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Abstract--Air pollution problems are attracting increasing 

attention, especially among developing countries with frequent haze 

events. Renewable energy sources such as wind power are expected 

to help relieve such environmental concerns. However, air pollution 

issues under such a changing energy structure receive inadequate 

attention. Mostly, constraints for total pollutant emissions are 

considered in unit commitment (UC) and economic dispatch (ED) 

problems. In this paper, we propose a UC model with wind power 

that considers the dispersion of air pollutants. The dispersion 

process is described by models involving meteorological conditions 

and the system’s geographical distribution, to estimate the spatial 

distribution of air pollutants, i.e. the concentration of ground-level 

air pollutants at monitored locations such as load centers. A penalty 

cost is introduced based on this estimation. Particulate matter 2.5 

micrometers or less in diameter, the major air pollutant concerning 

most developing countries, is selected as the focus of this work. To 

properly estimate and sufficiently utilize the benefits of wind power 

for air pollutant dispersion control, robust optimization is applied to 

accommodate wind power uncertainty. Case studies justify this 

consideration of air pollutant dispersion, and demonstrate the 

effectiveness of the proposed model for improving load centers’ air 

pollution control and utilizing wind power benefits. 

 
Index Terms--Air pollutant dispersion, Gaussian plume model, 

robust optimization, unit commitment, wind power. 

NOMENCLATURE 

A.  Indices: 

i Index of thermal units, i=1, … , NG 

w Index of wind farms, w=1, … , NW 

j Index of loads, j=1, … , ND 

l Index of transmission lines, l=1, … , NL 

t Index of time intervals, t=1, … , T 
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B.  Parameters: 

sui /sdi Start-up/shut-down cost of thermal unit i 

λi /γi /βi Fuel cost coefficients of thermal unit i 

mui /mdi Minimum up/down-time of thermal unit i 

fil Power flow distribution factor (PFDF) of 

transmission line l due to thermal unit i 

fwl  PFDF of transmission line l due to wind farm w 

fjl PFDF of transmission line l due to load j 

Fl  Power flow limit of transmission line l 

Pi
max/Pi

min Upper/lower limit for real power output of thermal 

unit i 

URi /DRi Ramp-up/down rate limit of thermal unit i 

Pjt  Power demand of load j at time t 

wtP  Forecasted mean power output of wind farm w at 

time t 
ˆ
wtP  Deviation from forecast of wind farm w at time t 

C.  Variables: 

Oit Binary on/off decision of thermal unit i at time t 

SUit Binary start-up decision of thermal unit i at time t 

SDit  Binary shut-down decision of thermal unit i at time t 
b

itP  Real power dispatch decision of thermal unit i at 

time t in the base case 
u

itP   Adaptive real power dispatch decision of thermal 

unit i at time t considering wind power uncertainty 

Pwt Uncertain power output of wind farm w at time t 

I.  INTRODUCTION 

ANY developing countries have witnessed frequent haze 

events in recent years. In China, for example, smog 

covered the major eastern cities of the country for over a week in 

winter 2013. More recently, severe haze hit Beijing in early 

December 2015, causing disruption for schools and companies, 

cancelled flights, and other issues. This kind of event has drawn 

worldwide attention to air pollution problems, as particulate 

matter 2.5 micrometers or less in diameter (PM2.5), the major 

cause of haze, is extremely harmful to human health due to its 

capability to deeply penetrate into human lungs and the blood 

stream. According to reports by the United Nations Environment 

Programme [1] and the World Health Organization (WHO) [2], 

air pollution is one of the world’s worst environmental health 

risks, causing millions of premature deaths and trillions of US 

dollars in economic cost.   

As a major consumer of fossil fuels, the electric system is 

responsible for a high proportion of air pollutants emissions, 

with coal-fired plants the major source of PM2.5 and secondary 
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PM2.5 formation elements SO2 and NOX. Dominant portion of 

power is supplied by coal in U.S., Germany, Australia, England, 

China, etc. Researchers and practitioners in power systems are 

accountable for the urgent need for better air pollution control.  

 In some pioneering research works, the total amount of 

emitted pollutants was considered, typically formulated as a 

quadratic function of the real power output of thermal units. 

Constraints or penalty costs were introduced based on this 

summation of pollutants emissions [3]-[6]. In [7], the operation 

of various flue gas desulfurization systems was also accounted 

for. However, one essential aim of emission regulations is to 

limit ground-level air pollutant concentration (GLAPC), 

especially at “monitored locations” such as load centers with a 

high population density—places where there is more concern or 

interest about air quality. Following U.S. government efforts in 

the 1960s and 1970s such as the Clean Air Act of 1970, 

considerable research has been devoted to studying the 

dispersion of emitted air pollutants, i.e., to consider the resulting 

GLAPC at monitored locations [8]-[10]. Environmental science 

models describing the dispersion process of pollutants emitted 

from thermal units have been introduced to estimate GLAPC. 

This estimation, as an index, has been included as constraints or 

as a penalty cost in optimization problems of power system 

operations.  

 Nevertheless, industry practice for emissions regulations in 

power systems is still normally based on total emission limits, 

rather than consideration of GLAPC. Also, the past several 

decades has seen only a limited number of papers published by 

power system researchers that study GLAPC issues. There are 

likely two reasons for this modest level of effort. First, as air 

pollutant dispersion is an extremely complex process involving 

atmospheric movement, chemical reactions, etc., obtaining an 

estimation with acceptable accuracy is not easy. Plus the fact that 

electric systems are just one of  many sources of air pollutants 

such as traffic, wildfires, etc., thermal units’ responsibilities are 

difficult to identify quantitatively, which is the second major 

reason. However, as we now have a much clearer understanding 

of the severe human health risks due to air pollution, these 

relevant topics deserve much more attention. As such, many 

mature and reliable dispersion models are now available. 

