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ABSTRACT 
In this study, a multivariate random-parameters Tobit model is proposed for the 
analysis of crash rates by injury severity. In the model, both correlation across injury 
severity and unobserved heterogeneity across road-segment observations are 
accommodated. The proposed model is compared with a multivariate 
(fixed-parameters) Tobit model in the Bayesian context, by using a crash dataset 
collected from the Traffic Information System of Hong Kong. The dataset contains 
crash, road geometric and traffic information on 224 directional road segments for a 
five-year period (2002-2006). The multivariate random-parameters Tobit model 
provides a much better fit than its fixed-parameters counterpart, according to the 
deviance information criteria and Bayesian R2, while it reveals a higher correlation 
between crash rates at different severity levels. The parameter estimates show that a 
few risk factors (bus stop, lane changing opportunity and lane width) have 
heterogeneous effects on crash-injury-severity rates. For the other factors, the 
variances of their random parameters are insignificant at the 95 % credibility level, 
then the random parameters are set to be fixed across observations. Nevertheless, 
most of these fixed coefficients are estimated with higher precisions (i.e., smaller 
variances) in the random-parameters model. Thus, the random-parameters Tobit 
model, which provides a more comprehensive understanding of the factors’ effects on 
crash rates by injury severity, is superior to the multivariate Tobit model and should 
be considered a good alternative for traffic safety analysis. 
 
Keywords: Crash rate by severity; Random parameters; Multivariate Tobit model; 
Bayesian inference. 
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 1 
1. Introduction 2 
 3 

In the field of traffic safety analysis, considerable research effort has been devoted 4 
to the application of innovative methodological approaches to model crash frequency. 5 
Because crash frequencies are non-negative integers, most of the advanced 6 
approaches are based on the basic statistical count model, Poisson regression, while 7 
addressing certain issues related to crash-frequency data (e.g., over-dispersion, 8 
under-dispersion, excess zero observations, spatiotemporal correlation, multilevel 9 
structure, and unobserved heterogeneity). Lord and Mannering (2010) and Mannering 10 
and Bhat (2014) presented overviews of these models. 11 

Recently, as good alternatives to the traditional crash-frequency approaches, 12 
methods for analyzing crash rates (such as the number of crashes per 100 million 13 
vehicle miles traveled) have been developed in a number of studies (Anastasopoulos 14 
et al., 2008; Caliendo el al., 2015). Neutralizing the effects of crash exposure, the 15 
crash rates forms a standardized measure of the relative safety performance of 16 
roadway sites (e.g., roadway segments and intersections), which is more acceptable 17 
for the public than the crash frequency. Meanwhile, the crash rate is able to clearly 18 
reflect the risk of involving in a crash and thus may be a more effective criterion for 19 
the identification of hotspots (Ma et al., 2015b; Xu et al., 2014). Moreover, crash rates 20 
are commonly used in accident reporting systems, such as the annual crash reports of 21 
the National Highway Traffic Safety Administration (NHTSA, 2012). Therefore, the 22 
crash rate may sometimes be preferable to the crash frequency. 23 

