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Abstract: The thermal creep and relaxation of prestressing steel are crucial to the permanent loss of 

prestress in post-tensioned concrete structures after fire. Harmathy’s creep model is widely used to account 

for the irrecoverable thermal creep strain. In view of advances in steel manufacture, it is desirable to 

determine the relevant parameters of Harmathy’s creep model for common prestressing steel being used. 

Recently, Gales et al. found that the creep parameters obtained by Harmathy and Stanzak in the 1970s were 

out of date as the use of these parameters could not give accurate numerical results. They further identified 

the parameters through testing of prestressing steel to ASTM A417. This study further extended the work of 

Gales et al. Based on the steady state thermal creep and relaxation tests of prestressing steel to GB/T 5224 

(Grade 1860) and BS 5896 (Grade 1860) over wide stress ranges, the parameters of Harmathy’s thermal 

creep model were identified and calibrated. Using the approach of Maljaars et al., the lower limit of tertiary 

creep was estimated and the creep model was further fine-tuned to incorporate tertiary creep. Numerical 
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studies were conducted to examine the thermal creep and relaxation of prestressing steel at elevated 

temperatures using the enhanced creep model. The numerical predictions were found to agree well with the 

test results in respect of thermal creep and relaxation. In particular, predictions using the enhanced creep 

model with different sets of thermal creep parameters were compared with results of the thermal relaxation 

test conducted by MacLean, indicating different thermal creep resistance. 

 
Keywords: numerical model, prestressing steel, thermal creep, thermal relaxation  
 
1. Introduction 
 

Prestressing steel tendons in the form of strands or wires are important components in post-tensioned (PT) 

concrete structures, which enable the structures to achieve high load-carrying capacities and large span to 

depth ratios. In particular, the use of PT concrete slabs in buildings is becoming popular. However in view 

of the relatively small concrete covers provided to the tendons in slabs as compared to those in beams, once 

such slabs are subjected to fire, the steel tendons carrying high stresses are quite sensitive to the ensuing 

elevated temperatures causing their stresses to decrease because of the thermal elongation, mechanical 

degradation, and thermal creep and relaxation, which further reduce their load-carrying capacities. The 

mechanical properties of prestressing steel at elevated temperatures have been investigated by tests, mainly 

covering the elastic modulus, yield strength and ultimate strength [1-6]. It is well known that the 

mechanical properties degrade with increasing temperature. The thermal relaxation of prestressing steel has 

been investigated with emphasis on the permanent loss of stress [3, 7-10]. 

The thermal creep of structural steel was addressed by Harmathy [11] in predicting the deformation of steel 

structures in fire. To solve the problem, a comprehensive creep model was proposed based on Dorn’s creep 

theory [11]. Moreover, a series of thermal creep tests were conducted by Harmathy and Stanzak [12] to 

identify the parameters of the creep model, in which prestressing steel to ASTM A421 (Grade 1725) was 
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investigated and its thermal creep parameters were identified as well. Recently, based on the creep model 

and thermal creep parameters of prestressing steel to ASTM A421 (Grade 1725), MacLean [3], Gales [7] 

and Gales et al. [8, 10] proposed a method for prediction of the thermal relaxation of prestressing steel 

strands with validation against their thermal relaxation tests. However, comparison with the test results 

indicates the predictions have overestimated the thermal relaxation, which suggests that the thermal creep 

parameters need updating. Afterwards, steady state and transient thermal tensile tests of prestressing steel to 

ASTM A416 (Grade 1860) and BS 5896 (Grade 1860) were conducted to identify the thermal creep 

parameters of Harmathy’s creep model by Gales et al. [13, 14]. Besides, the thermal creep of prestressing 

steel to GB/T 5224 (Grade 1770) was investigated by Zhang and Zheng by steady state tests, proposing an 

empirical formula for estimating thermal creep strain [15]. However, in the determination of thermal creep 

parameters, Gales et al. [13, 14] assumed the same value of thermal creep activation energy obtained by 

Harmathy and Stanzak [12] for prestressing steel to ASTM A421 (Grade 1725), and hence the results might 

need further refinement. The empirical formula proposed by Zhang and Zheng may also be improved by 

the development of a proper theoretical model. Besides, the prestressing steel made in Mainland China to 

GB/T 5224 (Grade 1860) [16] and that to BS 5896 (Grade 1860) [17] widely used in many places including 

Hong Kong are in need of a thorough investigation of thermal creep and relaxation properties. Therefore, 

such investigations will be desirable for providing accurate numerical predictions. 

The present study further extended the work by Gales et al. [8-10]. Steady state thermal creep and 

relaxation tests of prestressing steel to GB/T 5224 (Grade 1860) and BS 5896 (Grade 1860) were 

conducted. Based on Harmathy’s creep model, the thermal creep parameters were identified using the test 

results. As Harmathy’s creep model cannot account for tertiary creep, the model has been further modified 

in order that tertiary creep can be explicitly incorporated. This will help structural designers to better 
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understand and model the performance of prestressing strands at elevated temperatures. 

