
PHYSICAL REVIEW B 94, 045403 (2016)

Quantum coherence of the molecular states and their corresponding currents in nanoscale
Aharonov-Bohm interferometers
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By considering a nanoscale Aharonov-Bohm (AB) interferometer consisting of a laterally coupled double
dot coupled to the source and drain electrodes, we investigate the AB phase dependence of the bonding and
antibonding states and the transport currents via the bonding and antibonding state channels. The relations of the
AB phase dependence between the quantum states and the associated transport current components are analyzed,
which provides useful information for the reconstruction of quantum states through the measurement of the
transport current in such systems. We also obtain the validity of the experimental analysis [given in T. Hatano
et al., Phys. Rev. Lett. 106, 076801 (2011)] that bonding state currents in different energy configurations are
almost the same. With the coherent properties in the quantum dot states as well as in the transport currents, we
also provide a way to manipulate the bonding and antibonding states through the AB magnetic flux.
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I. INTRODUCTION

Quantum coherence of electrons in nanostructures is
expected to manage quantum computation and quantum
information. It is essential to prepare and read out the state
of the qubit in quantum information processing. There have
been many experiments and theoretical analyses on quantum
coherence manipulation of electron states in double quantum
dots (DQDs) which are thought to be a promising charge qubit
[1–14]. The techniques to reconstruct quantum states from
series of measurements about the system are known as quan-
tum state tomography [15–17]. Quantum state tomography is
resource demanding and it aims at very detailed description
of coherence of quantum states, see, for example [18,19].
On the other hand, transport measurement utilizing quantum
interference has revealed the main coherent properties of
traveling electrons. How the latter can be associated with the
coherence of local quantum dot states of the DQDs is worthy
of further investigation.

Quantum coherence has been detected through the
Aharonov-Bohm (AB) interference [20]. Double quantum dots
embedded in AB geometry were achieved in Refs. [21–23].
The AB phase coherence of electrons through each dot would
induce oscillating current as a function of the magnetic flux,
which is simply called the AB oscillation in the literature. The
results show that the AB phase coherence can be easily manip-
ulated in these devices. In Coulomb blockade and cotunneling
regimes, it is predicted theoretically that currents through
spin-singlet and triplet states carry AB phases with a half of
period difference [24]. For one-electron states, the half-period
difference of AB oscillation is also anticipated in transport
currents through the bonding and antibonding state channels
[25,26], demonstrated in electron conductance. In particular,
the authors of Ref. [25] revealed that there are two resonances,
the Breit-Wigner resonance and the Fano resonance, in the
electron conductance that are associated to the bonding
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and antibonding states and the interference between them.
Furthermore, the authors of Ref. [26] investigated the electron
transport in such system by varying the indirect coupling
between double dots via the leads at zero temperature, and they
found that the Fano resonance can be suppressed as the indirect
coupling strength decreases, and the remaining Breit-Wigner
resonance contains two peaks associated with the bonding
and the antibonding states, respectively. Motivated with
these theoretical investigations, the transport currents passing
through the bonding and antibonding state channels have been
detected experimentally [27], where the half-period difference
of AB oscillation in electron currents through the bonding and
antibonding state channels, respectively, is thought to be re-
sulted from the parity of the wave functions of the bonding and
antibonding states, which is a property of the device geometry.

Inspired by the ability of detecting currents from different
channels, we attempt to investigate the coherent properties of
quantum states in DQDs, for which the corresponding currents
must have a direct connection [25,26]. In Ref. [27], two
different energy configurations are used, which are succeeded
by two different gate voltage settings. The transport currents
under these two configurations are measured. The measured
currents are used to determine the bonding and/or antibonding
state channels in one of the configurations. In Ref. [27], the
authors assumed that the transport currents flowing through
the bonding state channel in different energy configuration
are almost the same. We would first verify the validity of
this assumption, using our theoretical framework of the quan-
tum transport theory based on the master-equation approach
[28–31]. We then investigate the AB oscillation dependence
between the bonding and antibonding states and the transport
currents flowing through the corresponding channels, from
which we further explore the quantum coherence between
the two quantum dot states. The results provide the full
information for the reconstruction of quantum states of the
promising charge qubit in terms of two physical dot states
through the measurements of transport current. Finally, we
discuss the way to manipulate the bonding and antibonding
states of DQDs with the AB magnetic flux.
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The rest of the paper is organized as follow: In Sec. II, we be-
gin with the system of DQDs coupled to two leads to study the
reduced density matrix of the DQD system and the transport
currents flowing through the bonding and antibonding state
channels. In Sec. III, we obtain the condition for the validity
of the method used in Ref. [27] in analyzing the connection of
the bonding and antibonding states with the measured currents.
In Sec. IV, we discuss the correspondence of the AB phase
dependence between the reduced density matrix of the bonding
and antibonding states with the associated transport currents,
and the relation to the quantum coherence between the two
physical dot bases as the promising charge qubit. A way to
manipulate the bonding and antibonding states with the AB
magnetic flux is also given. Finally, a summary is presented in
Sec. V.

