time 0, 50% of each age group 

are susceptible and the epidemic is seeded with 10 AVS and 10 AVR infections. A-B Incidence of 

AVS and AVR infections in two fitness scenarios: σ  = 1.05 or 0.95. C-D The daily number of 
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reported cases. E-F The daily number of influenza-positive isolates that are AVS and AVR with a 

testing capacity of 10 samples per day. G-H Posterior distribution of the fitness estimate σ  on each 

day. Circles and error bars indicate the posterior medians and the 95% credible intervals, 

respectively. I-J The posterior probability that AVR fitness is above 1. 
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Figure 3. Surveillance data for seasonal influenza A(H1N1) and fitness estimates for the 

oseltamivir-resistant strain during 2007-2008 in Canada, Luxembourg, United Kingdom, 

Germany, France, Japan, Netherlands, United States, Norway and Hong Kong. A The number of 

positive A(H1N1) virus isolates and the number of oseltamivir-sensitive and resistant A(H1N1) 

isolates over time in each population. B Fitness estimates for the oseltamivir-resistant A(H1N1) 

virus under three assumed generation time distributions. The pooled AVR fitness estimate (at the 

top) is obtained by assuming that AVR fitness was the same in all populations.  
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Figure 4. Retrospective real-time fitness estimate for the oseltamivir-resistant 

A(H1N1)pdm09 virus that circulated in Hokkaido, Japan during the 2013-2014 influenza 

season. A Data on influenza A(H1N1) activity and AVR surveillance. B Weekly fitness estimate 

using the same generation time distributions considered in Figure 3.  C The posterior probability 

that AVR fitness was above 1.
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Figure 5. Estimating AVR fitness and drug pressure on the AVS strain posed by large-scale 

antiviral prophylaxis. The epidemic parameters are the same as that in Figure 2 with intrinsic 

AVR fitness 0σ   =  0.95. We assume that antiviral prophylaxis reduces susceptibility by 81% and the 

prophylaxis coverage is 10%, 15% and 20% so that the drug pressure μ is 0.08, 0.12 and 0.16, 

respectively. Large-scale antiviral intervention is suspended after the posterior probability of σ > 1 

is greater than 0.9 for seven consecutive days. Cyan shade indicates the time period during which 

large-scale antiviral intervention is implemented. A The daily number of reported cases. B The daily 

number of influenza-positive isolates that are AVS and AVR with a testing capacity of 10 samples 

per day. C Posterior distribution of the AVR fitness estimate on each day. Circles and error bars 

indicate the posterior medians and the 95% credible intervals, respectively. D Posterior 

distribution of the estimates for drug pressure on the AVS strain at the baseline level (i.e. before 

large-scale antiviral interventions is suspended). E The posterior probability that AVR fitness is 

above 1. 



8 | P a g e  
 

References 

1. World Health Organization. WHO Guidelines for Pharmacological Management of Pandemic 

(H1N1) 2009: Influenza and Other Influenza Viruses: World Health Organization; 2009. 

2. National Audit Office. Access to clinical trial information and the stockpiling of Tamiflu. 

2013. 

3. Ives J, Carr J, Mendel D, Tai C, Lambkin R, Kelly L, et al. The H274Y mutation in the influenza 

A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely 

compromised both in vitro and in vivo. Antiviral research. 2002;55(2):307-17. 

4. Meijer A, Lackenby A, Hungnes O, Lina B, Van Der Werf S, Schweiger B, et al. Oseltamivir-

resistant influenza virus A (H1N1), Europe, 2007–08 season. Emerging infectious diseases. 

2009;15(4):552. 

5. Kramarz P, Monnet D, Nicoll A, Yilmaz C, Ciancio B. Use of oseltamivir in 12 European 

countries between 2002 and 2007--lack of association with the appearance of oseltamivir-resistant 

influenza A(H1N1) viruses. Euro Surveill. 2009;14(5):854-8. 

6. Stilianakis NI, Perelson AS, Hayden FG. Emergence of Drug Resistance during an Influenza 

Epidemic: Insights from a Mathematical Model. Journal of Infectious Diseases. 1998;177(4):863-73. 

7. Wu JT, Leung GM, Lipsitch M, Cooper BS, Riley S. Hedging against Antiviral Resistance 

during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy. PLoS 

Med. 2009;6(5):e1000085. 

8. Takashita E, Meijer A, Lackenby A, Gubareva L, Rebelo-de-Andrade H, Besselaar T, et al. 

Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013–

2014. Antiviral Research. 2015;117:27-38. 

9. Wu WL, Lau S-Y, Chen Y, Wang G, Mok BW-Y, Wen X, et al. The 2008–2009 H1N1 influenza 

virus exhibits reduced susceptibility to antibody inhibition: Implications for the prevalence of 

oseltamivir resistant variant viruses. Antiviral Research. 2012;93(1):144-53. 

10. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and 

Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008;5(3):e74. 