From the perspective of statistical modeling, crash rates are continuous, 24 
non-negative numbers, which differ substantially from (discrete integers) crash 25 
frequencies. Crash-rate data are usually left-censored at zero because no crashes may 26 
be observed at several sites during certain periods. Censoring refers to a limitation on 27 
data clustering which may result in a lower threshold (left-censored), an upper 28 
threshold (right-censored), or both. The censoring phenomenon in crash rates may 29 
appear for two distinct reasons, including a lack of crashes at the sites over the 30 
observation period and a failure to report crashes that occur (Anastasopoulos et al., 31 
2012a). Generally, more severe crashes are more likely to be reported (Lord and 32 
Mannering, 2010). To deal with the censoring characteristic, Anastasopoulos et al. 33 
(2008) first introduced the Tobit model to analyze crash rates. Various forms of 34 
random-parameter Tobit models have since been proposed to account for unobserved 35 
heterogeneity across observations (Anastasopoulos et al., 2012a; Caliendo el al., 2015; 36 
Ma et al., 2015a; Yu et al., 2015). The Tobit-based (crash rate prediction) models 37 
avoid some shortcomings associated with Poisson-based (crash frequency prediction) 38 
models, such as the requirement of equal mean and variance of Poisson distribution 39 
and the hypothesized zero state in the zero-inflated count models (Lord et al., 2005, 40 
2007), which may be a potentially technical advantage of crash rate modeling over 41 
crash frequency modeling. 42 
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Compared with analysis of the total crash rate, modeling the crash rate by injury 1 
severity can illustrate the effects of observed risk factors (such as the traffic, 2 
geometric, and environmental characteristics of sites) on the crash rate with a 3 
particular injury-severity outcome. The expected crash rates at each level of severity 4 
provide deeper insight into the safety situation of a certain road site. Therefore, 5 
although the overall crash rate may not reveal a site deficiency, overexposure of a 6 
specific crash severity may uncover otherwise undetected deficiencies. Moreover, 7 
models for the analysis of crash-injury-severity rates may be more appealing for 8 
ranking road sites that hold promise for safety improvement, because injury severity 9 
and the associated costs are the primary concerns in many programs (Miaou and Song, 10 
2005). However, only two existing studies (Anastasopoulos et al., 2012b; Xu et al., 11 
2014) have focused on jointly modeling crash rates by injury severity. Their model 12 
estimation results support the notion that a significant correlation exists between crash 13 
rates at various severity levels, which may be a result of common unobserved factors 14 
that affect crash rates across injury severity. Similarly, significant correlations among 15 
crash frequencies by injury severity or crash type have already been demonstrated in 16 
many multivariate count models (Aguero-Valverde and Jovanis, 2009; Barua et al., 17 
2014; Bijleveld, 2005; El-Basyouny and Sayed, 2009; El-Basyouny et al., 2014; Ma 18 
and Kockelman, 2006; Ma et al., 2008; Park and Lord, 2007). Nonetheless, the fixed 19 
parameters in all these studies omit the potential heterogeneity in the effects of risk 20 
factors across observations, which have been found in the previous research using 21 
random-parameters models to analyze total crash rate (Anastasopoulos et al., 2012a), 22 
total crash frequency (Anastasopoulos and Mannering, 2009) and crash frequencies 23 
by severity (Barua et al., 2016). Ignoring the possible heterogeneity across 24 
observations and constraining the parameters to be constant, such fixed parameters 25 
models would lead to biased parameters and incorrect inferences (Washington et al., 26 
2011). As noted by Anastasopoulos et al. (2012b), the inclusion of random parameters 27 
in the multivariate Tobit model would be able to capture the unobserved 28 
heterogeneity. 29 

To this end, the main objective of this study is to develop a multivariate 30 
random-parameters Tobit model for the simultaneous analysis of crash rates by injury 31 
severity that accounts for both correlations between crash rates at different severity 32 
levels and the variations in the effects of risk factors across observations. To 33 
demonstrate the proposed model, it is compared to a multivariate (fix-parameters) 34 
Tobit model in the Bayesian context using crash-injury-severity-rate data on road 35 
segments in Hong Kong over a 5-year period. Accordingly, the remainder of this 36 
paper is organized as follows. The next section specifies the proposed models and 37 
criteria for model comparison. The collected data for model demonstration are 38 
described in Section 3. Section 4 introduces the detailed estimation of the proposed 39 
models and discusses the parameter estimation results. Finally, conclusions and 40 
recommendations for future research are presented in Section 5. 41 
  42 
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2. Methods 1 
 2 

In this section, the formulations of the two candidate models for the simultaneous 3 
analysis of crash-injury-severity rates, multivariate Tobit and multivariate 4 
random-parameters Tobit regressions, are first specified explicitly under the Bayesian 5 
framework. Two criteria in the context of Bayesian inference, the deviance 6 
information criteria (DIC) and Bayesian R2, are then introduced for the purpose of 7 
model comparison. 8 
 9 
2.1. Model specification 10 
 11 
2.1.1. Multivariate Tobit model 12 

