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Expectation dependence:

The banking firm under risk

Abstract This paper examines the optimal lending and hedging decisions of a bank facing

uncertain returns on its loans. The bank’s preferences are state-dependent in that the utility

function depends on a state variable, i.e. the business cycle of the economy. The purpose of

this paper is to complement the results of the banking literaure. To characterize the bank’s

optimal use of financial instruments to hedge, we show that the concept of expectation

dependence (Wright, 1987) is useful. While the current hedging literature specifies price

risk as a monotonically increasing or decreasing function of the state-variable plus noise,

expectation dependence provides much more general bivariate dependence structure. The

bank’s optimal futures position is an under-hedge or an over-hedge, depending on whether

the random return on loans is positively or negatively correlated with the business cycle of

the economy in the sense of expectation dependence, respectively. The bank as such takes

dependencies into consideration when devising its optimal hedging strategy.

JEL classification: D81; G21; E32

Keywords: Expectation dependence; Hedging; Lending; State-dependent preferences

1 Introduction

Financial risks are at the core of financial intermediation. Banks taking deposits and

holding portfolios of loans and other financial contracts need to manage liquidity risk, credit

risk, market risk, and operational risk. Management of risk is an important topic in many

fields of economics, insurance, banking, and finance (see, for example, Pausch and Welzel,

2013, Baker and Filberg, 2015). In the economics of banking and finance, the question

of how financial intermediaries react to changes in random and non-random parameters of

their market environment has a long tradition.
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Broll and Wong (2010) have recently examined the hedging decision of a bank facing

uncertain returns on its loans. The bank’s preferences are state-dependent in that the utility

function depends on a state variable that denotes the business cycle of the economy. There

are unbiased futures contracts that the bank can trade to hedge against its risk exposure.

It is shown that the bank takes the business cycle of the economy seriously when devising

its optimal hedging strategy.

In a seminal contribution to the literature on futures markets, Benninga et al. (1983)

addressed the issue of optimal futures hedging in the presence of unbiased futures prices.

They derived conditions for the optimal hedge ratio to be a fixed proportion of the open

position, regardless of the agent’s utility function. This result is important because of the

sizeable research on theoretical and empirical risk management that abstracts from the

particular utility functions of risk averse, expected utility maximizers.

The purposes of this study are to complement the results in the literature by endoge-

nizing the bank’s lending decision in general, and by incorporating a tractable covariance

structure into the underlying uncertainty in particular. We show that the optimal amount

of loans extended by the bank depends neither on the risk attitude of the bank, nor on

the joint distribution of the random return on loans and the business cycle of the econ-

omy. We show further that the optimality of a full-hedge holds if, and only if, the random

return on loans is conditionally independent of the business cycle of the economy. In the

more realistic case that these two sources of uncertainty are de facto correlated, we show

that the bank optimally opts for an under-hedge or an over-hedge, depending on whether

the random return on loans is positively or negatively correlated with the business cycle

of the economy in the sense of expectation dependence à la Wright (1987), respectively.

Expectation dependence as such completely determines the bank’s optimal futures position

(see Hong et al. (2011), Li (2011), Wong (2012, 2013) and Broll et al. (2015) for other

applications of expectation dependence).

The rest of this paper is organized as follows. Section 2 delineates our model of a com-
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petitive bank facing uncertain returns on loans and possessing state-dependent preferences.

Section 3 derives the optimal lending and hedging decisions of the competitive bank. The

final section concludes.

2 The model

Consider a competitive bank that makes decisions in a single period horizon with two

dates, 0 and 1. At date 0, the bank has the following balance sheet:

L = D + E, (1)

where L > 0 is the amount of loans, D > 0 is the quantity of deposits, and E > 0 is the

stock of equity capital. By regulation, the bank is subject to the following capital adequacy

requirement:

αL ≤ E, (2)

where α ∈ (0, 1) is the minimum capital-to-loan ratio.1

The bank’s loans belong to a single homogeneous class, which mature at date 1. The

gross return on loans, R̃, is stochastic and distributed according to a known cumulative

distribution function (CDF), F (R), over support [R, R] with 0 < R < R.2 The bank can

hedge this risk exposure by selling (buying if negative) Z units of futures contracts at the

prespecified gross return, RF ∈ (R, R), at date 0. The futures contracts are settled at date

1 based on the realized value of R̃ at that time. To focus on the bank’s pure hedging motive,

we assume throughout the paper that the futures contracts are unbiased in that RF is set

equal to the unconditional expected value of R̃.