II. COUPLED DQDS MOLECULE

We consider a nanosystem of two laterally coupled single-
level QDs coupled to two leads. The Hamiltonian of the system
is given by

H = HDQD + HB + HT , (1)

where HDQD is the Hamiltonian of the DQDs

HDQD =
2∑

i=1

εij d
†
i dj , (2)

and di (d†
i ) is the annihilation (creation) operator in the ith QD,

εii is the energy level of the ith QD, and εij with i �= j is the
tunneling matrix element between the DQDs. The Hamiltonian
of the two leads is given by HB :

HB =
∑

α=L,R

∑
k

εαkc
†
αkcαk, (3)

where the label α denotes the left or the right lead, and cαk (c†αk)
is the annihilation (creation) operator of the kth level in lead
α. The Hamiltonian HT describes the tunnelings between the
QDs and the leads:

HT =
∑

α=L,R

2∑
i=1

∑
k

(Viαkd
†
i cαk + H.c.). (4)

By threading a magnetic flux � to the above system, the
tunneling matrix elements would carry an AB phase, Viαk =
V̄iαke

iφiα , φiα is the AB phase when the electron tunnels from
lead α to the ith dot, and V̄iαk is a real tunneling amplitude. The
AB phase will also affect on HDQD, i.e., for i �= j , εij = ε̄ij e

iφij

where ε̄ij = −tc is a real amplitude and φij is the AB phase
from j th dot to ith dot. The relation of the AB phases with
the magnetic flux � is given by φ1L − φ1R + φ2R − φ2L =
2π�/�0 = ϕ, where �0 is the flux quanta. We also set φ12 = 0
according to Refs. [25–27].

In order to study the molecular states of the DQDs, we
may change the basis by diagonalizing HDQD. By labeling the
bonding state and the antibonding state with the signs − and
+ respectively, the Hamiltonian of the DQDs becomes

HDQD =
∑
ν=±

ενd
†
νdν, (5)

where ε± are the corresponding energy levels, and d± (d†
±)

are the associated annihilation (creation) operators, which are
given by

ε± = 1

2

[
(ε11 + ε22) ±

√
(ε11 − ε22)2 + 4t2

c

]
, (6a)(

d+
d−

)
=

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)(
d1

d2

)
, (6b)

and tan θ = 2tc/(ε11 − ε22).

A. Density matrix of the DQDs

The reduced density matrix ρ(t) = TrE[ρtot(t)] that de-
scribes quantum states of the DQDs can be solved from
the exact master equation we derived previously by tracing
over all the reservoir states [28–31]. The explicit form of the
exact master equation for the given total Hamiltonian (1) is
presented in the Appendix. By denoting the empty state with
|0〉, the bonding and antibonding states with |ν〉 : = |±〉, and
the doubly occupied state by |d〉, the reduced density matrix
elements at the later time t for an arbitrary initial DQD state
that are solved explicitly from the master equation (A1) in the
Appendix are given as follows [32]:

ρ00(t) = A(t)

{
ρ00(t0) + ρdd (t0)det[ J3(t)]

−
∑

ν,ν ′=:±
ρνν ′ (t0)J3ν ′ν(t)

}
, (7a)

ρ++(t) = 1 − ρ00(t) − ρ
(1)
−−(t), ρ+−(t) = ρ

(1)
+−(t), (7b)

ρ−−(t) = 1 − ρ00(t) − ρ
(1)
++(t), ρ−+(t) = ρ∗

+−(t), (7c)

ρdd (t) = 1 − ρ00(t) − ρ++(t) − ρ−−(t), (7d)

and the other off-diagonal density matrix elements between
the different states are all zero, where A(t) = det[I − v(t,t)],
J3(t) = u†(t,t0)[I − v(t,t)]−1u(t,t0) − I , and I is the identity
matrix, ρ(t0) is the initial reduced density matrix, the single-
particle reduced density matrix ρ(1)(t) of the DQDs is [29]

ρ
(1)
νν ′ (t) = TrS[a†

ν ′aνρ(t)]

= [u(t,t0)ρ(1)(t0)u†(t,t0) + v(t,t)]νν ′, (8)

and u(t,t0) and v(t,t) are the nonequilibrium Green functions
that fully characterize the electron dissipation and fluctuations
in the master equation and can be solved from Eqs. (A3) and
(A4).

The solution (7) of the reduced density matrix for the DQDs
can be further specified under the experimental conditions
given in Ref. [27], namely, the energy of each dot ε11 = ε22 =
ε0, the spectral density of Eq. (A6) for lead α, �α(ε) = �α

(wide band limit) with the level broadenings of the left
lead �L11 = �L22 = �L and the right lead �R11 = �R22 = �R ,
plus the indirect interdot couplings of the left lead �L12 =
aL�Lei

ϕ

2 and the right lead �R12 = aR�Re−i
ϕ

2 , where the
indirect coupling parameter aL,R was originally introduced
in Ref. [26] in order to characterize the strength of the indirect
coupling between two quantum dots via leads. In the molecular
basis, the energies of the bonding and antibonding states are
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ε± = ε0 ± |tc|. In the above settings, the annihilation operators
of the bonding and antibonding states become(

d+
d−

)
= 1√

2

(
1 −1
1 1

)(
d1

d2

)
. (9)