As mentioned, crash rates are generally left-censored at zero, because crashes may 13 
not be reported at some sites during the study period. The Tobit regression, first 14 
proposed by James Tobin (1958), is an appropriate method for the analysis of 15 
censored data (Anastasopoulos et al., 2008). To accommodate the possible correlation 16 
between crash rates at various severity levels, a multivariate Tobit model was 17 
advocated by Anastasopoulos et al. (2012b). Using a left-censored threshold of zero, 18 
the multivariate Tobit regression for the joint modeling of the crash rate by injury 19 
severity is expressed as follows: 20 
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itY  and k
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severity level k  and site i  during period t , respectively. N , T  and K  are the 24 
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In Eq. (3), kk  ( 1, 2,k K  ) represents the variance of error term k
it  and 

1 2,k k  1 

( 1 2k k ) denotes the covariance between 1k
it  and 2k

it . 2 

 3 
2.1.2. Multivariate random-parameters Tobit model 4 

Studies have demonstrated that heterogeneous effects of certain factors may be 5 
present across observations of the total crash rate (Anastasopoulos et al., 2012a; 6 
Caliendo el al., 2015; Ma el al., 2015a; Yu et al., 2015). A random-parameters Tobit 7 
model is the prevalent approach applied to deal with this issue. It is reasonable to 8 
speculate that this phenomenon may also exist in crash-injury-severity rate analysis. 9 
Therefore, to accommodate the underlying unobserved heterogeneity in the 10 

multivariate Tobit model, the coefficients ( 0 1, ,k k kM   ) in Eq. (1) are set to be 11 

random parameters ( 0 1, ,k k kM
it it it   ): 12 
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Because 1 2, ,m m Km
it it it    may be also correlated, suggested by Barua et al. (2016), 14 
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in which mβ  and mΣ  are the mean vector and variance-covariance matrix of m
itβ  17 

respectively. Noticeably, if the covariance of two random parameters is statistically 18 
insignificant (say, at the 95 % credibility level), they are assumed to follow 19 
independent normal distributions (Barua et al., 2016). If the variance of a certain 20 
random parameter is not statistically significant (say, at the 95 % credibility level), the 21 
random parameter is simplified to be fixed across observations (Anastasopoulos et al., 22 
2012a). 23 
 24 
2.2. Model comparison 25 

As in many other studies that included modeling under the Bayesian framework 26 
(Dong et al., 2014; Huang et al., 2016a; Zeng and Huang, 2014), the DIC and 27 
Bayesian R2 are used to compare the above candidate models.  28 

The DIC is intended as a Bayesian generalization of Akaike’s information criteria, 29 
which penalizes larger-parameter models. Specifically, it provides a Bayesian measure 30 
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of model complexity and fitting and is defined as (Spiegelhalter et al., 2002): 1 

 DIC D pD  ,                           (6) 2 

where  D   is the posterior mean deviance that can be taken as a Bayesian measure 3 

of fitting, and pD  is a complexity measure for the effective number of parameters. 4 

Generally, models with lower DIC values are preferred. However, it is worth noting 5 
that determination of a critical difference in DIC is very difficult. According to 6 
Spiegelhalter et al. (2005), very roughly, more than 10 differences may rule out the 7 
model with the higher DIC; differences between 5 and 10 are considered substantial; 8 
and if the DIC difference is less than 5, and the model inferences are significantly 9 
different, it could be misleading to simply report the model with the lowest DIC. 10 

The Bayesian R2 measure, which could be viewed as a global model-fit 11 
measurement, is proposed to estimate the ratio of the explained sum of squares to the 12 
total sum of squares (Ahmed et al., 2011; Zeng and Huang, 2014). To evaluate the 13 
model fit comprehensively, the Bayesian R2 values of crash rates at each injury 14 

severity k and all observations, represented by 2
kR  and 2

TR  respectively, are all 15 

calculated: 16 
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In the above equations, 
k
it  is the expected crash rates at injury severity level k and 22 

site i  during period t . kY  and Y  are the mean of crash rates at injury severity k 23 

and all observations, respectively. 24 
 25 
3. Data preparation and preliminary analysis 26 
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 1 
A crash dataset obtained from the Traffic Information System (TIS) maintained by 2 

the Transport Department of Hong Kong is used to demonstrate the proposed 3 
multivariate random-parameters Tobit model and to compare it with the multivariate 4 
Tobit model. This dataset has already been employed in the previous studies on crash 5 
frequency prediction (Huang et al., 2016b; Zeng et al., 2016). Therefore, their 6 
estimation results could be referred to in this research. It contains 112 road segments 7 
with two end points defined by the Hong Kong Annual Traffic Census (ATC) system 8 
(as shown in Fig. 1). Their traffic volumes are continuously measured by the 112 core 9 
stations of the ATC system. The directional average annual daily traffic (AADT) for 10 
each road segment adjacent to the 112 core stations ( 224N  ) from 2002 to 2006 11 
( 5T  ) is derived from the ATC system for the analysis. 12 