11. Wu JT, Ho A, Ma ESK, Lee CK, Chu DKW, Ho P-L, et al. Estimating Infection Attack Rates and 

Severity in Real Time during an Influenza Pandemic: Analysis of Serial Cross-Sectional Serologic 

Surveillance Data. PLoS Med. 2011;8(10):e1001103. 

12. Chunara R, Aman S, Smolinski M, Brownstein JS. Flu near you: an online self-reported 

influenza surveillance system in the USA. Online Journal of Public Health Informatics. 2013;5(1). 



9 | P a g e  
 

13. Wong JY, Wu P, Nishiura H, Goldstein E, Lau EHY, Yang L, et al. Infection Fatality Risk of the 

Pandemic A(H1N1)2009 Virus in Hong Kong. American Journal of Epidemiology. 2013;177(8):834-

40. 

14. Vink MA, Bootsma MCJ, Wallinga J. Serial Intervals of Respiratory Infectious Diseases: A 

Systematic Review and Analysis. American Journal of Epidemiology. 2014;180(9):865-75. 

15. Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Leang SK, et al. Characteristics of a 

Widespread Community Cluster of H275Y Oseltamivir-Resistant A(H1N1)pdm09 Influenza in 

Australia. Journal of Infectious Diseases. 2012;206(2):148-57. 

16. Takashita E, Kiso M, Fujisaki S, Yokoyama M, Nakamura K, Shirakura M, et al. 

Characterization of a Large Cluster of Influenza A(H1N1)pdm09 Viruses Cross-Resistant to 

Oseltamivir and Peramivir during the 2013-2014 Influenza Season in Japan. Antimicrobial Agents 

and Chemotherapy. 2015;59(5):2607-17. 

17. Govorkova EA, Baranovich T, Seiler P, Armstrong J, Burnham A, Guan Y, et al. Antiviral 

resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002–2012 

shows need for continued monitoring. Antiviral Research. 2013;98(2):297-304. 

18. Hai R, Schmolke M, Leyva-Grado VH, Thangavel RR, Margine I, Jaffe EL, et al. Influenza 

A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or 

transmissibility. Nat Commun. 2013;4. 

19. Lipsitch M, Cohen T, Murray M, Levin BR. Antiviral Resistance and the Control of Pandemic 

Influenza. PLoS Med. 2007;4(1):e15. 

20. McCaw JM, Wood JG, McCaw CT, McVernon J. Impact of emerging antiviral drug resistance 

on influenza containment and spread: influence of subclinical infection and strategic use of a 

stockpile containing one or two drugs. PLoS ONE. 2008;3. 

21. Alexander ME, Bowman CS, Feng Z, Gardam M, Moghadas SM, Röst G, et al. Emergence of 

drug resistance: implications for antiviral control of pandemic influenza. Proceedings of the Royal 

Society B: Biological Sciences. 2007;274(1619):1675-84. 

22. Halloran ME, Hayden FG, Yang Y, Longini IM, Monto AS. Antiviral effects on influenza viral 

transmission and pathogenicity: observations from household-based trials. Am J Epidemiol. 

2007;165. 

23. Wu JT, Lee CK, Cowling BJ, Yuen KY. Logistical feasibility and potential benefits of a 

population-wide passive-immunotherapy program during an influenza pandemic. Proceedings of 

the National Academy of Sciences. 2010;107(7):3269-74. 



10 | P a g e  
 

24. World Health Organization. Influenza A(H1N1) virus resistance to oseltamivir: World 

Health Organization; 2008 [Available from: 

http://www.who.int/influenza/patient_care/antivirals/oseltamivir_summary/en/. 

25. Tashiro M, McKimm-Breschkin JL, Saito T, Klimov A, Macken C, Zambon M, et al. 

Surveillance for neuraminidase-inhibitor-resistant influenza viruses in Japan, 1996–2007. Antivir 

Ther. 2009;14(6):751-61. 

26. Wu JT, Leung K, Perera RAPM, Chu DKW, Lee CK, Hung IFN, et al. Inferring Influenza 

Infection Attack Rate from Seroprevalence Data. PLoS Pathog. 2014;10(4):e1004054. 

27. World Health Organization. Laboratory methodologies for testing the antiviral susceptibility 

of influenza viruses  [Available from: 

http://www.who.int/influenza/gisrs_laboratory/antiviral_susceptibility/en/. 

28. Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of 

influenza oseltamivir resistance. Science. 2010;328(5983):1272-5. 

29. Chao DL, Bloom JD, Kochin BF, Antia R, Longini IM. The global spread of drug-resistant 

influenza. Journal of The Royal Society Interface. 2012;9(69):648-56. 

30. McCaw JM, McVernon J. Prophylaxis or treatment? Optimal use of an antiviral stockpile 

during an influenza pandemic. Mathematical Biosciences. 2007;209(2):336-60. 

 

View publication statsView publication stats

http://www.who.int/influenza/patient_care/antivirals/oseltamivir_summary/en/
http://www.who.int/influenza/gisrs_laboratory/antiviral_susceptibility/en/
https://www.researchgate.net/publication/311240175