The tunneling Hamiltonian between the molecular states and
the leads is

HT =
∑

α=L,R

∑
±

∑
k

(V±αkd
†
±cαk), (10)

with the tunneling matrix elements(
V+αk

V−αk

)
= 1√

2

(
1 −1
1 1

)(
V1αk

V2αk

)
. (11)

The level broadening matrix �α is then given by

�L,R =
(

�++ �+−
�−+ �−−

)
L,R

= �L,R

(
I − �αL,R · �σ )

, (12)

where �αL,R = (αx
L,R,α

y

L,R,αz
L,R) = aL,R(0, ∓ sin ϕ

2 , cos ϕ

2 )
and �σ are the Pauli matrices.

Then, the Green function u(t,t0) has a simple solution:

u(t,t0) =
(

u++(t,t0) u+−(t,t0)
u−+(t,t0) u−−(t,t0)

)
= exp

[(
− iε − 1

2
�L − 1

2
�R

)
(t − t0)

]
, (13)

where ε = (
ε+ 0
0 ε−

). In the energy domain, it is given by

Gr (ε) = −i

∫ ∞

0
eiεt u(t)dt =

(
ε − ε I + i

2
�

)−1

, (14)

with � = �L + �R . The Green function v in the steady-state
limit is

v =
∫ ∞

−∞

dε

2π

∑
α

fα(ε)Gr (ε)�αGa(ε), (15)

and Ga(ε) = [Gr (ε)]†.
As one can see, in the steady-state limit, u(t → ∞) = 0 so

that the single-particle reduced density matrix of the DQDs is
reduced to

ρ
(1)
νν ′ (t → ∞) = [v]νν ′ , (16)

where v is given by Eq. (15). Following the experiment [27],
the initial DQDs are empty so that ρ00(t0) = 1 and other initial
density matrix elements of the DQDs all equal to zero. Then,
Eq. (7) in the steady-state limit can be simplified to

ρ00 = det[I − v], (17a)

ρ++ = 1 − ρ00 − v−−, ρ+− = v+−, (17b)

ρ−− = 1 − ρ00 − v++, ρ−+ = v∗
+−, (17c)

ρdd = det[v]. (17d)

Thus, the reduced density matrix elements of the DQDs are
fully determined by the Green function solution (15) through
the solution (14).

B. Quantum transport current

The quantum transport current of electrons flowing from
lead α into the DQDs is defined by

Iα(t) = −e
d

dt
TrS⊗R[ρtot(t)Nα], (18)

where Nα ≡ ∑
k c

†
αkcαk . Using the master equation given in

the Appendix, the transport current can also be expressed in
terms of the Green functions u(t,t0) and v(τ,t) as well [28–31]:

Iα(t) = −2e Re Tr
∫ t

t0

dτ {gα(t,τ )u(τ,t0)ρ(1)(t0)u†(t,t0)

+ gα(t,τ )v(τ,t) − g̃α(t,τ )u†(t,τ )}. (19)

This expression of the transport currents can also be derived
directly from Keldysh’s Green function technique [33], but the
dependence of initial conditions, i.e., the first term in Eq. (19),
was omitted in Ref. [33]. The net transport current measured
in experiments is given by

I (t) = 1
2 [IL(t) − IR(t)]. (20)

The steady-state electron current in the wide band limit can
be reduced to

Iα = −2e ReTr

{
1

2
�αv − i

∫ ∞

−∞

dε

2π
fα(ε)�αGr (ε)

}
. (21)

Carrying out explicitly the real part of Eq. (21), the transport
current of Eq. (20) in the steady-state limit obeys the
generalized Landauer-Büttiker formula

I = e

2π

∫
dε[fL(ε) − fR(ε)]T (ε), (22)

where the electron transmission is

T (ε) = Tr[Ga(ε)�RGr (ε)�L]. (23)

According to the analyses in Ref. [27], the total transport
current can be divided into components flowing through the
bonding and antibonding state channels, plus the interference
between them:

I = I+ + I− + I+−. (24)

These current components are explicitly given by

I± = e

2π

∫ +∞

−∞
dε[fL(ε) − fR(ε)]�L±±�R±±|Gr

±±(ε)|2,

(25a)

I+− = e

2π

∫ +∞

−∞
dε[fL(ε) − fR(ε)]{�L++�R−−|Gr

−+|2

+�L−−�R++|Gr
+−|2 + 2 Re{Ga

++�R++Gr
+−�L−+

+Ga
+−�R−+Gr

++�L++ + Ga
+−�R−+Gr

+−�L−+
+Ga

++�R+−Gr
−−�L−+ + Ga

+−�R−−Gr
−−�L−+

+Ga
−−�R−+Gr

+−�L−−}}, (25b)

where �L±±�R±±|Gr
±±(ε)|2 are the effective transmission

coefficients of the bonding (antibonding) state channels. The
transport current component I+− is the second-order term of
aL,R , and hence its contribution to the total transport current
is ignorable in the weak indirect coupling limit [27] I+− 
 0.
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III. TRANSPORT CURRENT THROUGH THE BONDING
AND ANTIBONDING STATE CHANNELS