Geographical information system techniques are used to map crashes to these 13 
directional segments, based on the movement attributes of the vehicles involved and a 14 
detailed description of each crash recorded in the TIS system. With respect to crash 15 
severity, the TIS classifies crashes into three categories – fatal, serious injury, and 16 
slight injury – according to the severity of injury among the casualties. Due to the 17 
rareness of fatality, it is combined with serious injury to form the category of killed 18 

and seriously injured (KSI) crashes ( 2K  ). The road geometric and traffic 19 
information is also obtained from the TIS system. 20 

 21 

 22 

Fig. 1. Selected roadway segments in Hong Kong for the analysis. 23 
 24 

The yearly crash rate (number of crashes per million vehicle-kilometers traveled) 25 

by injury severity, k
itCR , which is used as the dependent variable in this study, is 26 

calculated as: 27 
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_

365 /1000,000
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k
k it
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i i

No crash
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AADT L

i k t


 

  
,          (14) 1 

in which _ k
itNo crash  is the number of crashes at injury severity degree k that 2 

occurred on road segment i  in year t ; t
iAADT  is the AADT on road segment i  in 3 

year t ; and iL  is the length of segment i , ranging from 0.15 km to 9.07 km with 4 

mean 1.47 km. Among the total observations, 76 slight injury crash rates and 349 KSI 5 
crash rates are 0. Table 1 illustrates the definitions and descriptive statistics of the 6 
variables used in the development of the model. The results of the correlation tests 7 
and multi-collinearity diagnoses indicate that there is no significant correlation or 8 
collinearity among these factors. 9 
 10 
Table 1. Descriptive statistics of the variables. 11 
Variable Description Mean SD Min. Max. 

Response variable 

Slight 
Slightly injured crash count per million 

vehicle-kilometers traveled 
1.70 2.21 0 24.35 

KSI 
Killed and seriously injured crash count per 

million vehicle-kilometers traveled 
0.46 0.98 0 9.86 

Risk factors 

AADT Average annual daily traffic (103 vehicles) 22.08 19.94 1.16 101.63 

Width Average width of each lane (m) 3.63 0.64 2.40 7.30 

SL Posted speed limit (km/h) 60.3 14.7 50 110 

Merge Number of merging ramps 0.84 1.00 0 4 

Diverge Number of diverging ramps 1.75 2.27 0 17 

Inter Number of intersections 1.90 2.37 0 16 

Gradient Average segment gradient (10-2) 0.04 2.74 -11 11 

Curvature Average segment curvature 21.9 17.5 0 85 

LCO Lane changing opportunity 2.43 1.61 0 7.85 

Median Presence of median barrier: yes = 1, no = 0 0.70 0.46 0 1 

BS Presence of bus stop: yes = 1, no = 0 0.64 0.48 0 1 

Rainfall Annual precipitation (m) 2.28 5.65 0.76 3.22 

 12 
The lane changing opportunity (LCO) variable refers to the length-weighted 13 

average number of eligible opportunities to change lanes in a subsegment with 14 
identical lane markings. No lane changing is allowed in road sections with double 15 
continuous lines (as shown in Fig. 2(a)), thus 0LCO . In sections with one 16 
continuous line and one broken line, lane changing is only allowed from the side of 17 



Zeng et al. 