The bank’s deposits are insured by a government-funded deposit insurance scheme.

The supply of deposits is perfectly elastic at the fixed one-plus deposit rate, RD ≥ 1. The

1This specification of capital adequacy requirement is consistent with those of Basel I and the standardized
approach of Basel II, both of which set α = 8%. See also Wong (1997, 2011).

2Throughout the paper, random variables have a tilde (∼) while their realizations do not.
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bank’s shareholders contribute equity capital with a required gross return, RE, on their

investment, where RE > RD, reflecting the scarcity of shareholders’ wealth. We assume

that the unconditional expected gross return on loans is no less than RE, and thereby is

greater than RD, so that the bank has incentives to extend loans by raising deposits and

equity capital.

The bank’s shareholders receive the following net worth at date 1:

W̃ = R̃L − RDD − REE − C(L) + (RF − R̃)Z, (3)

where C(L) is the cost function of servicing loans, and (RF − R̃)Z is the gain (loss if

negative) from the futures position, Z. We refer to Z as an over-hedge, a full-hedge, or an

under-hedge, depending on whether Z is larger than, equal to, or smaller than the amount

of loans, L, respectively. We assume that C(L) is continuously differentiable such that

C(0) = C′(0) = 0, and C′(L) > 0 and C′′(L) > 0 for all L > 0.

The bank is risk averse and possesses a bivariate state-dependent utility function,

U(W, S), defined over the net worth of its shareholders at date 1, W , and the realiza-

tion of a state variable, S̃, that denotes the business cycle of the economy. Let G(S) be

the known CDF of S̃ over support [S, S] with S < S. To allow the random gross re-

turn on loans, R̃, to be correlated with S̃, we denote H(R, S) as their joint CDF over

support [R, R] × [S, S]. We assume that the state-dependent utility function, U(W, S),

is continuously differentiable with respect to both arguments such that UW (W, S) > 0,

UWW (W, S) < 0, and UWS(W, S) > 0 for all W ≥ 0 and S ∈ [S, S], where the subscripts

indicate partial derivatives.

The ex-ante decision problem of the bank is given by

max
L>0,D>0,E>0,Z

E[U(W̃, S̃)] s.t. L = D + E and αL ≤ E, (4)

where E(·) is the expectation operator with respect to the joint CDF, H(R, S), and W̃ is

given by Eq. (3). It follows from RE > RD that the bank would like to rely on deposits
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rather than equity capital to finance loans, thereby rendering the capital adequacy require-

ment to be binding. Substituting the initial balance sheet constraint, Eq. (1), and the

binding capital adequacy requirement, Eq. (2), into Eq. (3) yields the following net worth

of the bank’s shareholders at date 1:

W̃ = [R̃ − αRE − (1− α)RD]L − C(L) + [E(R̃) − R̃]Z, (5)

since RF = E(R̃). We can interpret αRE +(1−α)RD as the bank’s weighted average cost of

capital, where the weights are based on the capital-to-loan ratio, α, and the deposit-to-loan

ratio, 1 − α. The ex-ante decision problem of the bank as such reduces to

max
L>0,Z

E[U(W̃, S̃)], (6)

where W̃ is given by Eq. (5).

3 Optimal lending and hedging decisions

The first-order conditions for program (6) are given by

E{UW (W̃ ∗, S̃)[R̃ − αRE − (1− α)RD − C′(L∗)]} = 0, (7)

and

E{UW (W̃ ∗, S̃)[E(R̃)− R̃]} = 0, (8)

where an asterisk (∗) signifies an optimal level. The second-order conditions for program

(6) are satisfied given the assumed properties of U(W, S) and C(L).