Governments are also much more willing to spend money in air 

pollution control. With the development of detection, 

computation and communication technologies for the emerging 

smart grid [11], air pollution control based on GLAPC 

information is important and can be practical for existing power 

systems. 

Additionally, enormous renewable energy sources, especially 

wind power, has been integrated into power systems all over the 

world [12]. Besides relieving a potential energy crisis, wind 

power is also expected to reduce environmental pollution. One 

straightforward yet critical topic is to study the benefits of wind 

power integration in terms of CO2 and air pollutants emissions 

reduction. To the best of the authors’ knowledge, all recent 

papers are based on the amounts of emissions such as in [13]-

[18], while the essential relief in terms of GLAPC has not been 

analyzed. Specifically, in [13]-[16] wind power benefits in terms 

of carbon emission control were studied. On the other hand, in 

[17], a study based on the Ireland system indicates that wind 

power could be ineffective in SO2 and NOX emission reduction. 

A dispatch model minimizing NOX emission is proposed for 

systems with stochastic wind power in [18].  

In summary, recent studies of wind’s environmental benefits 

has concentrated on the total amount of carbon or other air 

pollutants emitted, while other essential benefits of wind power, 

such as GLAPC reduction, were not analyzed. As mentioned 

above, it is well recognized that it is critically important to look 

into the dispersion of air pollutants emitted by thermal units [8]-

[10], [19]. Without consideration of air pollutant dispersion, 

wind power’s benefits in terms of air pollution control can be 

greatly undermined.  

As one of the most important power system operation 

problems, unit commitment (UC) models minimize cost by 

optimizing each power plant’ on/off   states and power dispatch 

[20]. Based on the above arguments, this work proposes a UC 

model that considers wind power benefits in terms of dispersion 

control of air pollutants. A dispersion model that considers 

meteorological conditions and the system’s geographical 

distribution is applied to describe the dispersion of air pollutants 

emitted by thermal units. Thus, GLAPC at monitored locations 

(load centers in this paper) is estimated and rendered a cost. That 

is, the spatial distribution of air pollutants are considered. The 

cost can be in the form of penalty costs, taxes for thermal units, 

or subsidies for influenced customers in load centers, etc. As 

wind power is uncertain in nature, robust optimization is 

employed to ensure robust feasibility of commitment decisions 

[21]-[24]. Thus, the system can be relieved from harsh spinning 

reserve requirements to accommodate wind power uncertainty 

and to prevent even worse emissions results. That is, robust 

optimization is applied to appropriately accommodate wind 

power uncertainties in terms of spinning reserve scheduling, so 

that the benefits of wind power for air pollutant dispersion 

control can be properly estimated and sufficiently utilized. A 

modified IEEE 14-bus system and the real-world Guangdong 

Grid system are used to demonstrate the effectiveness of the 

proposed UC model and analyze how wind power can help 

control air pollutant dispersion. The main contributions of this 

paper are summarized as follows: 

1) A novel UC model is proposed and studied, in which the 

dispersion of air pollutants emitted by thermal units is 

considered. A review of major dispersion models is also 

presented. Meteorological conditions and the system’s 

geographical distribution are included in the applied plume 

model, to achieve better air pollution control in load centers, 

namely the spatial distribution control of air pollutant dispersion. 

Note that our method of air pollutant dispersion consideration 

can be easily extended for applications in problems such as 

economic dispatch (ED) and generation expansion planning. 

2) Wind power benefits in air pollution control are studied. 

The reasons and methods to explicitly consider this issue are 

presented. Robust optimization is employed to handle wind 

power uncertainty to avoid its benefits being undermined by 

harsh spinning reserve requirements. The proposed model better 
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utilizes wind power benefits on this issue. The analysis focuses 

on PM2.5, which currently receives inadequate attention by 

power system researchers, with the aim of these results to 

provide advice and information for system operators and policy-

makers.  

The remaining parts of this paper are organized as follows. In 

Section II, air pollutant dispersion models are presented and 

discussed. In Section III, the proposed UC model is formulated. 

Section IV introduces the solution algorithm for the formulated 

problem. Case studies are included in Section V for illustration. 

Section VI concludes this paper. 

II.  AIR POLLUTANT DISPERSION MODELS 

To estimate a thermal unit’s contribution to the GLAPC of a 

specific monitored location, a model describing the dispersion of 

pollutants is necessary. First, the emission rate functions of 

thermal units for different kinds of pollutants are briefly 

summarized. 

The NOX emission rate function is highly non-linear in P (real 

power output). While most researchers generally apply a 

function with both polynomial and exponential terms, some use 

a second order polynomial function instead. For SOX and 

particulate matter, including the focus of this work PM2.5, 

emission rates are normally seen as proportional to coal 

consumption, i.e., generally quadratic to P. Thus, the PM2.5 

emission rate of unit i at time t can be described as: 

2( )b b

it i it i it iE c P b P a                           (1) 

where ai, bi, and ci denote emission coefficients.  

Air pollutants are transported by atmospheric movements, i.e. 

dispersed, when emitted by thermal units at the above rate. From 

simple fixed-box models to the much more sophisticated plume 

and puff models, many different dispersion models have been 

developed to describe the dispersion process and predict the 

resulting GLAPC. For point sources including thermal units, 

both plume and puff models are extensively employed. As 

sketched in Fig. 1, a plume model describes air pollutants as a 

plume emitted from a stack, while a puff model regards thermal 

units as sources of a series of continuously overlapping puffs. 

Both models may assume some types of distribution for the 

dispersion in the cross-wind direction (y) and the vertical 

direction (z).  