 
2. Creep theory and existing model 

Creep is the time-dependent plastic strain under constant stress and temperature. Prestressing steel 

invariably contains some defects of microstructure, which may cause movement of lattice dislocations 

under high stresses or diffusion under elevated temperatures. Thermal creep deformation can take two 

forms, namely solid state diffusion dominated creep, and glide or sliding dominated creep [18]. The former 

mechanism occurs at lower stress but higher temperature, and the creep strain is governed by the rate of 

solid state diffusion in the bulk of crystal grains or along grain boundaries, or by extensive 

diffusion-assisted dislocation climb for larger grain sizes. The latter mechanism occurs at higher stress but 

lower temperature, and the creep strain is governed by dislocation motion assisted by vacancy diffusion, 

dislocation slip over crystallographic planes which prevail at room temperature, with individual grains 

sliding over each other under the conditions of higher stress and temperature [18]. 

The three stages of creep [19] are shown in Fig. 1(a). The first stage or primary creep develops rapidly but 

at decreasing strain rate. The second stage known as secondary creep or steady-state creep develops linearly 

at a strain rate that remains nearly constant. The third stage or tertiary creep is characterized by accelerated 

strain rate until rupture. Secondary creep is better understood among various stages at elevated 

temperatures, and the creep rate obeys Arrhenius’s Law given by 

 𝜕𝜀𝑐𝑟
𝜕𝑡

∝ exp �− 𝑄𝑐
𝑅𝑇�
�     𝑑𝜎

𝑑𝑡
= 0 (1) 

where 𝜀𝑐𝑟  is the creep strain; t is time; 𝑄𝑐  is the activation energy for thermal creep, which is 

approximately the activation energy for lattice self-diffusion when it is above half of the melting 

temperature (in Kelvin); R is the gas constant; 𝑇� is the temperature in Kelvin; and 𝜎 is the creep stress in 

MPa. 
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The temperature-compensated time 𝜃 according to Dorn’s creep theory as presented by Harmathy [11] is  

 𝜃 = ∫ exp �− 𝑄𝑐
𝑅𝑇�
�𝑡

0 𝑑𝑡 (2) 

Differentiating Eq. 2 with respect to time 𝑡, and substituting into Eq. (1) give 

 𝜕𝜀𝑐𝑟
𝜕𝜃

= 𝜕𝜀𝑐𝑟
𝜕𝑡

exp �𝑄𝑐
𝑅𝑇�
� ≡ 𝑍 (3) 

where 𝑍 is the Zener-Hollomon parameter [20] as shown in Fig. 1(b), which is taken as a function of 

stress and independent of temperature. The dimensionless parameter 𝜀𝑐𝑟,0 in Fig. 1(b) can be obtained by 

extending the straight line for secondary creep to the vertical axis, which is uniquely determined by stress 

and also independent of temperature. 

 

(a) Variation of creep strain with time 
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(b) Variation of creep strain with temperature-compensated time 

Fig. 1. Creep strain at constant stress and temperature [19]. 

 

Harmathy [11] has proposed two equations to describe the primary thermal creep strain using the creep 

parameter 𝜀𝑐𝑟,0 as 

 1
𝑍
𝑑𝜀𝑐𝑟
𝑑𝜃

= coth �ln 2 𝜀𝑐𝑟
𝜀𝑐𝑟,0

�    𝑑𝜎
𝑑𝑡

= 0 (4) 

 1
𝑍
𝑑𝜀𝑐𝑟
𝑑𝜃

= coth2 � 𝜀𝑐𝑟
𝜀𝑐𝑟,0

�    𝑑𝜎
𝑑𝑡

= 0 (5) 

While Eq. 4 can be integrated to give  

 𝜀𝑐𝑟 = 𝜀𝑐𝑟,0

ln 2
cosh −1(2𝑍𝜃/𝜀𝑐𝑟,0)    𝑑𝜎

𝑑𝑡
= 0 (6) 

Eq. 5 cannot be integrated explicitly, but it can be expressed in terms of the creep parameter Z in 

incremental form over a time interval as 

 ∆𝜀𝑐𝑟 = 𝑍coth2 � 𝜀𝑐𝑟
𝜀𝑐𝑟,0

� ∆𝜃    𝑑𝜎
𝑑𝑡

= 0 (7) 

However, Harmathy’s model does not account for tertiary creep. Hence the approach proposed by Maljaars 

et al. [21] for aluminium alloys is adopted here to consider tertiary creep. As there exists a linear 

relationship between the creep strain rate and the creep strain at the tertiary creep stage, the modification is 

presented as 

 ∆𝜀𝑐𝑟 = 𝑐 ∙ 𝜀𝑐𝑟    𝜀𝑐𝑟 ≥ 𝜀𝑙𝑖𝑚 (8) 
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where 𝑐 is a constant; 𝜀𝑙𝑖𝑚 is the creep strain at the start of tertiary creep; and 𝜀𝑙𝑖𝑚 is taken to be 

approximately a constant independent of load or temperature condition for simplicity [21]. Assuming 

continuity of the creep strain rate at the initiation of tertiary creep [21], the constant c can be obtained as 

 𝑐 = ∆𝜀�𝑐𝑟
𝜀𝑙𝑖𝑚

 (9) 

where ∆𝜀𝑐̃𝑟 is the creep strain rate of secondary creep. 