Adding Eq. (7) to Eq. (8) yields

E[UW (W̃ ∗, S̃)][E(R̃) − αRE − (1− α)RD − C′(L∗)] = 0. (9)

Since UW (W, S) > 0, our first proposition is an immediate consequence of Eq. (9).
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Proposition 1. The competitive bank that hedges its risk exposure by using the unbiased

futures contracts optimally chooses the amount of loans, L∗, that is the unique solution to

C′(L∗) = E(R̃) − αRE − (1 − α)RD. (10)

Given the availability of the unbiased futures contracts, the bank can perfectly lock in

the random gross return on loans, R̃, at its expected value, E(R̃). At the optimum, the

bank must equate the known lock-in marginal revenue, E(R̃), from lending out the last unit

to the sum of the marginal cost of servicing that unit, C′(L∗), and the weighted average cost

of capital, αRE +(1−α)RD, thereby yielding the usual optimality condition, Eq. (10). An

immediate implication of Proposition 1 is that the bank’s optimal lending decision depends

neither on the state-dependent utility function, U(W, S), nor on the joint CDF, H(R, S).

We now examine the bank’s optimal hedging decision. To this end, we write Eq. (8) as3

Cov[UW (W̃ , S̃), R̃] = 0, (11)

where Cov(·, ·) is the covariance operator with respect to the joint CDF, H(R, S). According

to Ingersoll (1987), a random variable, X̃, is said to be conditionally independent of another

random variable, Ỹ , if E(X̃|Y ) = E(X̃) for all realizations of Ỹ , where E(X̃|Y ) is the

expected value of X̃ conditional on Ỹ = Y . Ingersoll (1987) proves that X̃ is conditionally

independent of Ỹ if, and only if, Cov[X̃, f(Ỹ )] = 0 for all functions, f(·).4 Equipped with

the concept of conditional independence, we can state and prove the following proposition.

Proposition 2. The competitive bank optimally opts for a full-hedge, i.e., Z∗ = L∗, if,

and only if, the random gross return on loans, R̃, is conditionally independent of the state

variable, S̃.

3For any two random variables, X̃ and Ỹ , we have Cov(X̃, Ỹ ) = E(X̃Ỹ ) − E(X̃)E(Ỹ ).
4Ingersoll (1987) shows that two random variables, X̃ and Ỹ , are independent if, and only if,

Cov[f(X̃), g(Ỹ )] = 0 for all functions, f(·) and g(·). Thus, conditional independence contributes to a
weaker condition than independence.
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Proof. Suppose that a full-hedge is optimal. Substituting Z∗ = L∗ into Eq. (11) yields

Cov

{

UW{[E(R̃) − αRE − (1 − α)RD]L∗ − C(L∗), S̃}, R̃

}

= 0. (12)

Since Eq. (12) must hold for all U(W, S), thereby UW (W, S), it follows that R̃ is condition-

ally independent of S̃. This proves the necessity part.

To prove the sufficiency part, suppose that R̃ is conditionally independent of S̃. Then,

we have Cov[f(S̃), R̃] = 0 for all functions, f(·). In particular, it is true for f(S) =

UW{[E(R̃) − αRE − (1 − α)RD]L∗ − C(L∗), S}. Eq. (11) as such holds at Z∗ = L∗. 2

Proposition 2 shows that conditional independence of R̃ and S̃ is both necessary and

sufficient to make a full-hedge optimal. The intuition underlying Proposition 2 is as follows.

Since covariances can be interpreted as marginal variances, inspection of Eq. (11) reveals

that the optimal futures position, Z∗, minimizes the variance of the bank’s marginal utility.

If the bank adopts a full-hedge, the net worth of the bank’s shareholders at date 1 is non-

stochastic. The variability of the bank’s marginal utility as such comes entirely from the

randomness of the state variable, which is non-hedgeable should R̃ and S̃ be conditionally

independent, thereby rendering the optimality of a full-hedge.