In the literature, some studies have used the plume model for 

its maturity, while others have used the puff model as it is more 

flexible for considering the non-steady state of meteorological 

conditions. To assert that one model is superior to the other is 

unreasonable and unnecessary. As mentioned, air pollutant 

dispersion is an extremely complex process related to 

complicated atmospheric movements, chemical reactions, 

meteorological conditions, etc. In environment science, it is 

believed that the critical point is to select a suitable and 

applicable model for the specific application. In this paper, 

based on literature ([4], [8]-[10], and [25]-[29]), a relatively 

comprehensive comparison of these two types of popularly used 

models is summarized and presented in Table I. Note that the 

practical application of these models normally demands efforts  
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Fig. 1.  Schematics for two major dispersion models: (a) Plume model;  

(b) Puff model. 

 
TABLE I 

COMPARISON OF PLUME AND PUFF MODELS 
 

 Plume model Puff model 

State assumption Straight-line, steady-state Non-steady state 

Model features Fits seen & experience  More abstract modeling 

Applicable range Limited to 50km Long range (200-300km) 

Pollutant sources  Point/line/area sources Point/line/area sources 

Applicable 

pollutant types 

Particulate matter, NOX, 

SO2, CO 

Particulate matters, NOX, 

SO2, CO 

Emission 

description 
Continuous release 

Quasi-instantaneous, 

short-term release 

Dispersion 

coefficients setup 

Relatively more available 

& mature references 

Limited available 

references 

Data 

requirements 
Need less data 

Need more detailed data 

(spatial/temporal effects) 

Time step/scale 

Release time much 

greater than transition 

time from source to 

receptor 

Release/sampling time 

very short compared to 

transition time 

Preferable 

applications 

When simple output 

required, maximum 

concentration considered 

Complex terrain 

scenarios (coastal 

effects, etc.) 

Major 

shortcomings 

Naturally not for varying 

meteorological conditions  

Difficulty in coefficients 

setup, overlook in-puff 

fluctuations 
* EPA-  

recommended 

scenarios  
Near-field 

Long-range, complex 

wind-field 

* EPA-approved 

model 

developments 

AERMOD, ISC3, BLP, 

OCD, etc. 
CALPUFF, etc. 

 

* EPA: U.S. Environmental Protection Agency 

 
such as model adjustments, parameters tuning, grid cell 

modelling, etc. 

In this paper, the Gaussian plume model, which is the most 

widely used model for describing the dispersion of continuous-

release plumes, is applied for the following reasons: 

1) Thermal units are point sources with a continuous release 

of pollutants. Their emissions can be better described by a 

contaminated plume. The release time is also greater than the 

transition time of the plume.  

2) The plume model considers emissions as a plume starting 

from the stack of each thermal unit, while the puff model 

considers emissions as puffs independent of their source. Thus, it 



 4 

is much more straightforward to use the plume model to describe 

the effect of thermal units on the air pollution of monitored 

locations. 

3) This work considers a predicted GLAPC on load centers in 

a day-ahead UC problem. A model with simple inputs and 

simple outputs is preferred and desired for possible practice, 

since the much more detailed data necessary for the puff model 

can be inaccurate or unavailable.  

Based on the applied plume model, as sketched by Fig. 1(a), a 

thermal unit’s contribution at time tr to the GLAPC of a load 

center, which is the monitored locations in this study, can be 

summarized as: 

r

2 2

2 2 2 2 2

1
exp

2 2

yit

ijt

y z x y x z x

dE H
C

w I I d I d I d

 
     

        

    (2) 

where w represents wind speed, dx and dy are the downwind 

direction and cross-wind direction distances between load j and 

thermal unit i, Iy and Iz are emission constants determined by 

many factors such as geographical/meteorological conditions 

and air pollutant dissipation situations, and H is the effective 

stack height of the thermal units. Interested readers may refer to 

[25] for more details. In this work, the aforementioned 

parameters are all assumed known. Equation (2) actually 

estimates the spatial distribution of air pollutants quite 

conservatively. Such a conservative estimation in turn leads to 

decisions that are sufficiently effective in terms of air pollutant 

dispersion control for the future day. Note that the time indices 

of Cijtr and Eit are different due to the transition time of the 

emitted pollutants from a thermal unit to a load center. In this 

work we consider our study in a geographical area where the 

longest transition time is about one hour [10]. In addition, the 

polluting coal units normally supply the base load and do not 

significantly change their power output in each hour. More 

importantly, the responsibility of each thermal unit towards 

GLAPC at load centers is given a linear cost in this paper. Thus, 

it is not necessary to explicitly model this transition time into our 

UC formulation. For simplicity and clarity, denote Kij as the “air 

pollutants dispersion coefficient” between generation i and load j 

under specific meteorological conditions, which means we can 

re-write (2) and apply (1) to get: 

r

2[ ( ) ]b b

ijt ij it ij i it i it iC K E K c P b P a                 (3) 

Equation (3) reveals a roughly quadratic relationship under 

specific conditions. Note that if thermal unit i is on the 

downwind side of load center j, Kij should be zero. Although a 

basic plume model is based on a steady-state assumption, it can 

actually be modified to handle scenarios with varying 

meteorological conditions, complex terrain, and other special 

cases such as calm winds, stagnation conditions, and variable 

wind direction. Wind speed is one of the major factors 

influencing the air pollutant dispersion process. It is worth 

mentioning that as shown in [10], one day can be approximately 

split into two halves, i.e. day and night, to have two different 

wind scenarios, each with a different relatively stable wind speed 

and wind direction. This conforms to the steady-state assumption 

of the plume model and justifies its application here. In this 

paper, average wind speeds and directions for day and night are 

used. To consider more spatially or temporally varying 

meteorological conditions, the plume model can be adjusted for 

better performance, and the puff model may be more applicable 

in some cases. Techniques or models such as grid cell 

partitioning [30] or the RNG k-ε turbulence model [31], may 

also be necessary.  