Model-1 based on Eq. 6 and Model-2 based on Eq. 7 both take tertiary creep into account for total creep 

strain not less than 𝜀𝑙𝑖𝑚 in Eq. 8. Both models will be further investigated in the following sections. 

 
3. Materials and testing 
 
3.1 Materials 
 

As prestressing strands used in practice are reasonably long compared to their nominal diameters and the 

relative slip among individual wires in a strand is normally considered negligible, only the central core 

wires have been used for thermal creep and relaxation tests to take advantage of the available precision 

equipment. The prestressing steel to GB/T 5224 (Grade 1860) consists of 7-wire steel strands with a 

nominal diameter of 12.7 mm supplied by Tianjin Da Qiang Steel Co. Ltd. in China. The central core wire 

has a diameter of 4.35 mm. The prestressing steel to BS 5896 (Grade 1860) consists of 7-wire steel strands 

with a nominal diameter of 15.7 mm supplied by Wuxi Jin Yang Metal Products Co. Ltd. in China. The 

central core wire has a diameter of 5.39 mm. The chemical compositions of the strands as shown in Table 1 

may affect the thermal creep properties, possibly because of different microstructures [18]. Each specimen 

of prestressing steel has a total length of 800 mm and a clear length of 650 mm between grips after being 

mounted in the testing machine. The basic mechanical properties of both types of prestressing steel at 

ambient and elevated temperatures obtained from tests are shown in Table 2 [22].  
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Table 1. Chemical composition of prestressing steel tested (%) 

  
GB/T5224  

(Grade 1860) 

BS 5896 

(Grade 1860) 

BS 5896 

(Grade 1860) 

[13] 

ASTM A416  

(Grade 1860) 

[13] 

ASTM A421  

(Grade 1725) 

[11] 

C 0.8 0.8 0.9 0.8 0.79 

Cr - 0.13 0.011 0.04 - 

Mn 0.73 0.74 0.66 0.87 0.78 

P 0.015 <0.01 0.007 0.023 0.012 

Si 0.2 0.41 0.25 0.45 0.19 

S 0.008 0.016 0.014 0.012 0.031 

Ni - - 0.021 - - 

Cu - - 0.011 - - 

 
 

Table 2. Basic mechanical properties of prestressing steel at elevated temperatures 

Temperature 

(°C) 

GB/T 5224 (Grade 1860) BS 5896 (Grade 1860) 

Elastic 

modulus 

(GPa) 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Elastic 

modulus 

(GPa) 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

25 187 1705 1900 195 1741 1952 

100 190 1679 1895 184 1696 1920 

200 181 1514 1834 183 1577 1853 

300 166 1351 1512 167 1356 1472 

350 160 1154 1241 159 1249 1292 

400 155 1051 1124 155 1056 1108 

500 108 544 603 111 524 623 

600 71 267 279 91 201 264 

700 14 83 94 40 57 82 

800 7 46 67 35 44 67 

Note: Yield strength is taken as the stress at 0.2% offset strain. 
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3.2 Test equipment 
 

The thermal creep and relaxation tests were carried out employing an MTS 810 Universal Testing Machine 

with a maximum tensile capacity of 250 kN. The series 647 hydraulic wedge grips were used to hold the 

specimen in place during testing and to provide a constant hydraulically actuated gripping force regardless 

of the applied test loads. The heating device used in the study was an MTS Model 653 High-Temperature 

Furnace with a maximum temperature of 1400°C and a maximum heating rate of 100°C /min, as shown in 

Fig. 2. The furnace had an overall height of 220 mm and a height of hot zone of 185 mm with insulation 

made of polycrystalline alumina fibre material. Fig. 2(a) also shows the high-temperature extensometer 

rods inserted into the furnace through holes in the insulation for measurement of strains. Similarly, Fig. 2(b) 

shows the external thermocouple inserted into the furnace through a hole in the insulation at the back of 

furnace. The high-temperature extensometer has a gauge length of 25 mm and a travel range of 2.5 mm. Its 

rods with the standard V-chisel ends were directly attached to the central part of the specimen.  

 

 
(a) Front view of furnace showing extensometer 
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(b) Rear view of furnace showing thermocouple 

Fig. 2. High-temperature furnace used. 

 

The schematic diagram in Fig. 3 shows all the components related to the test. In particular, the specimen 

went through the furnace with the ends gripped by the upper and lower grips. The external thermocouple 

was directly attached to the specimen at the middle of the gauge length of the extensometer. To maintain a 

stable ambient environment immediately outside the furnace, a chamber cover was used to enclose a space 

called the environmental chamber including the furnace, upper and lower grips as shown in the diagram, 

where a ventilation window was provided in the chamber cover to allow ventilation. Nevertheless, 

fluctuations of temperature were observed with a maximum range of about 6°C. The temperatures reported 

are average temperature with an error of about ±3°C. 
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Fig. 3. Schematic diagram of test setup. 