In Refs. [25,26], transport properties of the same system,
the AB interferometer embedded with DQDs, was analyzed
through the resonance tunneling. The authors of Ref. [25]
found two resonances in the electron conductance near the
bonding and antibonding states that are composed of a Breit-
Wigner resonance and a Fano resonance, for which the widths
of the Breit-Wigner resonance and the Fano factor are sensitive
to the AB phase. The authors of Ref. [26] explored further the
associated resonances in the conductance with the molecular
states by investigating the indirect coupling effect on the
resonances. They found that the full destructive interference
of the Fano resonance only happens for the strongest indirect
coupling |aL,R| = 1. When |aL,R| decreases from 1 to 0, the
Fano resonance is gradually suppressed, and the remaining
result is the Breit-Wigner resonance containing two peaks
associated with the bonding and antibonding states. In our
formalism, I± are the transport currents flowing through
the bonding and antibonding state channels, respectively,
which gives the two peaks in the electron conductance for
Breit-Wigner resonance, as shown in Ref. [26], and I+−
is the transport current due to interference between the
bonding and antibonding state channels, which induce Fano
resonance in the electron conductance when |aL,R| → 1, as
shown in Refs. [25,26]. The transport currents flowing through
the bonding and antibonding state channels were explicitly
detected later [27]. The theoretical analysis in Ref. [26] and the
experimental analysis in Ref. [27] inspire us to find the explicit
relation between the DQD reduced density matrix elements
and the transport currents in the molecular state basis.

In the experiment [27], the electron currents are measured
under two different energy configurations for the bonding
and antibonding state channels with the fixed bias and
indirect interdot weak couplings, as shown in Fig. 1(a). Other
parameter settings in Ref. [27] are as follows: the level
broadenings of the left lead �L = 0.3� and the right lead
�R = 0.7� (� = �L + �R), the indirect interdot coupling
parameters aL = −0.1 for the left lead and aR = 0.15 for
the right lead, the direct interdot coupling tc = −60�, the
chemical potentials of the left lead μL = 125� and the right
lead μR = −125�, and the temperature of the reservoirs is set
at kBT = 10�. The measured currents are the total electron
currents in each configuration. As shown by Fig. 1(a), in
configuration 1, only the energy of the bonding state locates
within the bias window (μL − μR). In configuration 2, both the
energies of the bonding and antibonding states lie in the bias
window. These two energy configurations can be succeeded
by tuning gate voltages.

In configuration 1, the current flowing through the bonding
state channel, denoted by I1−, is dominant such that the total
current is almost given by I 
 I1−, where the current I1+
flowing through the antibonding state channel in configuration
1 is negligible. In configuration 2, the total current I2 = I2+ +
I2− + I2+−, where I2+, I2− are the currents flowing through
the antibonding and bonding state channels in configuration 2,
respectively, and I2+− is the current due to the interference
between the bonding and antibonding state channels. The
latter is negligible in the weak indirect coupling regime [26].

FIG. 1. (a) The schematic plot of the energy levels of the bonding
and antibonding states in configurations 1 and 2 with the chemical
potential of the left and right leads μL and μR . (b) The difference
of the left and right lead particle distributions fL(ε) − fR(ε), and the
effective transmission coefficients of the bonding and antibonding
state channels in configuration 1 for different interdot coupling tc are
plotted. In this case, the energy ε− of the bonding state is fixed at
115�, and the corresponding transmission is plotted with the blue
line. The transmissions of the antibonding state for tc = 10,30,60�

are plotted with the red dashed line, purple long dashed line, and
green dotted-dashed line, respectively. (c) I− as a function of ε−
is plotted. The blue solid line is for temperature kBT = 10�, and
the purple dashed line is for zero temperature. The numbers 1, 2 in
the plot denote the corresponding energy configurations 1 and 2 for
|tc| = 60�. (d) I− is plotted as a function of ε− and �.

Therefore, the total current in configuration 2 is mainly given
by I2 
 I2+ + I2−. With the assumption that currents flowing
through the bonding state channel in configurations 1 and
2 are almost the same [27], I1− 
 I2−, one can determine
the currents flowing through the bonding and antibonding
state channels, respectively, by the total currents measured
separately in configurations 1 and 2. This is the method used
in Ref. [27] for analyzing the currents flowing through the
bonding and antibonding state channels.