III.  PROBLEM FORMULATION 

In this section, a novel UC model with wind power that 

considers air pollutant dispersion is formulated, with the aim 

of ensuring the benefits that wind power provides for the 

spatial distribution control of air pollutants. The first part 

presents and explains the objective function. The second part 

describes the constraints, including a robust feasibility check. 

A.  Objective Function 

A deterministic form of the objective function is adopted 

here to avoid over-conservativeness of the worst-case cost of 

robust optimization. The objective function (4) consists of 

three parts: 1) the commitment costs (CC) corresponding to 

start-up and shut-down operations of thermal units; 2) the 

base-case dispatch cost (BDC) under the nominal scenario 

with forecasted mean wind power outputs; and 3) the air 

pollutant dispersion cost (APDC) with the “price” αj.  
 

min( )CC BDC APDC   

1 1

( )
GNT

i it i it

t i

CC su SU sd SD
 

     

2

1 1

[ ( ) ]
GNT

b b

i it i it i it

t i

BDC P P O
 

         

2

1 1 1

[ ( ) ]
GD NNT

b b

j ij i it i it i it

t j i

APDC K c P b P a O
  

          (4) 

 

Thus, the objective function considers both the common UC 

cost (UCC, including CC and BDC) and the proposed APDC 

introduced below.  

As for the APDC, this cost actually exists even though 

industry practice does not normally have a tax or charge in this 

form. For example, reference [32] estimates the cost resulting 

from environmental damage caused by NOX, SO2 and PM10, 

including human health impacts. However, to completely 

determine the real economic cost of human health harm and 

environmental pollution resulting from the dispersion of 

emitted air pollutants is far too difficult, and would involve 

issues such as policy-making, pollution remediation, public 

health, etc. Thus, APDC is introduced as a penalty cost in this 

paper instead. This cost is different from the UCC as it is not 

really an existing charge. Instead, the APDC is mathematically 

included to drive changes in UC decisions and costs. However, 

we do incorporate some practical considerations, including 

population density and background pollution, when setting this 

penalty cost. This approach means that the APDC has 

correlated relationships with damage costs due to the impact of 

air pollutants on the environment and human health, and with 

pollution treatment costs typically shouldered by the 

government. 
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TABLE II 

 AIR QUALITY STANDARDS FOR PM2.5 AND SETTING BPj  
 

PM2.5 

μg/m3 

Air quality 

category 
Remarks BPj 

~12 Good 
EPA annual primary standard 

protecting public health 
1 

~15 
Moderately 

good 

EPA annual secondary standard 

protecting public welfare  
2 

~25 Moderate 

EC annual PM2.5 standard,  

WHO 24-hour standard, EPA 24-

hour primary & secondary standard 

3 

~35 Moderate Should take immediate measures  4 

~55 
Unhealthy for 

sensitive groups 

Much higher long-term mortality 

risk indicated by WHO 
5 

>55 Unhealthy Severe pollution 6 

 
Based on the applied plume model described by equations 

(2) or (3), for each load center j located in different 

geographical positions, an estimation of each thermal unit’s 

contribution to the GLAPC is obtained and endowed a cost on 

the “price” of αj. For each load center, αj can be set as a 

different value. Major considerations in choosing a reasonable 

value for αj can include: 1) the population NPj at load center j; 

and 2) the background pollution level BPj at load center j.  

Air pollution is a sophisticated problem resulting from not 

only thermal unit power generation, but also other sources 

such as vehicle fuel consumption, kitchen fumes and 

atmospheric transport, which cause a background pollution. In 

fact, there are many locations with relatively severe 

background air pollution and it would be necessary to set a 

higher αj in these locations to avoid even worse health risks for 

people who live there. Based on the PM2.5 regulation 

standards or guidelines of WHO [2], the U.S. Environmental 

Protection Agency (EPA) [33] and the European Commission 

(EC) [34], BPj is introduced to indicate background PM2.5 

pollution level with those values shown in Table II. Note that 

“annual” and “24-hour” mean the averaging time in the table. 

While a linearly incremental BPj was set here for this work, 

more complicated policies for setting the value can be applied 

according to one’s preference. 

Based on the above two considerations, we can describe αj 

using: 
2

j j js NP BP                                     (5) 

where s is a parameter indicating the penalty cost per person 

per exposure to PM2.5. Tuning of this parameter is required to 

obtain UC decisions with desired air pollution control effects 

and acceptable costs. Note that the second power of BPj is 

used here to limit serious air pollution. 

 Thus, the APDC, indicated by (4) and (5) is a penalty for 

the total exposure of influenced people to PM2.5 that also 

considers the background pollution. The proposed UC model 

minimizes both the common UCC and peoples’ exposure to air 

pollutants, which is PM2.5 in this paper. We focus on PM2.5 

since it is a major type of air pollutant, especially in 

developing countries, such as China.  

Note that our method of air pollutant dispersion 

consideration can be easily extended to other pollutants such 

as PM10, NOX and SO2, as well as other problems such as ED 

and generation expansion planning. Generally, a dispersion 

model should be selected first according to the spatial and 

temporal considerations of the studied or applied problem, 

followed by necessary modifications. Then the problem can be 

formulated and revised. For example, if the atmosphere is of 

the temperature inversion condition, the Gaussian plume 

dispersion model has to be refined to incorporate the reflection 

effect of the inversion layer. References [35], [36] and [37] are 

examples for considering air pollutant dispersion in different 

power system optimization problems. Interested readers can 

also refer to [25] for more systematic instructions on air 

pollution control. 