 

 
3.3 Test procedures 
 

The thermal creep tests were carried out strictly in compliance with ASTM E139-11 [23]. Typically, the 

specimen was firstly mounted in the testing machine with the two ends gripped, and then the furnace was 

closed with the extensometer and thermocouple attached to the specimen for measurement. Secondly, the 

furnace was heated at a controlled rate depending on the target temperature 𝑇𝑡 (10°C/min for 𝑇𝑡 ≤ 300℃; 

15°C/min for 300℃ < 𝑇𝑡 ≤ 500℃; and 20°C/min for 𝑇𝑡 > 500℃) to ensure reasonable time for heating, 

during which the force in the specimen was maintained zero automatically. When the target temperature 
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was reached as indicated by the measurement of external thermocouple, the heating rate was set to be zero 

and the furnace temperature was kept approximately constant. Thirdly, after a period of 30 min for 

temperature stability as recorded by the external thermocouple, a uniform temperature distribution across 

the sectional area of the specimen was nearly achieved. Afterwards, the specified tensile force was applied 

to the specimen in 1 min and was then kept constant for 2 hours by force-control, during which the strain 

was recorded by the extensometer until the specimen ruptures or the test was ended manually, whichever 

was earlier. 

The thermal relaxation tests were carried out to ASTM E328-02 [24] with some modifications. Firstly, the 

specimen was mounted in the testing machine with the two ends gripped, and then the furnace was closed 

with the thermocouple attached to the specimen. Secondly, the furnace was heated at a controlled rate of 

10°C/min to 20°C/min depending on the target temperature as before, during which the force in the 

specimen was maintained zero automatically. When the target temperature was reached as indicated by the 

measurement of external thermocouple, the heating rate was set to be zero and the furnace temperature was 

automatically kept constant. Thirdly, after a period of 30 min for temperature stability, the specified initial 

tensile force was applied to the specimen in 1 min and then the clear length between grips was kept 

constant for 2 hours by displacement-control, during which the tensile force in the specimen was recorded. 

Note that the clear distance between grips was 650 mm while the heated length was 185 mm only as 

governed by the internal dimensions of the furnace. 

This paper reports the results from 22 tests of specimens to GB/T 5224 and 26 tests of specimens to BS 

5896. In the tests, minor variation of the furnace temperature was unavoidable. As the central part of 

temperature record that corresponded roughly to secondary creep tended to be more stable, the average 

temperature and standard deviation for each case were worked out and reported. The secondary creep rate 
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was then determined accordingly using Fig. 4. 

 
4. Thermal creep 
 

The thermal creep tests of prestressing steel to GB/T 5224 (Grade 1860) were conducted at constant 

stresses of 0.7𝑓𝑢 , 0.6𝑓𝑢 , 0.5𝑓𝑢 , 0.4𝑓𝑢 , 0.3𝑓𝑢 , 0.2𝑓𝑢 , 0.1𝑓𝑢 , 0.05𝑓𝑢  and 0.03𝑓𝑢 , where the ultimate 

strength at ambient temperature was 𝑓𝑢 = 1900 MPa. The nominal test temperatures were 300°C, 335°C, 

350°C, 375°C, 400°C, 425°C, 450°C, 500°C, 600°C and 650°C. For the prestressing steel to BS 5896 

(Grade 1860), the applied constant stresses were 0.70𝑓𝑢 , 0.65𝑓𝑢 , 0.60𝑓𝑢 , 0.55𝑓𝑢 , 0.50𝑓𝑢 , 0.45𝑓𝑢 , 

0.40𝑓𝑢, 0.35𝑓𝑢, 0.30𝑓𝑢, 0.25𝑓𝑢, 0.20𝑓𝑢, 0.15𝑓𝑢 and 0.10𝑓𝑢 , where the ultimate strength at ambient 

temperature was 𝑓𝑢 = 1952 MPa. The nominal test temperatures were 300°C, 350°C, 375°C, 400°C, 

450°C, 500°C and 550°C. It was necessary to keep the applied stress on a test specimen below its yield 

strength at test temperature, which was taken as the stress at 0.2% offset strain. While the applied stress can 

be controlled with precision, it is more difficult to control the furnace temperature accurately. The test 

temperatures reported are the average values based on measurements. 

 
4.1 Determination of thermal creep parameters 
 

Based on the test results, the thermal creep parameters of Harmathy’s thermal creep model were determined. 

The activation energy for thermal creep 𝑄𝑐 was determined at various elevated temperatures with the same 

applied constant stress. The Zener-Hollomon parameter 𝑍 was determined for various applied constant 

stresses at the same elevated temperature.  