8 
 

the broken line to the side of the continuous line (shown in Fig. 2(b)), thus 1LCO  . 1 
In sections with a single broken line, lane changing is allowed between both adjacent 2 
lanes (as shown in Fig. 2(c)), thus 2LCO . Pei et al. (2012) provided a more 3 
detailed description of LCOs. 4 

 5 

(a) (b) (c) 
Fig. 2. Lane changing opportunities for different road section configurations. 6 

 7 
4. Model estimation and result analysis 8 
 9 
4.1. Model estimation 10 
 11 

Without the requirement of the traditional maximum likelihood estimation for 12 
closed-form likelihood functions, Bayesian inference is able to handle very complex 13 
models (such as the random-parameters model in this study) (Lord and Mannering, 14 
2010). Moreover, Freeware WinBUGS, which is a popular platform for Bayesian 15 
inference, can be used to construct a flexible programming environment. As a 16 
consequence, both of the candidate models are programmed, estimated, and evaluated 17 
in WinBUGS, which is much more easily implemented than other alternatives, such as 18 
the maximum simulated likelihood estimation and copula methods (Anastasopoulos et 19 
al., 2012a, b). 20 

In the absence of sufficient knowledge, non-informative priors are specified for 21 
the parameters and the hyper-parameters. Specifically, a diffused normal distribution 22 

4(0,10 )N  is used as the priors of km  and all of the elements of mβ23 

 0,1, 12, 1, 2m k  , and a Wishart prior ( , )W rP  is used for 1Σ  and 1
m
Σ , 24 

where 
1, 0

0, 1

 
  
 

P  represents the scale matrix and 2r   is the degrees of freedom 25 

(El-Basyouny and Sayed, 2009; Zeng et al., 2016). For each model, a chain of 26 
500,000 iterations of the Markov chain Monte Carlo (MCMC) simulation are made, 27 
with the first 4000 iterations acting as burn-ins. The Gelman-Rubin statistics available 28 
in WinBUGS is used to evaluate the MCMC convergence.  29 
 30 
4.2. Model comparison 31 
 32 

The results of DIC and a number of hyper-parameters for model comparison are 33 
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summarized in Table 2. According to the results, it can be seen that the random effects 1 

of slight injury crash rates ( 11 ) and KSI crash rates ( 22 ), and their covariance 2 

21 12/   in the multivariate random-parameters Tobit model, are all lower than their 3 

respective counterparts in the multivariate Tobit model, possibly because a portion of 4 
the random effects derived from the unobserved heterogeneity across observations is 5 
accounted for by the random parameters. In contrast to the random effects, the 6 

correlation coefficient  ( 12 11 22=   ) is increased dramatically from 0.491 in the 7 

fixed-parameters model to 0.817 in the random-parameters model. It reveals that the 8 
crash rates at the two severity levels have a high positive correlation, which is 9 
reasonable as they are likely to rise due to the same deficiencies in roadway design 10 
and/or other unobserved factors (El-Basyouny and Sayed, 2009). 11 
 12 
Table 2. Model comparison results. 13 

 
Multivariate Tobit Multivariate random-parameters Tobit 

Mean SD 
95 % 

Credible interval 
Mean SD 

95 % 
Credible interval 

11  3.442 0.154 (3.152, 3.753)a 1.387 0.329 (0.809, 1.983) 

21 12( )   0.823 0.059 (0.712, 0.943) 0.465 0.081 (0.307, 0.617) 

22  0.816 0.036 (0.747, 0.890) 0.238 0.041 (0.165, 0.323) 

 b 0.491 0.024 (0.443, 0.538) 0.817 0.048 (0.711, 0.895) 
2

1R  0.305 0.005 (0.295, 0.314) 0.740 0.064 (0.616, 0.851) 
2
2R  0.158 0.006 (0.146, 0.168) 0.785 0.039 (0.703, 0.854) 
2
TR  0.356 0.003 (0.349, 0.360) 0.754 0.050 (0.659, 0.844) 

 D   6559   3440   
pD  29   1388   
DIC  6588   4828   

a Boldface indicates statistical significance at the 95 % credibility level. 14 

b 
12 11 22    . 15 

 16 

Moreover, the  D   value of the multivariate random-parameters Tobit model 17 

(=3440) is much smaller than that of the multivariate Tobit model (=6559), which 18 
suggests that the random-parameters model fits the crash-rate data much better than 19 
the fixed-parameters model. It can be further confirmed by the Bayesian R2 measure 20 

results that the values of 2
1R , 2

2R  and 2
TR  of the multivariate random-parameters 21 

Tobit model are all greater than those of the multivariate Tobit model. These results 22 
are consistent with those in the previous research which shows that accommodating 23 
unobserved heterogeneity could significantly improve model fit (Anastasopoulos and 24 
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Mannering, 2009; Anastasopoulos et al., 2012a). Although there are more effective 1 
parameters (as reflected by pD) in the multivariate random-parameters Tobit model, 2 
which increase the complexity, its much lower DIC indicates that it substantially 3 
outperforms the multivariate Tobit model. 4 
 5 
4.3 Interpretation of parameter estimation 6 