For the above experimental analysis, we shall check first (1),
whether the current I1+ flowing through the antibonding state
channel in configuration 1 is really negligible; and (2) what are
the conditions that should be satisfied such that the assumption
I1− ≈ I2− is valid. According to Eq. (25a), I1+ depends on the
overlap of the difference of particle number distributions in
the two leads fL(ε) − fR(ε), with the effective transmission
coefficient of antibonding state channel �L++�R++|Gr

++(ε)|2.
In Fig. 1(b), the difference fL(ε) − fR(ε) is shown by the
black dashed line. We theoretically fix the energy of the
bonding state ε− = ε0 − |tc| and change the interdot coupling
tc to compare the corresponding antibonding state channel
contributions to the current. In experiments, ε− can be
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FIG. 2. The effective transmission coefficient �L−−�R−−|Gr
−−(ε)|2 of the bonding state and the difference of the left and right leads

particle distribution fL(ε) − fR(ε) for different energy of the bonding state are plotted in the left side. The fL(ε) − fR(ε) is marked by the
dashed line. The corresponding bonding currents are plotted in the middle. The bonding currents and the measured currents in configuration
1 (ε− = 65,120� as examples here) are plotted in the right side. (a) The original settings in Ref. [27]. (b) The high-temperature case. (c) The
stronger coupling case.

manipulated through tuning the energy of DQDs and the
interdot coupling simultaneously. We fix ε− so that the ef-
fective transmission coefficient �L−−�R−−|Gr

−−(ε)|2 of the
bonding state channel is fixed, which is shown by the blue
peak in Fig. 1(b). Other peaks are the corresponding effective
transmission coefficient �L++�R++|Gr

++(ε)|2 of the antibond-
ing state channel for different tc. As shown by Fig. 1(b),
the larger tc gives the smaller overlap of fL(ε) − fR(ε)
with �L++�R++|Gr

++(ε)|2 and hence the smaller current I1+
flowing through the antibonding state channel in configuration
1. So, we conclude that I1+ is negligible when tc is properly
large enough to make �L++�R++|Gr

++(ε)|2 lesser overlap with
fL(ε) − fR(ε).

On the other hand, we plot the current I− flowing through
the bonding state channel as a function of the energy ε− of
the bonding state in Fig. 1(c). In our numerical calculation, the
parameters are set up according to Ref. [27]. Figure 1(c) shows
that the current I− flowing through the bonding state channel
becomes maximum when the energy ε− of the bonding state
is located in the middle of the bias window. The current I−
symmetrically and dramatically decays when ε− approaches
closely to μL or μR . Meanwhile, we fix |tc| = 60� here so
that the energy difference of the bonding and antibonding
states is fixed. Then, we can use ε− to determine which energy
configuration is examined. In Fig. 1(c), the blue solid line
gives the current I− as a function of ε− for temperature kBT =

10�. It shows that I− is almost a constant within |ε−| � 80�.
This indicates that the condition I1− 
 I2− is well satisfied for
|ε−| � 80�. We also plot I− at zero temperature in Fig. 1(c)
(the purple dashed line). In this case, the range for I− being
almost a constant is wider. Also, this flat pattern is maintained
for arbitrary magnetic flux � [see Fig. 1(d)].

Now, we should check if this analysis can be applied
to other settings. According to Eq. (25a), the magnitude
of the bonding current I− depends on the overlap between
the quantities fL(ε) − fR(ε) and �L−−�R−−|Gr

−−(ε)|2. In
Fig. 2, we choose ε− = −60,0,65,120� as examples, where
ε− = 65,120� is in configuration 1 and ε− = −60,0� is in
configuration 2. Figure 2 gives the overlaps between fL(ε) −
fR(ε) with �L−−�R−−|Gr

−−(ε)|2 for these different ε− (see
the left column). The bonding currents in configurations 1
and 2 are also shown in Fig. 2 (the central column), and the
bonding currents and the measured currents in configuration
1 are given in the right column in Fig. 2. Currents I− for
ε− = −60,0,65,120� are shown by the red small dashed
line, green dotted line, blue solid line, and pink medium
dashed line, respectively, and currents I for ε− = 65,120�

are shown by the black dotted-dashed line and purple large
dashed line, respectively. Figure 2(a) shows that the analysis
works well in the original setting because fL(ε) − fR(ε) = 1.0
when |ε−| � 80�. The overlaps between fL(ε) − fR(ε) with
�L−−�R−−|Gr

−−(ε)|2 for different ε− hardly change in this
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region, and I− and I for ε− = 65� are covered by I− for
ε− = −60,0�.

However, when the temperature becomes higher or the
couplings of DQDs to leads become stronger, as shown in
Figs. 2(b) and 2(c), respectively, the overlaps between fL(ε) −
fR(ε) with �L−−�R−−|Gr

−−(ε)|2 for different ε− are different.
In Fig. 2(b), fL(ε) − fR(ε) becomes broadened because of
the higher temperature, and gives different overlaps with
�L−−�R−−|Gr

−−(ε)|2 and hence the different contribution to
I−. On the other hand, the broadened fL(ε) − fR(ε) due
to higher temperature would also overlap with the effective
transmission coefficient of antibonding state channel in con-
figuration 1, which makes the measured current I different
from I− [see I− and I for ε− = 65,120� in Fig. 2(b)].
In Fig. 2(c), we consider stronger couplings to the leads,
tc = −6�, μL = 12.5� and μR = −12.5�. It shows that the
stronger couplings to the leads make the level broadenings
larger and the transmission coefficients wider. Then, the
transmission coefficient of the bonding state channel results
in different I− under different configurations. In addition,
the wider transmission coefficient of the antibonding state
channel enhances the contribution of the antibonding current in
configuration 1 and thus makes I different from I− [see I− and
I for ε− = 6.5,12� in Fig. 2(c)]. As a result, for the higher
temperature or the stronger coupling to leads, the analysis
given in Ref. [27] may become not applicable.