The relations between the logarithms of thermal creep rates and the reciprocals of the corresponding 

temperatures (in Kelvin) for various applied constant stresses are shown in Fig. 4. There is an approximate 

linear relation for both types of prestressing steel, which further confirms that Eq. 1 is applicable and the 
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slope of each curve is −𝑄𝑐 𝑅⁄ . Obviously, the activation energy for thermal creep 𝑄𝑐 is nearly constant 

for various constant stresses, which confirms that 𝑄𝑐 is independent of temperature (for those above half 

of melting temperature in Kelvin) and stress (except for extremely high stresses) as presented by Harmathy 

[10]. It also indicates that thermal creep is dominated by the creep mechanism of solid state diffusion at 

elevated temperatures. Based on the average slope of the curves for prestressing steel to GB/T 5224 (Grade 

1860) as shown in Fig. 4(a), 𝑄𝑐 = 347.71 kJ/mol was obtained. Similarly, Fig. 4(b) gives 𝑄𝑐 = 338.44 

kJ/mol for prestressing steel to BS 5896 (Grade 1860). 

 
(a) Prestressing steel to GB/T 5224 (Grade 1860) 

 
(b) Prestressing steel to BS 5896 (Grade 1860)  

Fig. 4. Relation between secondary creep rate and reciprocal of temperature under various constant 
stresses. 
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Based on the value of activation energy for thermal creep 𝑄𝑐 obtained, the Zener-Hollomon parameter 𝑍 

can be calculated from Eq. 3. The effects of stress on the temperature-compensated secondary thermal 

creep rate can be examined by plotting the logarithm of 𝑍 against the corresponding stress as shown in Fig. 

5, which shows that 𝑍 is monotonically increasing and stress-dependent. Hence, there is no simple model 

to describe the relation between 𝑍 and the stress. Based on the test results as shown in Fig. 5(a), the 

relation between 𝑍 and the stress for prestressing steel to GB/T 5224 (Grade 1860) within the stress range 

from 57 MPa to 1330 MPa was obtained by regression analysis as 

 Z = 3.63155 × 1016exp (0.50851𝜎0.56095)         57MPa ≤ 𝜎 < 950 𝑀𝑃𝑎 (10a) 

 Z = 6.8317 × 1017exp (0.02199𝜎)                      950MPa ≤ 𝜎 ≤ 1330 MPa (10b) 

Similarly, based on the test results as shown in Fig. 5(b), the relation for prestressing steel BS 5896 (Grade 

1860) within the stress range from 195 MPa to 1367 MPa was obtained as 

 Z = 4.53651 × 1018exp (0.01677𝜎)                                 195 MPa ≤ 𝜎 < 879 𝑀𝑃𝑎 (11a) 

 Z = 1.0432 × 1025exp (2.61801 × 10−60𝜎19.70602)     879 MPa ≤ 𝜎 < 1074 𝑀Pa (11b) 

 Z = 2.55135 × 1013exp (0.02626𝜎)                               1074 MPa ≤ 𝜎 ≤ 1367 MPa (11c) 

 
(a) Prestressing steel to GB/T 5224 (Grade 1860) 
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(b) Prestressing steel to BS 5896 (Grade 1860) 

Fig. 5. Relation between temperature-compensated secondary thermal creep rate and stress. 

 

The dimensionless parameter 𝜀𝑐𝑟,0 was determined by extending the straight line for secondary creep in 

Fig. 1 to the axis for creep strain. Based on the test results, the values of 𝜀𝑐𝑟,0 were obtained for various 

stresses and plotted in Fig 6 showing more scatter of data. To describe the effects of stress on 𝜀𝑐𝑟,0 for 

prestressing steel to GB/T 5224 (Grade 1860), an empirical formula was obtained from regression using the 

data shown in Fig. 6(a) as 

 εcr,0 = 0.00111 + 1.08242 × 10−15σ4.14132          57 MPa ≤ σ ≤ 1330 MPa (12) 

Similarly, an empirical formula was obtained from the data shown in Fig. 6(b) as 

 εcr,0 = 0.00123 + 3.81336 × 10−42σ12.52348       195 MPa ≤ σ ≤ 1367 MPa (13) 
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(a) Prestressing steel to GB/T 5224 (Grade 1860) 

 
(b) Prestressing steel to BS 5896 (Grade 1860) 

Fig. 6. Relation between 𝜀𝑐𝑟,0 and stress. 

 

In view of the extremely large variations of Z as evident from the semi-log plot in Fig. 5, the agreement 

between the proposed empirical equation and test data was quantified in terms of the error of ln(Z). Tables 

3 and 4 show the results for prestressing steel to GB/T 5224 and BS 5896 respectively. Theoretically, Z 

values from tests under the same stress should be identical, but some Z values may slightly deviate from 

others due to test errors or material defects. This may further increase or offset the percentage errors of ln(Z) 

in Tables 3 and 4 with the maximum values of 1.16% and 0.44% respectively. The agreement can be 

considered reasonably good. Actually, the percentage errors are induced by test data scatter and regression 
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fitting, and these percentage errors may cause certain discrepancies between model predictions and test 

data. 