An immediate implication of Proposition 2 is that the bank is likely to deviate from

adopting a full-hedge when the two random variables, R̃ and S̃, are de facto correlated. In

order to characterize the bank’s optimal futures position, Z∗, in this more realistic case,

we need a tractable covariance structure of R̃ and S̃. To this end, we define the following

function:

ED(R̃|S) =

∫ R

R

[

H(R, S)

G(S)
− F (R)

]

dR, (13)

for all S ∈ [S, S]. According to Wright (1987), R̃ is said to be positively (negatively)

expectation dependent on S̃ if ED(R̃|S) ≥ (≤) 0 for all S ∈ [S, S], where the inequality

is strict for some non-degenerate intervals. Wright (1987) shows that positive (negative)
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expectation dependence is a sufficient, but not necessary, condition for positive (negative)

correlation. Equipped with the concept of expectation dependence, we can state and prove

the following proposition.

Proposition 3. The competitive bank optimally opts for an under-hedge (over-hedge), i.e.,

Z∗ < (>) L∗, if the random gross return on loans, R̃, is positively (negatively) expectation

dependent on the state variable, S̃.

Proof. Cuadras (2002) proves that Cov[f(R̃), g(S̃)] can be written in terms of the CDFs,

F (R), G(S), and H(R, S), as follows:

Cov[f(R̃), g(S̃)] =

∫ R

R

∫ S

S
[H(R, S)− F (R)G(S)] df(R) dg(S), (14)

for all functions, f(·) and g(·). Evaluating the left-hand side of Eq. (11) at Z∗ = L∗ and

using Eq. (14) with f(R̃) = R̃ and g(S̃) = UW{[E(R̃) − αRE − (1 − α)RD]L∗ − C(L∗), S̃}

yields

∫ R

R

∫ S

S
[H(R, S)− F (R)G(S)]UWS{[E(R̃) − αRE − (1− α)RD]L∗ − C(L∗), S} dR dS

=

∫ S

S
ED(R̃|S)UWS{[E(R̃)− αRE − (1− α)RD]L∗ − C(L∗), S}G(S) dS, (15)

where ED(R̃|S) is given by Eq. (13). Given that UWS(W, S) > 0, the right-hand side of

Eq. (15) is positive (negative) should R̃ be positively (negatively) expectation dependent

on S̃. It then follows from Eq. (11) and the second-order conditions for program (6) that

Z∗ < (>) L∗. 2

The intuition for Proposition 3 is as follows. Given that covariances can be interpreted

as marginal variances, Eq. (11) implies that the optimal futures position, Z∗, is the one

that minimizes the variance of the bank’s marginal utility. Suppose that the bank chooses

a full-hedge so that the net worth of its shareholders at date 1 is non-stochastic. If R̃ and
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S̃ are positively (negatively) correlated in the sense of expectation dependence, the bank

should decrease (increase) its futures position, i.e., adopt an under-hedge (over-hedge) since

this would raise the net worth of the bank’s shareholders at date 1 as the gross return on

loans increases (decreases), which is more likely when the realized value of the state variable

is higher. Given that UWS(W, S) > 0, it follows from UWW (W, S) < 0 that such a futures

position is more effective in reducing the variability of the bank’s marginal utility, thereby

rendering the optimality of an under-hedge (over-hedge).

4 Conclusion

This paper extends the results in the literature by endogenizing a competitive bank’s

lending decision in general, and by incorporating a tractable covariance structure into the

random return on loans and the business cycle of the economy in particular. Given that the

bank can hedge its risk exposure by trading unbiased futures contracts, we show that the

optimal amount of loans extended by the bank depends neither on the risk attitude of the

bank nor on the underlying uncertainty. We show further that the concept of expectation

dependence à la Wright (1987) is useful in determining the bank’s optimal futures position.

Specifically, the bank optimally opts for an under-hedge or an over-hedge, depending on

whether the random return on loans is positively or negatively correlated with the business

cycle of the economy in the sense of expectation dependence, respectively.
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