B.  Constraints 

The constraints in the proposed UC model are presented and 

explained as follows: 
 

( 1) min( )0, , 2, 1 1,it i t ih iO O O Ti t t h mu t             (6) 

( 1) min( )1, , 2, 1 1,i t it ih iO O O Ti t t h md t              (7) 

( 1) 0, , 2i t it itO O SU i t                                (8) 

( 1) 0, , 2it i t itO O SD i t                                (9) 

, , {0,1}, ,it it itO SU SD i t                                 (10) 

1 1 1

,
G W DN N N

b
wtit jt

i w j

P P P t
  

                                     (11) 

min max , ,b

i it it i itP O P P O i t                             (12) 

min max

( 1) ( 1) ( 1)( ) ( )1 ,

, 2

b b

it i t i i t i it i t i itP P UR O P O O P O

i t

          

  
 (13) 

min max

( 1) ( 1) ( 1)( ) ( )1 ,

, 2

b b

i t it i it i i t it i i tP P DR O P O O P O

i t

         

  
 (14) 

1 1 1

, ,
G W DN N N

b
wtl il it wl jl jt l

i w j

F f P f P f P F l t
  

                    (15) 

{ : , ( , )}u

it it wt it it wtO O P W P O P                (16) 

where: 
 

ˆ ˆ: { : [ , ], , ;

| | | |
, ; , }

ˆ ˆ

W

W

N T
wt wtwt wt wt

N T
wt wts twt wt

w twt wt

W P P P P P P w t

P P P P
t w

P P


     

 
      

        (17) 

        ( , ) : { :u

it wt itO P P   

1 1 1

,
G W DN N N

u

it wt jt

i w j

P P P t
  

                                (18) 

min max , ,u

i it it i itP O P P O i t                       (19) 

min max

( 1) ( 1) ( 1)( ) ( )1 ,

, 2

u u

it i t i i t i it i t i itP P UR O P O O P O

i t

          

  
 (20) 

min max

( 1) ( 1) ( 1)( ) ( )1 ,

, 2

u u

i t it i it i i t it i i tP P DR O P O O P O

i t

          

  
 (21) 

1 1 1

, , }
G W DN N N

u

l il it wl wt jl jt l

i w j

F f P f P f P F l t
  

                    (22) 

 

Among these constraints, inequalities (6)-(10) are 

constraints for commitment decision variables. Constraints (6) 

and (7) are minimum up-time and minimum down-time limits. 

Inequalities (8) and (9) are the logic constraints for start-up 

and shut-down operations, respectively. Constraint (10) 
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enforces commitment decision variables be binary. Constraints 

(11)-(15) are for base-case dispatch variables. Equation (11) 

represents the power balance for each time interval. Constraint 

(12) limits the power output of thermal units within its upper 

and lower bound. Constraints (13) and (14) indicate ramp-up 

and ramp-down rate limits. Inequality (15) is the power flow 

capacity constraints for the transmission lines. Constraint (16) 

is the robust feasibility check for the on/off state variables of 

the thermal units to guarantee existence of feasible adaptive 

dispatch strategies under any scenario within the wind power 

outputs’ uncertainty set W defined by (17). Here, Ω(Oit,Pit) is 

the feasible set of adaptive dispatch variables indicated by 

(18)-(22). In (17),  Δs is the “spatial budget” to limit wind 

power deviations at each time interval t, while Δt is the 

“temporal budget” to limit deviations during the whole time 

window for each wind farm w. Constraints (18)-(22) represent 

power balance, thermal unit power output limits, ramp-up and 

ramp-down rate limits, and transmission line capacities, 

respectively.  

Specifically, the robust feasibility check constraint is added 

for two major reasons. First, wind power uncertainties have to 

be considered appropriately, so that adequate spinning reserve 

is set, to avoid over-estimating and in turn under-utilizing wind 

power benefits for air pollutant dispersion control. That is, if 

UC decisions are determined based on forecasted mean values 

of wind power outputs, inadequate spinning reserve can lead to 

frequent start-up/shut-down of flexible units and 

environmentally unfriendly real-time operations of more 

polluting coal-fired units, which can cause much higher 

operational costs and even worse air pollutant dispersion 

results. In such cases, wind power becomes cost-ineffective or 

even ineffective for air pollutant dispersion control. Second, 

here robust optimization [21]-[23], [38] is more appropriate 

compared to deterministic and stochastic optimization methods 

[39]-[40]. If the distribution information of uncertainties is 

available, which is often not the case, stochastic optimization 

can be preferable. Otherwise, instead of setting intuitive 

criteria based spinning reserve, robust optimization should be 

applied to optimally schedule spinning reserve, so that wind 

power benefits in air pollutant dispersion control can be 

estimated properly and thus utilized sufficiently. 

IV.  SOLUTION ALGORITHM 

The proposed UC model results in a mixed integer quadratic 

programing (MIQP) problem with a robust feasibility check. 

For simplicity and clarity in presenting the solution algorithm, 

its compact matrix formulation is derived as: 
 

,
min (1/ 2)T T T 

1
0 1 1 1 1

x y
q x y Qy q y                    (23) 

. .                +s t  
1 0

Rx Gy Du e                           (24) 

2,  :     
2

u U y Ax By Eu g                (25) 
 

where x, y1, y2, u0, u, and U denote commitment variables, 

base-case dispatch variables, adaptive dispatch variables, 

forecasted mean wind power outputs, uncertain wind power 

outputs, and their uncertainty set, respectively. Other vectors 

and matrices are cost parameters or coefficients in the 

constraints. 