 7 
The parameter estimation results in the multivariate Tobit and multivariate 8 

random-parameters Tobit models are presented in Tables 3 and 4, respectively. From 9 
the results in Table 4, we can see that the random-parameters’ standard deviations of 10 
three factors (bus stop, lane changing opportunity and lane width)1 are significant at 11 
the 95 % credibility level for both slight injury and KSI crash rates. They demonstrate 12 
the heterogeneous effects of these risk factors on the slight injury and KSI crash rates. 13 

 14 
Table 3. Parameter estimation in the multivariate Tobit modela. 15 

Variable 
Slight injury KSI 

Mean SD 
95% 

Credible interval 
Mean SD 

95% 
Credible interval 

Constant 3.656 0.574 (2.657, 4.725)b 0.397 0.284 (-0.121, 0.920) 

AADT -0.024 0.004 (-0.033, -0.015) -0.010 0.002 (-0.017, -0.003) 

SL -0.042 0.005 (-0.053, -0.030) -0.009 0.003 (-0.016, -0.002) 

Merge -0.234 0.069 (-0.370, -0.100) -0.093 0.033 (-0.158, -0.027) 

Diverge 0.034 0.035 (-0.035, 0.104) 0.070 0.017 (0.036, 0.104) 

Inter -0.076 0.034 (-0.149, -0.002) -0.086 0.019 (-0.122, -0.050) 

Median -0.438 0.182 (-0.787, -0.080) -0.160 0.090 (-0.333, 0.017) 

BS 0.601 0.150 (0.306, 0.895) 0.327 0.072 (0.186, 0.469) 

Gradient -3.072 2.125 (-7.266, 1.104) -2.136 1.036 (-4.162, -0.114) 

Curvature -0.018 0.004 (-0.027, -0.009) -0.004 0.002 (-0.011, 0.002) 

LCO 0.254 0.045 (0.165, 0.342) 0.052 0.022 (0.009, 0.095) 

Width 0.256 0.097 (0.072, 0.444) 0.197 0.048 (0.108, 0.289) 
a Rainfall is excluded, because neither of its effects on crash rates at the two severity degrees is 16 
significant at the 95 % credibility level.  17 
b Boldface indicates statistical significance at the 95 % credibility level. 18 

 19 
Specifically, the presence of a bus stop results in normally distributed parameters, 20 

with means of 0.616 and 0.300 and standard deviations of 0.963 and 0.747 for slight 21 
injury and KSI crash rates, respectively. That is, the presence of a bus stop on most 22 
road segments (73.9 % and 65.6 %) increases the slight injury and KSI crash rates, 23 
probably because of the increased interaction between buses and other vehicles when 24 
they enter or leave bus bays (Pei et al., 2012; Zeng et al., 2016); however, for the 25 
minority of road segments (26.1 % and 34.4 %), the presence of a bus stop actually 26 
                                                 
1 The covariance of the three pair of random parameters is not significant at the 95 % credibility level. Therefore, 
they are independently and normally distributed in the multivariate random-parameters Tobit model. 
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decreases the slight injury and KSI crash rates.  1 
The effects of LCOs on the slight injury and KSI crash rates are found to follow 2 

two independent normal distributions, with means of 0.235 and 0.052 and standard 3 
deviations of 0.167 and 0.058, such that more LCOs would lead to a higher slight 4 
injury (KSI) crash rate for 92 % (81.4 %) of roadway segments but a lower slight 5 
injury (KSI) crash rate for the other 8 % (18.6 %). The general finding of LCOs (i.e., 6 
increasing slight injury and KSI crash rates) could be the result of increased vehicle 7 
interaction caused by lane changing maneuvers (such as overtaking), which may 8 
increase the incidence of traffic conflicts (Pei et al., 2012; Zeng et al., 2016). 9 