IV. REDUCED DENSITY MATRIX ELEMENTS AND THE
CORRESPONDING TRANSPORT CURRENTS

The experiment in Ref. [27] was performed under wide
band limit, weak coupling, and large bias regime, which is
a typical regime for transport experiment of DQDs devices.
As shown in Eq. (8), the steady-state single-particle reduced
density matrix in the wide-band limit is simply given by
ρ(1)(t → ∞) = v(t,t → ∞). Because of the indirect interdot
weak coupling (small aL,R), we can ignore the higher-order
terms of aL,R . The steady-state diagonal elements v±± then
have the simple forms as

v±± 

∫ +∞

−∞

dε

2π

∑
α=L,R

fα(ε)�α±±|Gr
±±(ε)|2


 vL±± + vR±±. (26)

The steady-state transport currents through the bonding and
antibonding state channels given in Eq. (25a) can be approxi-
mately expressed in terms of vα±±:

I± 
 e�R±±vL±± − e�L±±vR±±. (27)

From the above results, we obtain the relations between
occupation numbers of the bonding and antibonding states
and the corresponding transport currents approximately:

ρ
(1)
±± 
 I±

e�R±±
. (28)

We compare this approximated solution with the exact one
given by Eqs. (15) and (16) at the steady-state limit t → ∞.
The results are presented in Fig. 3(a), where the energy
configuration ε− = −40� is chosen as an example. As one
can see, the approximation solution is almost the same as the

FIG. 3. (a) The exact (dashed lines) and approximate (solid lines)
occupation numbers in the bonding and antibonding states given by
Eqs. (8) and (28), respectively. (b) The real part and the imaginary
part of v+− (ρ+−). (c) The exact (dashed lines) and approximate
(solid lines) diagonal elements of the reduced density matrix in the
molecular basis, given by Eqs. (7) and (29), respectively. (d) The
corresponding exact and approximate off-diagonal reduced density
matrix elements in the dot basis.

exact one. Equation (28) implies that the currents through
the bonding or antibonding state channels can be used to
determine the particle occupations in the corresponding state.
The bonding and antibonding state components of the Green
function |Gr

±±(ε)|2 in Eq. (26) have sharp peaks located at ε±,
respectively, as shown in Fig. 2. When the bias is large (ε± �
μR), vR±± are ignorable. This is because electrons in the right
lead hardly tunnel back into DQDs. The off-diagonal elements
v±∓ relate to the tunneling probability between the bonding
and antibonding states. Because there is no direct coupling
between the bonding and antibonding states, the electrons
must hop to the leads, then hop back to the other state. The
weak indirect interdot couplings suppress such probability, and
hence v±∓ are ignorable, as shown in Fig. 3(b) in which the
magnitude of v+− is the order of 10−3 of the magnitude of the
diagonal elements. Consequently, the reduced density matrix
of Eq. (17) in the steady-state limit can be approximately given
by the bonding and antibonding currents:

ρ00 

(

1 − I+
e�R++

)(
1 − I−

e�R−−

)
, (29a)

ρ−− 
 I−
e�R−−

(
1 − I+

e�R++

)
, (29b)

ρ++ 
 I+
e�R++

(
1 − I−

e�R−−

)
, (29c)

ρdd 
 I+
e�R++

I−
e�R−−

, (29d)

ρ+− = v+− 
 0. (29e)
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We compare the above approximated solution with the exact
elements of Eq. (17) in the steady-state limit in Fig. 3(c),
which gives almost the same results between the approximated
solution and the exact one.

For the practical application of DQDs as a promising qubit,
one is interested in the quantum coherence between the two
physical dots, which is described by the off-diagonal matrix
element ρ12(t) in the physical dot basis. The reduced density
matrix elements in the physical dot basis (the charge qubit
basis) of the DQDs is given by the following relations [19,28]:

ρ12(t) = 1
2 [ρ−−(t) − ρ++(t)] + i Imρ+−(t)


 1
2 [ρ−−(t) − ρ++(t)], (30a)

ρ1
2

1
2
(t) = 1

2 [ρ−−(t) + ρ++(t)] ± Reρ+−(t)


 1
2 [ρ−−(t) + ρ++(t)]. (30b)

The off-diagonal element ρ12(t) is presented in Fig. 3(d). In
the charge qubit basis, the probability of the diagonal elements
ρ11(t) and ρ22(t) can also be determined from the diagonal
density matrix elements ρ−− and ρ++ of the bonding and
antibonding states, as shown in the above equation. Note
that practically the currents flowing through the bonding and
antibonding states cannot be simultaneously measured. The
bonding state current I− can be measured directly through the
configuration 1 of Fig. 1(a). The antibonding state current I+
is determined from the total current measured in configuration
2 of Fig. 1(a) when the conditions are satisfied such that
I− are almost the same in the two configurations (see the
detailed analysis in Sec. III). Thus, the complete information
of the reduced density matrix of the DQDs can be obtained
experimentally from the currents through the relations given
by Eqs. (29) and (30).