The solution algorithm is in an iterative master-sub-problem 

framework. First, the robust feasibility check (25) is 

implemented by a sub-problem (SP) written as: 
 

SP:       
, , 

max min T T




+ -
2

+ -

u U y s s

1 s 1 s                         (26) 

s.t.   
K     + -

2
Ax By Eu Is Is g                 (27) 

 

where I, 1, s+, s-, and xK denote the identity matrix, all-ones 

vector, positive slack vector, negative slack vector, and the 

current solution of x in the Kth iteration, respectively.  

The SP can be solved in one of two ways: 1) first taking the 

dual of the inner minimization problem and then linearizing 

the resulting bilinear terms in the objective function via 

McCormick envelopes [38], [41]; or 2) first employing the 

Karush-Kuhn-Tucker conditions for the inner minimization 

problem and then linearizing the complementary slackness 

constraints via big-M linearization [23], [42]. Both approaches 

lead to a mixed integer linear programming (MILP) problem 

that can be solved by off-the-shelf solvers such as Gurobi. We 

apply the first method in this work.  

By dualizing the inner minimization problem and 

incorporating the derived dual formulation with the outer 

maximization problem, the SP becomes a bilinear program 

(BLP) sub-problem: 
 

BLP-SP:   
, 

max ( )T T

K


 
u U η

η g Ax η Eu                   (28) 

s.t.                T Tη B 0                                  (29) 

T T T  1 η 0                               (30) 
 

where η and 0 denote the dual variables and all-zero vector, 

respectively. As the BLP-SP is non-convex, its global 

optimum is difficult to obtain. Thus, we transform the problem 

into an equivalent MILP instead by first representing each 

uncertain variable um with: 

ˆ)m m m m mu u u u u    (                           (31) 

where 
mu  and ˆ

mu  denote the forecasted mean value and 

deviation of um, respectively, and 
mu  and 

mu  are binary 

variables.  The matrix E is sparse in our case. Then we 

eliminate each bilinear term in the BLP-SP by using an 

auxiliary continuous variable and four linear constraints. For 

example, the bilinear term 
m nu   can be represented by 

mnv  

and constrained by: 

0,  ,  ,  1.mn m mn n mn mn m nv v u v v u                 (32) 

As in (32), the bounds for dual variables are explicitly known, 

so appropriately pre-specified big-M values are not necessary 

to linearize the BLP-SP. The resulting MILP is parameter-free.  

If the objective of the SP is zero or less than a pre-set 

threshold δ, we conclude that the current xK satisfies the robust 

feasibility check (25). Otherwise, based on the identified 

“worst scenario” uK, cuts should be added to form the master-

problem (MP) with (23)-(24) and previously added cuts: 
 

                 MP: 
 , ,

min (1/ 2)
k

T T T 
1 2,

0 1 1 1 1
x y y

q x y Qy q y                 (33) 

               s.t.                         (24)                       

, ,k k k K    
2

Ax By Eu g                   (34) 
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Here, y2,k is the introduced dispatch variables under the 

scenario uk. The MP is a MIQP problem with a positive semi-

definite Q matrix involving only positive diagonal elements.  

Thus, the MP can be efficiently solved by off-the-shelf solvers as 

well. Note that cuts can also be generated in terms of dual 

variables based on Benders cutting plane algorithms [21]-[22]. 

Here we add cuts in terms of primal variables based on the idea of 

the column-and-constraint generation (C&CG) algorithm [23], 

[42]. Although the C&CG algorithm adds not only more 

constraints but also new variables into the MP, it shows better 

performance in terms of computational time and required 

number of iterations [23], [42]. 

The iterative algorithm is presented as follows: 

1) Set the number of iterations K=0. Choose a tolerance 

δ(>0) for the robust feasibility check. 

2)  Solve the MP to update the current optimal solution (x*, 

y1
*, y2,1

*,…, y2,K
*). 

3)  K=K+1. Solve the SP with xK = x*, to obtain uK. 

4) If objective_of_SP ≤ δ, return (x*, y1
*) and terminate. 

Otherwise, go to step 2). 

Theoretically, the maximum iteration number of the above 

algorithm is the number of extreme points of the uncertainty 

set. However, this method normally acquires the optimum 

solution within several iterations. 

V.  ILLUSTRATIVE CASES 

Case studies were conducted on a modified IEEE 14-bus 

system and the real-world Guangdong Grid system to 

demonstrate the need for air pollutant dispersion consideration 

and the effectiveness of the proposed UC model. Gurobi 6.0.4 

was used to solve related MIQP and MILP problems.  

A.  The Modified IEEE 14-Bus System 

This system has 5 thermal units, the data for which are 

shown in Table III. Note that gas units hardly emit any PM2.5. 

One wind farm with 10% penetration on average was 

introduced to bus 14, with its hourly forecasted mean power 

output and the system load given in Fig. 2. Wind power 

uncertainties were set as ±10% of forecasted values, with Δs=1 

and Δt=16. Transmission line data were obtained from 

MATPOWER [43]. The geographic distribution of the thermal 

units and load centers was based on [35]. The background 

PM2.5 pollution, and the corresponding BPj and NPj, are listed 

in columns 1-4 in Table IV. As for meteorological conditions, 

we set the average wind speed and direction to be 4.2 m/s from 

the south during the day and 9.3 m/s from the southwest at 

night. The atmospheric stability class was set to D, i.e., neutral 

stability. This determines the two meteorological parameters Iy 

and Iz to be 0.147 and 0.811, respectively. 

 Four cases were studied for illustration: Case 1: this case 

does not include the wind farm at bus 14, nor the APDC in the 

objective function; Case 2: in this case the wind farm is 

considered, while the APDC is still absent from the objective 

function; Case 3: a constraint for total PM2.5 emission is 

added based on Case 2; Case 4: the exact proposed UC model 

is applied for this case, where s is set as 0.01 $·m3/µg.  