 10 
Table 4. Parameter estimation in the multivariate random-parameters Tobit modela. 11 

Variable 
Slight injury KSI 

Mean SD 
95 % 

Credible interval 
Mean SD 

95 % 
Credible interval 

Constant 3.508 0.429 (2.945, 4.238)b 0.752 0.209 (0.401, 1.131) 

AADT -0.023 0.004 (-0.033, -0.014) -0.008 0.002 (-0.015, -0.002) 

SL -0.040 0.005 (-0.051, -0.029) -0.008 0.002 (-0.014, -0.001) 

Merge -0.205 0.065 (-0.331, -0.077) -0.057 0.028 (-0.113, -0.001) 

Diverge 0.021 0.035 (-0.046, 0.090) 0.049 0.016 (0.016, 0.081) 

Inter -0.073 0.037 (-0.141, -0.001) -0.069 0.017 (-0.104, -0.035) 

Median -0.457 0.173 (-0.794, -0.147) -0.194 0.080 (-0.350, -0.048) 

BS 0.616 0.141 (0.341, 0.879) 0.300 0.063 (0.178, 0.423) 

SD of BS 0.963 0.233 (0.515, 1.320) 0.747 0.055 (0.645, 0.852) 

Curvature -0.018 0.004 (-0.026, -0.009) -0.004 0.002 (-0.010, 0.002) 

LCO 0.235 0.045 (0.150, 0.318) 0.052 0.017 (0.020, 0.084) 

SD of LCO 0.167 0.062 (0.070, 0.286) 0.058 0.018 (0.023, 0.090) 

Width 0.320 0.097 (0.160, 0.486) 0.098 0.051 (0.009, 0.158) 

SD of Width 0.256 0.039 (0.182, 0.321) 0.084 0.018 (0.046, 0.113) 
a Gradient and Rainfall are excluded, because neither of their effects on crash rates at the two 12 
severity degrees is significant at the 95 % credibility level.  13 
b Boldface indicates statistical significance at the 95 % credibility level. 14 

 15 
The mean and standard deviation of the random parameter of lane width for the 16 

slight injury crash rates are 0.320 and 0.256, respectively, whereas those for the KSI 17 
crash rates are 0.098 and 0.084, respectively. Given these distributional parameters 18 
with their 95 % credible intervals away from zero, widening the lanes in 89.4 % and 19 
87.8 % of roadway segments would increase the slight injury and KSI crash rates, 20 
respectively, whereas widening the lanes of the remaining 10.6 % and 12.2 % would 21 
have the opposite effect. Gross and Jovanis (2007) found a U-shaped relationship 22 
between lane width and crash risk and speculated that drivers may respond to narrow 23 
lanes with more-cautious behavior, thereby decreasing the likelihood of a crash.  24 

With respect to the coefficients of the other factors, the positive or negative signs 25 
are consistent and the magnitude is comparable in the two multivariate models. 26 
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Furthermore, the signs of each factor’s coefficients for both slight injury and KSI 1 
crash rates are identical, which means that they have consistent effects on the crash 2 
rates for the two injury severity degrees. Nevertheless, the fixed parameters of 3 
Constant and Median are changed to be significant but the effect of Gradient on the 4 
KSI crash rates is changed to be insignificant at the 95 % credibility level in the 5 
multivariate random-parameters Tobit regression. In addition, the standard deviations 6 
of most coefficients are smaller in the random-parameters model, which indicates that 7 
it leads to more precise parameter estimation. 8 

Specifically, the average annual daily traffic is found to have significant negative 9 
effects on both slight injury and KSI crash rates, which is consistent with the findings 10 
in many previous studies (Anastasopoulos et al., 2012a, b; Huang et al., 2016b; Qi et 11 
al., 2007). These findings may be attributed to the reduced travel speed caused by 12 
increasing traffic volume, which may significantly decrease the likelihood of (slight 13 
injury and SKI) crash occurrence. It is interesting to find that crash rates at the two 14 
injury severity levels are both lower on roadway segments with higher speed limits, 15 
which may contradict engineering intuition (Aguero-Valverde and Jovanis, 2008). 16 
However, some researchers have argued that road segments designed for higher 17 
speeds are usually well-planned, constructed, and managed (Milton and Mannering, 18 
1998; Zeng et al., 2016) and that these features may improve highway safety 19 
performance. 20 