Table 3. Test results of prestressing steel to GB/T 5224 

Stress (MPa) 
Temperature (°C) ln𝑍 

Average Std. deviation Test Equation Error 
1330 295.0 1.5 70.3463 70.3122 -0.05% 
1330 300.0 1.7 70.3472 70.3122 -0.05% 
1140 336.8 0.6 65.9924 66.1341 0.21% 
950 336.2 0.4 62.2534 61.9560 -0.48% 
950 338.3 2.0 61.7647 61.9560 0.31% 
950 351.1 1.4 61.9027 61.9560 0.09% 
950 368.2 1.8 61.9717 61.9560 -0.03% 
760 367.5 1.5 59.2493 59.1345 -0.19% 
760 380.4 0.5 59.3918 59.1345 -0.43% 
760 404.4 0.3 59.3234 59.1345 -0.32% 
570 404.3 0.5 55.3602 56.0044 1.16% 
570 427.9 0.5 55.6487 56.0044 0.64% 
570 459.4 1.1 55.6177 56.0044 0.70% 
380 493.8 1.1 52.7253 52.3684 -0.68% 
190 490.2 1.4 47.8115 47.7819 -0.06% 
190 515.0 1.8 48.2634 47.7819 -1.00% 
190 585.0 1.5 47.8184 47.7819 -0.08% 
95 592.5 3.3 44.5924 44.6729 0.18% 
95 592.4 0.3 44.8195 44.6729 -0.33% 
57 596.7 1.4 43.0967 43.0430 -0.12% 
57 604.1 0.7 42.8078 43.0430 0.55% 
57 646.7 0.6 42.9244 43.0430 0.28% 
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Table 4. Test results of prestressing steel to BS 5896 

Stress 
(MPa) 

Temperature (°C) ln𝑍 

Average Std. deviation Test Equation Error 
1367 310.0 1.5 66.8142 66.7679 -0.07% 
1367 311.2 1.0 66.7486 66.7679 0.03% 
1270 304.7 1.0 64.0940 64.2201 0.20% 
1171 356.0 0.9 61.7663 61.6199 -0.24% 
1171 360.6 1.5 61.6181 61.6199 0.00% 
1074 352.1 0.8 59.0092 59.0092 0.00% 
976 350.1 0.6 57.9223 57.8193 -0.18% 
976 371.7 0.6 57.7130 57.8193 0.18% 
976 376.6 0.6 57.8347 57.8193 -0.03% 
879 374.5 1.1 57.5576 57.6323 0.13% 
879 373.4 1.2 57.7216 57.6323 -0.15% 
879 391.5 0.7 57.6134 57.6323 0.03% 
781 403.5 1.1 55.9299 56.0550 0.22% 
781 391.2 0.9 55.8933 56.0550 0.29% 
684 397.4 1.2 54.4635 54.4296 -0.06% 
684 446.5 0.3 54.6234 54.4296 -0.35% 
586 444.3 1.1 52.9987 52.7863 -0.40% 
488 444.3 0.8 51.2050 51.1455 -0.12% 
488 497.0 0.7 51.3550 51.1455 -0.41% 
488 496.5 0.4 51.3698 51.1455 -0.44% 
391 495.2 0.5 49.7178 49.5143 -0.41% 
293 488.3 0.7 47.7763 47.8730 0.20% 
293 491.7 0.4 47.6770 47.8730 0.41% 
293 545.1 0.4 47.7473 47.8730 0.26% 
293 550.7 0.9 47.6750 47.8730 0.42% 
195 547.0 0.7 46.2172 46.2257 0.02% 

 

 
4.2 Model predictions 
 

Based on the thermal creep parameters obtained above, Model-1 and Model-2 as elaborated by Wei and Au 

[25] were used to predict the thermal creep strain of prestressing steel under constant stresses and elevated 

temperatures. Besides, tertiary creep was also predicted with the lower limit of tertiary creep strain being 

taken approximately as 0.02 (i.e. 𝜀𝑙𝑖𝑚 = 0.02) for the stress and temperature ranges tested. Theoretically, 

the test data under the same constant stress should follow exactly the same temperature-compensated 
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thermal creep curve. However, some test data may deviate from others to some extent due to test errors, 

material defects or slightly different creep mechanisms at different elevated temperatures.  

Figs. 7 and 8 show the model predictions based on test data of prestressing steel to GB/T 5224 and BS 5896, 

respectively. Fig. 7(a) shows that model prediction was compared with the tests data under the constant 

stress of 760MPa, in which good agreement was achieved with the test data at temperatures of 404.4°C and 

367.5°C. However, the test data at temperature of 380.4°C slightly deviates from the others possibly due to 

test errors induced by temperature fluctuation in the furnace. Fig. 7(b) shows the model prediction and test 

data under the constant stress of 950MPa, in which relatively good agreement was achieved at various 

elevated temperatures in spite that the test data are slightly scattered. Fig. 8(a) shows that good agreement 

was achieved between the model prediction and test data under the constant stress of 684MPa, and tertiary 

creep was approximately predicted as well. Still, Fig. 8(b) shows model prediction agrees well with the test 

data under the constant stress of 976MPa at various elevated temperatures. Thus, the model predictions are 

relatively accurate. More importantly, the models with the determined parameters were further verified in 

predicting thermal relaxation of prestressing steel at elevated temperatures. 