TABLE III 

 DATA FOR THERMAL UNITS  
 

Bus No. 1 2 3 6 8 

Unit Type Coal Coal Coal Gas Gas 

Pi
max (MW) 250 200 200 100 100 

Pi
min (MW) 100 100 100 10 10 

URi & DRi (MW/h) 125 100 100 50 50 

mui (h) 4 4 3 1 1 

mdi (h) 4 4 2 1 1 

sui ($) 120 220 300 0 0 

sdi ($) 60 110 150 0 0 

λi ($/MW2) 0.0045 0.004 0.004 0.005 0.005 

γi ($/MW) 13.5 12 12 16.5 16.5 

βi ($) 175 155 155 130 130 

ci (g/MW2·s) 0.006 0.0065 0.006 0 0 

bi (g/MW·s) 0.45 0.55 0.5 0 0 

ai (g/s) 24 65 55 0 0 

H (m) 456 448 461 — — 
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Fig. 2.  System load profile and forecasted mean power outputs of the wind 

farm. 

 
TABLE IV 

LOAD CENTER BPj, NPj, PGLAPC AND AGLAPC FOR THE FOUR CASES 
 

Bus 

No. 

Back-

ground 

PM2.5 

µg/m3 

BPj NPj 

PGLAPC µg/m3 AGLAPC µg/m3 

Case No. Case No. 

1 2 3 4 1 2 3 4 

4 22 3 9203 22.00 22.00 22.00 22.00 20.00 22.00 22.00 22.00 

5 50 5 1463 70.32 70.32 64.79 56.07 59.97 59.15 56.04 52.53 

7 22 3 320 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 

9 22 3 5680 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 

10 30 4 1733 30.02 30.02 30.02 30.01 30.01 30.01 30.00 30.00 

11 36 5 674 53.28 53.28 53.28 53.28 46.14 46.01 46.13 46.75 

12 23 3 1174 32.36 32.36 31.99 31.46 28.60 28.34 27.71 27.61 

13 18 3 2600 21.02 21.02 20.97 20.90 20.57 20.37 19.73 19.97 

14 13 2 2869 13.13 13.13 13.13 13.13 13.06 13.06 13.02 13.06 

 
In Table IV, the resulting peak GLAPC (PGLAPC) and 

average GLAPC (AGLAPC) of each load center under the four 

cases are listed. In Table V, total PM2.5 emissions (TPME), 

total exposure (TE, sum of NPj·GLAPCjt for all load centers and 

all time intervals), UCC, and the system’s PGLAPC and 

AGLPAC are shown. The on/off states of the thermal units 

under the four cases are given in Table VI, where the grey-

colored data are the ones that are different between the cases. 

From these results, several points can be drawn:  
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TABLE V 

 COST AND EMISSION RESULTS FOR THE FOUR CASES (IEEE 14-BUS SYSTEM) 
 

 
UCC  

k$ 

TPME  

ton 

PGLAPC 

µg/m3 

AGLAPC 

µg/m3 

TE 

·105µg/m3 

Case 1 224.58 100.25 70.32 29.37 150.92 

Case 2 200.19 93.43 70.32 29.22 150.42 

Case 3 213.38 65.00 64.79 28.29 148.09 

Case 4 209.79 67.90 56.07 28.10 145.81 

 
TABLE  VI 

ON/OFF STATE COMPARISON OF THE FOUR CASES 
 

Hour 

Case 1 Case 2 Case 3 Case 4 

Unit Bus No. Unit Bus No. Unit Bus No. Unit Bus No. 

1 2 3 6 8 1 2 3 6 8 1 2 3 6 8 1 2 3 6 8 

1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 

2 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 

3 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 

4 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 

5 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 

6 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 

7 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 

8 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 

9 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

13 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 

14 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 

24 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 

 

0 2 4 6 8 10 12
50

60

70

AUCC (k$)

P
G

L
A

P
C

 (
µ

g
/m

3
)

 

28

28.5

29

PGLAPC without wind

AGLAPC without wind

A
G

L
A

P
C

 (
µ

g
/m

3
)

PGLAPC with wind

AGLAPC with wind

 

Fig. 3. Curves of AUCC-PGLAPC and AUCC-AGLAPC with and without 

wind power (IEEE 14-bus system). 

 
1) With wind power integrated, we still need to explicitly 

consider emissions during operations to utilize the benefits of 

wind power for air pollution control. Take Case 2 as an 

example, where TE and the system’s AGLAPC only decrease 

by 0.33% and 0.49%, respectively, compared to Case 1, 

although TPME decreases due to 10% less power demand 

from the thermal units. The system’s PGLAPC stays the same 

at 70.32 µg/m3, which is classified as severe pollution. This is 

because the system still uses more power from cheaper but 

more polluting coal units, as indicated in Table VI.  

2) The measure for limiting the total amount of air pollutant 

emissions, i.e., TPME in this paper, can be less cost-effective 

than our proposed method in terms of air pollution control 

with wind power integration. From Cases 3 and 4, we can see 

that, if emission is explicitly considered, wind power is helpful 

in improving the effects of air pollution control. However, 

comparing Case 4 to Case 3, the results of the system’s 

PGLAPC, AGLAPC, and TE are 13.46%, 0.67%, and 1.54% 

better, respectively, with $3590 less UCC in Case 4. Note that 

in Case 3, TPME is limited to 65 tons, which is actually less 

than that of Case 4. This demonstrates our argument that 

meteorological conditions and the system’s geographical 

distribution are critical factors for environmental generation 

scheduling.  