Next, we investigate the AB oscillations in the reduced
density matrix and the measured currents under different
device geometry. The device geometry determines not only
the parity of the bonding and antibonding state channels, but
also the corresponding wave functions. The different device
geometries are controlled by different signs of the direct in-
terdot coupling tc and the indirect coupling parameters aL,aR .
Different sings of tc correspond to different parities, and hence
the AB phase dependencies of the bonding and antibonding
states are changed by a half of period difference. When one
changes the sign of aL or aR , the AB oscillation phases in
the transport currents remain unchanged but the amplitudes
are modified (see Ref. [27]). However, for the reduced density
matrix elements of the bonding and antibonding states, we find
that not only their AB oscillation amplitudes are modified, but
also the AB phase dependence of each state is changed by a half
of period difference. In Fig. 4, the AB phase dependencies of
the transport currents and the diagonal density matrix elements
are plotted for aLaR < 0 and aLaR > 0.

When the signs of aL and aR are the same, the level
broadenings of the left or right lead coupled to the bonding
or antibonding states, which are given by �α±± = �α(1 ∓
aα cos ϕ

2 ), α = L or R, enhance or shrink simultaneously for
different magnetic flux. The AB oscillation amplitude of the
transport current, which relies on �L±±�R±± [see Eq. (25a)]
is thus sensitive to the flux. The AB oscillation amplitudes of

FIG. 4. The AB phase dependencies of I2−, I2+, and I1 are plotted
in the left column in unit e� for different signs of αL and αR . The AB
phase dependencies of ρ−− and ρ++ are plotted in the right column.
The other parameters are given according to Ref. [27].

currents for aLaR > 0 are larger than those for aLaR < 0 (see
the left column in Fig. 4). This is because when the signs of aL

and aR are different, the level broadenings for the bonding or
antibonding states are enhanced only for one of the two leads
at the same time. The corresponding bonding or antibonding
current becomes less sensitive to the flux, as shown in Fig. 4.
Meanwhile, because the different signs of aL and aR enhance
the level broadening only for one of two leads forces electrons
to localize at the bonding or antibonding states so that the AB
oscillation amplitudes of ρ−− and ρ++ change opposite to that
of the corresponding currents. Thus, the smaller amplitudes of
the AB oscillation in the transport currents must correspond
to the larger amplitudes in ρ++ and ρ−−, and vice versa (see
Fig. 4).

Also, note that the AB oscillation phases of ρ−− (ρ++)
for aR < 0 have a half-period difference from the case
with aR > 0, as shown in the right column of Fig. 4. We
compare the results at the magnetic flux � = 0.5�0 and 0�0.
When � = 0.5�0, �L±± = �R±±. The symmetric energy
configuration causes electrons to occupy both states with
similar probabilities. When � = 0�0, �R−− is stronger for
aR > 0 and weaker for aR < 0 than �R−− at � = 0.5�0.
The stronger (weaker) �R−− for aR > 0 (aR < 0) makes the
electron in the bonding state hop to the right lead more easily
(more difficultly), which gives rise to the smaller (larger)
probability ρ−− of the bonding state than that at � = 0.5�0.
The AB phase dependence of �L(R)++ is opposite to �L(R)−−,
so that the AB oscillation dependence on ρ++ is exchanged
with ρ−− when the sign of aR is changed, as shown in Fig. 4.
This shows that the effect of changing the sign of aR (or aL)
is the same as changing the sign of tc.

If the energy levels of the bonding and antibonding states
are equally close to the center of the bias window, the traveling
electrons passing through the corresponding channels have
similar contribution to the reduced density matrix elements.
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FIG. 5. The AB phase dependencies of all the reduced density
matrix elements when ε− = −60�. The different magnitudes of aL,R

are taken here for the larger amplitudes of the AB phase dependencies.
(a) aL = −0.4, aR = 0.6, (b) aL = −0.6, aR = 0.9, (c) aL = −1.0,
aR = 1.0. The other parameters are taken according to Ref. [27].

The larger αL,R makes the electrons that flow from the left
lead to the right lead more sensitive on the magnetic flux,
and thus gives the larger amplitudes to the reduced density
matrix elements ρ++ and ρ−−, as shown in Fig. 5. The DQDs
system would have large probability to be in the bonding state
or antibonding state at certain �. For example, the DQDs
system mainly locates in the antibonding state (bonding state)
at � = 0 (�/�0 = 1). Therefore, if a strong indirect coupling
can be practically succeeded, it could provide an efficient way
to manipulate the probabilities of the bonding and antibonding
states through the magnetic flux. On the other hand, the right
column of Fig. 5 presents the off-diagonal matrix element
ρ+− as a function of the AB flux. The result shows that
even for strong indirect coupling aL,R , the amplitude of ρ+−
is still very small (the order of 10−3 in comparison with
the diagonal element ρ++ and ρ−−). This small off-diagonal
matrix element is due to the large direct interdot coupling
tc taken in the experiment [27] (reducing the direct interdot
coupling, one should see the strong interference effect between
the bonding and antibonding states as the Fano resonance effect
in the strong indirect coupling regime [25,26]). Therefore,
the approximate relations given by Eq. (30) are still valid,
which can be used to determine all the reduced density matrix
elements in the charge qubit basis. These analyses provide
the full information for the reconstruction of quantum states
through the measurement of transport currents.