 

(a) Test data under constant stress of 760MPa 
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(b) Test data under constant stress of 950MPa 
Fig. 7. Model predictions based on the test data of prestressing steel to GB/T 5224 

 

 

(a) Test data under constant stress of 684MPa 
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Test data under constant stress of 976MPa 
Fig. 8. Model predictions based on the test data of prestressing steel to BS 5896 

 

 
5. Thermal relaxation 
 

To verify the applicability of the thermal creep models and determined parameters to the thermal relaxation 

behaviour of prestressing steel, thermal relaxation tests of prestressing steel were conducted. Table 5 shows 

tests of six regular cases and a repeated case carried out on prestressing steel to GB/T 5224 (Grade 1860) 

with the initial stress from 186MPa to 1325MPa at elevated temperatures from 300°C to 600°C. Similarly, 

Table 6 shows tests of six regular cases and a repeated case carried out on prestressing steel to BS 5896 

(Grade 1860) with the initial stress from 488MPa to 1365MPa at elevated temperatures from 300°C to 

500°C. Analysis using the numerical models took into account the heated length and the total tested length, 

as well as their difference in temperature and tendency of thermal creep. As the measured temperatures of 

the parts of total tested length outside the heated length were normally below 50°C at which temperature 

thermal creep could be considered negligible, the overall behaviour of the test was governed by the thermal 

creep of heated length inside the furnace, as verified by Gales’ group [7-10]. The stresses after 2 hours of 
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relaxation obtained from tests and numerical models are presented in Tables 5 and 6 as well as Fig. 9. Most 

of the model predictions have good agreement with the test data. In comparison, numerical modelling is 

more accurate in relaxation tests than in creep tests, as errors in creep modelling in the former do not 

propagate as much as in the latter. Actually relaxation is more relevant to prestressed concrete structures as 

the total strain is almost unchanged. In particular, a higher creep strain tends to reduce the tendon stress in 

this case, thereby relieving further increase in creep strain. 

 

Table 5. Thermal relaxation tests of prestressing steel to GB/T 5224 (Grade 1860) 

Cases 
Nominal 

Temp. (°C) 

True temp. 

(°C) 

Initial stress 

(MPa) 

Stress after 2 hours (MPa) 

Test Model-1 Model-2 

Case-1 300 289.8 1325 1013 1073.19 1096.86 

Case-2 350 352.6 1134 755 736.54 773.35 

Case-2* 350 345.2 1136 767 780.20 819.73 

Case-3 400 400.2 943 459 476.28 491.92 

Case-4 435 436.6 758 333.7 316.60 329.60 

Case-5 500 505.9 378 64.3 114.68 125.85 

Case-6 600 597.1 186 13.7 0.16 5.58 

Note: * indicates repeated test 
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Table 6. Thermal relaxation tests of prestressing steel to BS 5896 (Grade 1860) 

Cases 
Nominal 

Temp. (°C) 

Actual 

Temp. (°C) 

Initial stress 

(MPa) 

Stress after 2 hours (MPa) 

Test Model-1 Model-2 

Case-1 300 296.6 1365 1158 1185 1205 

Case-2 350 347.1 1075 944 955 961 

Case-2* 350 348.9 1074 951 944 951 

Case-3 400 394.0 974 583 619 632 

Case-4 400 396.2 878 577 604 618 

Case-5 450 448.0 586 379 347 360 

Case-6 500 498.7 488 124 137 148 

Note: * indicates repeated test 

 

 

 
(a) Prestressing steel to GB/T 5224 (Grade 1860) 
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(b) Prestressing steel to BS 5896 (Grade 1860)  

Fig. 9. Thermal stress relaxation under various initial stresses and constant temperatures 

 

Results shown in Fig. 9(a) are mostly satisfactory except that the residual stresses for Case-1 and Case-5 

predicted numerically are slightly higher than the test results. Results of the repeated tests agree very well 

with each other as demonstrated by the final residual stresses of 755 MPa for Case-2 and 767 MPa for 

Case-2*. Besides, predictions from Model-1 are always slightly lower than those from Model-2, because 

the thermal creep predicted by Model-2 is slightly larger than that predicted by Model-1 during primary 

creep. 

Similarly in Fig. 9(b), results of the repeated tests agree very well with each other as demonstrated by the 

final residual stresses of 944 MPa for Case-2 and 951MPa for Case-2*. Interestingly, Case-3 and Case-4 

have nearly the same temperature, i.e. 394°C and 396.2°C respectively, while their residual stresses are 

quite close to each other after a period of time, even though the former has a higher initial stress. This 

phenomenon indicates that thermal creep occurs mainly in a short time after the beginning of relaxation at a 

constant elevated temperature, and then thermal creep becomes smaller and smaller due to the gradual 

decrease of stress. The predictions from Model-1 are still slightly lower than those from Model-2 for the 

same reason. 
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6. Discussions 

The test and numerical results shown in Figs. 7 to 8 confirm that the thermal creep parameters obtained are 

relatively accurate to predict the thermal creep. Besides, the thermal relaxation predicted by the numerical 

models agree well with the thermal relaxation test results, which further confirms that the thermal creep 

models and determined parameters can accurately predict the thermal relaxation with different boundary 

conditions as well. Table 7 gives a summary of thermal creep parameters of prestressing steel available in 

the literature [12, 14], which are based on the same value of thermal creep activation energy 𝑄𝑐. However, 

this may be unreasonable and it may result in inaccurate temperature-compensated creep rate 𝑍. Besides, 

the applicable stress ranges are 690-1000MPa for prestressing steel to ASTM A416 (Grade 1860) and 

690-1200MPa for that to BS 5896 (Grade 1860). Extrapolation outside these stress ranges may yield further 

errors. 