The significantly negative coefficients of Merge and Inter indicate that a greater 21 
number of merging ramps and intersections on roadway segments are associated with 22 
lower slight injury and KSI crash rates. These results could be explained by the risk 23 
compensation theory, which suggests that drivers may adapt to an adverse driving 24 
environment (more merging ramps and intersections) by altering their driving 25 
behavior (such as being more careful or slowing down) (Mannering and Bhat, 2014). 26 
Some drivers may overcompensate for the adverse conditions, leading to a lower 27 
crash risk. Conversely, the positive coefficients of Diverge suggest that an increase in 28 
the number of diverging ramps results in higher slight injury and KSI crash rates, 29 
which conforms to engineering intuition and the findings of previous studies (Zeng et 30 
al., 2016), because the sites that approach diverging ramps can be hazardous. 31 

The estimation results show that the presence of a median barrier on a road 32 
segment results in significantly lower slight injury and KSI crash rates. Studies have 33 
suggested that median barriers can effectively prevent cross-median crashes (Donnell 34 
and Mason, 2006; Zeng et al., 2016). Curvature is found to significantly decrease 35 
slight injury crash rates, which may be somewhat counterintuitive. However, stronger 36 
centrifugal force derived from greater road curvature tend to increase the injury 37 
severity once a crash happens, that is, it is less likely to be a slight injury crash. This 38 
may partially explain the significantly negative coefficient of Curvature on slight 39 
injury crash rates. 40 

 41 
5. Conclusions and future research 42 
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 1 
This study advocates a multivariate random-parameters Tobit model for the 2 

simultaneous analysis of crash-injury-severity rates, which accommodates both 3 
correlation between crash rates at different severity levels and unobserved 4 
heterogeneity across observations. A crash dataset obtained from the Traffic 5 
Information System maintained by the Transport Department of Hong Kong, in which 6 
crashes are classified into slight injury and KSI degrees, is used to demonstrate the 7 
proposed model and to compare it with a multivariate fixed-parameters Tobit model. 8 
The models are estimated and evaluated in the Bayesian context via programming in 9 
the freeware WinBUGS. 10 

The results show that bus stop, lance changing opportunity and lane width present 11 
heterogeneous effects on both slight injury and KSI crash rates. After accounting for 12 
the heterogeneity of these factors’ effects, the random effects and covariance are all 13 
decreased to certain degrees while the correlation coefficient reaches 0.817, which 14 
suggests a high positive correlation between the crash rates at the two severity levels. 15 
The multivariate random-parameters Tobit model fits the collected crash data much 16 
better than the multivariate Tobit model, as reflected by a dramatic decrease in the 17 
DIC value (1760) and significant increases in the Bayesian R2 values. What’s more, 18 
compared with the fixed-parameters model, the random-parameters model produces 19 
consistent signs and more precise estimates for the fixed coefficients of the other 20 
factors. The average annual daily traffic, the speed limit, the number of merging 21 
ramps and intersections, and the presence of median barriers are found to have 22 
significant negative effects on slight injury and KSI crash rates, while the number of 23 
diverging ramps is found to have a significant positive association with KSI crash 24 
rates. 25 

In summary, the empirical analysis demonstrates the superiority of the 26 
multivariate random-parameters Tobit model and the significance of correlation 27 
between crash rates at various severity degrees and the heterogeneous effects of 28 
certain risk factors in the crash-injury-severity-rate data. Noticeably, like other 29 
random-parameters models, the proposed multivariate random-parameters Tobit 30 
model may suffer from transferability issues since the individual parameter vector 31 
associated with each observation is unique. However, if significant random 32 
parameters are found in crash data, the fixed-parameters model will be estimated with 33 
a persistent bias and transferability will be problematic since this bias will be a 34 
function of unobserved heterogeneity (Mannering et al., 2016). Thus, we still think 35 
that the proposed model has considerable potential in analysis of crash rates by 36 
severity. Because significant spatial correlation always exists among crash rates of 37 
adjacent road sites, further research effort could be devoted to incorporate spatial 38 
correlation into the multivariate random-parameters Tobit model. It could also be 39 
applied to rank sites that hold promise for safety improvement. 40 
 41 
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