V. SUMMARY

In conclusion, using the quantum transport theory based
on the master equation [28–30], we have verified the validity
of the method used in Ref. [27] for analyzing the transport
currents passing through the bonding and antibonding state
channels. We show that when the energy level of the bonding
state is within a quite large range near the middle of the
bias window, the bonding current in configuration 1 well
approximates the bonding current in configuration 2. However,
in high temperature and/or the strong couplings between the
dots and the leads, this analysis may not be valid. This is
because the bias window is broadened in high temperature
and the effective transmissions of the channels become wider
for the strong couplings to the leads. We then explore
the relation between the AB phase dependence of electron
probabilities in the bonding and antibonding states and the
corresponding currents. We find that the electron probabilities
in the bonding and antibonding states can be directly obtained
from the measured currents [see Eq. (29)], and the electron
probabilities of the bonding and antibonding states can be used
to determine the probabilities of the dot states (diagonal matrix
element) and the coherence (the off-diagonal matrix element)
between two dot states for charge qubit manipulations [see
Eq. (30)]. We also find the AB oscillation relation between
the reduced density matrix elements and the transport currents
of the bonding and antibonding states under different device
geometries. These results provide not only the full information
for the reconstruction of quantum dot states through the
measurement of transport current, but also a practice way to
manipulate quantum coherence between the two physical dot
states with the AB magnetic flux.
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APPENDIX: EXACT MASTER EQUATION

The system described in Sec. II can be treated as an open
quantum device. The dynamics of the double dot is described
by the reduced density matrix ρ(t), which is obtained by
tracing over all the degrees of freedom of the reservoirs from
the total density matrix ρtot(t) of the DQDs plus the leads:
ρ(t) = TrR[ρtot(t)]. The exact master equation which governs
the dynamics of the DQDs has been derived [28,29,31]:

dρ(t)

dt
=1

i
[H ′

S(t),ρ(t)] +
∑
i,j

{γij (t)[2djρ(t)d†
i

− d
†
i djρ(t) − ρ(t)d†

i dj ] + γ̃ij (t)[d†
i ρ(t)dj

− djρ(t)d†
i + d

†
i djρ(t) − ρ(t)djd

†
i ]}, (A1)
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where H ′
S(t) = ∑

i,j ε′
ij (t)d†

i dj is an effective Hamiltonian and
ε′
ij (t) is the renormalized time-dependent energy level (i = j )

or the shifted interdot transition amplitude (i �= j ) between
the DQDs. All the time-dependent coefficients in Eq. (A1)
are determined by the retarded Green function u(t,t0) and the
correlation Green function v(τ,t) in Keldysh’s nonequilibrium
Green function technique [29]. Explicitly, the renormalized
energy levels of DQDs ε′(t), the dissipation coefficient γ (t),
and the fluctuation coefficient γ̃ (t) are given by

ε′(t) = 1
2 [u̇(t)u−1(t) − H.c], (A2a)

γ (t) = − 1
2 [u̇(t)u−1(t) + H.c], (A2b)

γ̃ (t) = v̇(t) − [u̇(t)u−1(t)v(t) + H.c], (A2c)

where u(t) ≡ u(t,t0) and v(t) ≡ v(t,t) are the nonequilibrium
Green functions. The Green function u(t,t0) obeys the follow-
ing integrodifferential equation:

∂

∂t
u(t,t0) + iεu(t,t0) +

∑
α

∫ t

t0

dτ gα(t,τ )u(τ,t0) = 0,

(A3)

and v(τ,t) is given by [29–31]

v(τ,t) =
∫ τ

t0

dτ1

∫ t

t0

dτ2

∑
α

u(τ,τ1)̃gα(τ1,τ2)u†(t,τ2). (A4)

The integral kernels in the above equations are

gα(t,τ ) =
∫ ∞

−∞

dε

2π
�α(ε)e−iε(t−τ ), (A5a)

g̃α(t,τ ) =
∫ ∞

−∞

dε

2π
�α(ε)fα(ε)e−iε(t−τ ), (A5b)

with

�αij (ε) = 2π
∑

k

ViαkV
∗
jαkδ(ε − εαk). (A6)

Here, �α(ε) is called the spectral density (level broadening)
of lead α, and fα(ε) = 1/[eβ(ε−μα ) + 1] is the corresponding
Fermi-Dirac distribution function with the chemical potential
μα and the initial reservoir temperature β = 1/kBT . The exact
solution of the above master equation for the DQDs is given
by Eq. (7).
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