The thermal creep parameters obtained in this study and those as shown in Table 5 were used to predict the 

transient thermal relaxation based on the tests conducted by MacLean [3]. Prestressing steel to ASTM A416 

(Grade 1860) was used in the transient thermal relaxation test with the initial stress of 1008MPa. A heating 

rate of 10 °C /min was applied on the heated region until the target temperature of 400°C was reached. The 

temperature was then kept constant for a period of 90 min, and it was finally cooled down. Under the 

heating-soaking-cooling regime, the variations of stress were recorded. The thermal creep parameters 

obtained in this study and those from previous work as shown in Table 7 were used to predict the residual 

stress based on thermal creep Model-1. The predicted and test results are shown in Fig. 10, which shows 

that BS 5896 (Grade 1860) [14] has the highest predicted residual stress and ASTM A421 (Grade 1725) [12] 

has the lowest predicted residual stress. The predictions for ASTM A416 (Grade 1860) [14] are quite close 

to those for BS 5896 (Grade 1860) in this study, and both are the closest to but slightly above the test 
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results. The predictions for GB/T 5224 (Grade 1860) are relatively close to but slightly below the test 

results. Results show that BS 5896 (Grade 1860) [14] and ASTM A421 (Grade 1725) [12] have the highest 

and lowest thermal creep resistance, respectively. ASTM A416 (Grade 1860) [14] and BS 5896 (Grade 

1860) of this study have similar thermal creep resistance, which is above that of GB/T 5224 (Grade 1860) 

of this study. 

 

Table 7. Thermal creep parameters of prestressing steel in literature 

Prestressing steel Thermal creep parameters 

ASTM A421  

(Grade 1725) [12] 

Z = 195.27 × 106𝜎3               for σ ≤ 172MPa 

Z = 8.21 × 1013𝑒0.0145𝜎            for 172 < 𝜎 ≤ 690MPa 

𝜀𝑐𝑟,0 = 9.262 × 10−5𝜎0.67           for σ ≤ 690MPa 

𝑄𝑐 𝑅⁄ = 30556                                                     

ASTM A416  

(Grade 1860) [14] 
Z = 2.7 × 1013𝑒0.012𝜎            for 690 < 𝜎 < 1000 MPa 

𝜀𝑐𝑟,0 = 1.13 × 10−7𝜎1.63          for 690 < 𝜎 < 1000 MPa 

𝑄𝑐 𝑅⁄ = 30556                                                                                                                     

BS 5896  

(Grade 1860) [14] 
Z = 1.60 × 1012𝑒0.013𝜎          for  690 < 𝜎 < 1000 MPa 

Z = 3.42 × 104𝑒0.30𝜎            for  1000 < 𝜎 < 1200 MPa        

𝜀𝑐𝑟,0 = 1.51 × 10−14𝜎3.90        for  690 < 𝜎 < 1200 MPa 

𝑄𝑐 𝑅⁄ = 30556                                                                                                                     
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Fig. 10. Transient thermal relaxation based on tests by MacLean [3] 

 
7. Conclusions 
 

Thermal creep tests of prestressing steel of Grade 1860 to GB/T5224 and BS 5896 were conducted under 

constant stresses of 57-1330 MPa and 195-1367 MPa respectively in accordance with ASTM E139-11 over 

wide stress ranges. A test was stopped when the tendon ruptured or after a period of 2 hours since load 

application, whichever came first. The parameters of Harmathy’s creep model were identified and 

calibrated based on the test results with a view to extending the recent work of Gales et al. Moreover, 

tertiary creep was explicitly taken into account adopting the method proposed by Maljaars et al. [21] for 

aluminium alloys, and the lower limit of tertiary creep was roughly estimated.  

Numerical studies were carried out based on the thermal creep parameters obtained and the enhanced 

thermal creep model taking into account tertiary creep. The model predictions agree well with the creep test 

results including tertiary creep, which verifies the validity of the enhanced thermal creep model for the 

thermal creep behaviour of prestressing steel at elevated temperatures. Moreover, thermal relaxation tests 

of prestressing steel of Grade 1860 to GB/T 5224 and BS 5896 were conducted. Again, the model 

predictions agree well with the thermal relaxation test results, which verifies the applicability of enhanced 

thermal creep model to the prediction of thermal relaxation. 
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Parametric studies were carried out adopting different sets of thermal creep parameters for Harmathy’s 

creep model including those obtained in this study and others available in the literature, based on the 

thermal relaxation tests conducted by MacLean [3]. Therefore based on the available data, one may rank 

the thermal creep resistance in descending order roughly as BS 5896 (Grade 1860), ASTM A416 (Grade 

1860), GB/T 5224 (Grade 1860) and ASTM A421 (Grade 1725). 
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