3) Our proposed UC model can be quite helpful in realizing 

wind power benefits in air pollution control, especially for a 

system with locations with severe background pollution. In this 

system, the load center on bus 5 had the highest background 

PM2.5 concentration. Cases 1, 2, and 3 all resulted in much 

worse PGLAPC and AGLAPC, while in Case 4 they were both 

much lower. As shown in Table VI, the coal unit at bus 1, 

which is exactly in the upwind direction of bus 5, is turned on 

much less in Case 4 to ensure better air quality for the load 

center on bus 5. Compared to Case 3, this leads to a relatively 

slight increase in AGLAPC for the load centers on buses 11, 

13, and 14, where the background PM2.5 pollutions are not as 

severe as at the load center on bus 5. This is an acceptable 

compromise. 

We further explored the cost and effectiveness of reducing a 

system’s PGLAPC and AGLAPC with and without wind 

power. First, based on Case 4, s was gradually increased from 

0.0001 to 0.1 $·m3/µg, to obtain relationships between 

additional UCC (AUCC) and the PGLAPC, as well as between 

the AUCC and the AGLAPC. The AUCC is the increased UCC 

compared to Case 2. Secondly, similar work was done with 

wind power outputs set to zero such that the AUCC became 

the increased UCC compared to Case 1. As shown is Fig. 3, 

the system can be much more cost-effective in reducing the 

PGLAPC and AGLAPC when wind power is accommodated 

and proper consideration is given to air pollutant dispersion. 

This capability is also strengthened by wind power, since both 

the convergent PGLAPC and AGLAPC with AUCC increased 

are smaller with wind power compared to without wind power. 

These quantitative relationships can guide system operators in 

environmental generation scheduling according to their cost 

budget and air pollution control objective, and help 

governments in making corresponding subsidies or tax policies 

for air pollution control. 

B.  The Guangdong Grid System 

The Guangdong Grid system has 1117 buses and 116 

thermal units, with 6 planned wind farms reaching about 15% 

penetration. Reducing air pollution (GLAPC) in Guangzhou 

was the focus of this simulation. Monitored locations were  
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TABLE VII 

COST AND EMISSION RESULTS OF THE FOUR CASES (GUANGDONG GRID) 
 

 
UCC  

·107 $ 

TPME  

ton 

PGLAPC 

µg/m3 

AGLAPC 

µg/m3 

TE 

·108µg/m3 

Case 1 1.6254 26640.70 74.36 58.88 133.59 

Case 2 1.4596 24183.33 74.36 55.43 124.21 

Case 3 1.5290 11500.00 74.36 33.60 66.54 

Case 4 1.5158 19228.48 24.36 14.52 16.93 
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Fig. 4. Curves of AUCC-PGLAPC and AUCC-AGLAPC with and without 

wind power (Guangdong Grid) 

 
selected among its 11 districts. The simulation assumed a 

summer day with a 2.44m/s southeast wind and neutral 

atmospheric stability. The applied plume model was also 

modified to consider the special temperature inversion 

condition prevalent in the area. Based on the meteorological 

and geographical conditions, 44 coal units out of the total 116 

units were identified as directly influencing the GLAPC in 

Guangzhou and were specifically considered for air pollutant 

dispersion control. The other units in the system were only 

included in the UC model for on/off operational planning.  

Similar to the previous study, four cases were simulated, 

with the TPME limit of Case 3 and s of Case 4 set as 11500.00 

tons  and 0.003 $·m3/µg, respectively. A part of results are 

shown in Table VII and Fig. 4. Note that the PGLAPC and 

AGLAPC in cases 1, 2 are over 70 and 55 µg/m3, respectively, 

which are values actually seen in Guangzhou on some summer 

days. In Case 2, air pollution is not quite relieved by integrated 

wind power, although the AGLAPC decreases slightly. This 

again demonstrates the need to explicitly consider emission 

issues for air pollution control. As indicated by Case 3, only 

limiting TPME is not an effective measure in air pollution 

control. In Case 4, the proposed UC model explicitly considers 

the dispersion of emitted air pollutants, resulting in better air 

pollution control with less cost, as wind power’s environmental 

benefits are better realized. Fig. 5 again proves that wind 

power makes a system more cost-effective and more capable 

of air pollution control.  

Note that this paper studied measures for limiting total 

emissions and the proposed method separately for comparison. 

In practice, both have to be considered, since total emissions 

are mostly limited by laws or regulations. The proposed 

method will help to achieve better and more cost-effective air 

pollution control in this case. 

VI.  CONCLUSIONS 

This paper proposed a UC model that considered the 

dispersion of air pollutants emitted by thermal units via a plume 

model involving meteorological conditions and the system’s 

geographical distribution to utilize wind power benefits in air 

pollution control. The GLAPC at monitored locations was 

modeled and rendered a cost to achieve the spatial distribution 

control of air pollutants. Robust optimization was applied to 

appropriately accommodate wind power uncertainties in terms 

of spinning reserve scheduling, so that the benefits of wind 

power for air pollutant dispersion control could be properly 

estimated and sufficiently utilized. Illustrative cases showed 

that wind power benefits in air pollution control should be 

explicitly considered as they were not fully utilized by only 

limiting total air pollutants emissions. This highlights the need to 

consider air pollutant dispersion. The proposed model proved to 

be quite effective in controlling air pollution, utilizing wind 

power benefits, and providing useful information for system 

operators and policy-makers to conduct environmental 

generation scheduling. We also showed that wind power makes 

a system more cost-effective and more capable of air pollution 

control. For future research, it may be beneficial to develop an 

intro-day economic dispatch framework to consider localized 

meteorological conditions, which are unknown or only known 

with great uncertainty in day ahead scheduling but which are 

available in real time or near real-time. 
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