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Knowledge of the mechanical properties of prestressing steel at elevated temperatures and after cooling is essential
to the fire resistance design and post-fire evaluation of the residual load-carrying capacity of prestressed concrete
structures. Experiments were carried out using an accurate testing system for the development of empirical formulae
to predict the deterioration of prestressing steel at elevated temperatures and after cooling. The helical structure of
commonly used seven-wire strands allowed estimation of the mechanical properties of the strand based on those of
the central wire. Only the central wire of the strand was thus tested, which enabled better clamping and control and
hence more accurate measurements. Grade 1860 strands conforming to GB/T 5224, mostly used in Mainland China,
and grade 1860 strands conforming to BS 5896, used in Europe and other countries, were tested. Consistent models
for the reduction factors of various properties were developed. Some strands extracted from prestressed concrete
specimens after fire testing were also tested for verification.

Notation

E Young’s modulus of prestressing wire at ambient
temperature

E(T) Young’s modulus of prestressing wire at temperature 7'

E.[(T) Young's modulus of prestressing wire after cooling
from temperature 7'

1T) reduction factor at temperature T

fu ultimate strength at ambient temperature

fulT) ultimate strength at temperature 7’

Jfuac (T) ultimate strength after cooling from temperature T

Jyac (T) yield strength of prestressing wire after cooling from
temperature 7'

fo20 0-2% proof stress at ambient temperature

foa (T)  0-2% proof stress at temperature T

Introduction

Prestressed concrete is often used to achieve large span to
depth ratios, cost-effectiveness and enhanced load-carrying
capacity, but it is prone to fire damage, particularly in thin
slabs. Bailey and Ellobody (2009) conducted fire tests on
unbonded one-way post-tensioned concrete slabs and investi-
gated their overall structural behaviour in fire. Zhang et al.
(2014) studied the behaviour of two-way reinforced concrete
slabs in fire. A structural fire engineering assessment of
the response in and after fire requires consideration of the
thermal load, the thermal and mechanical properties of

materials and their interaction. When prestressing steel is
heated above 300°C, the structure is affected, possibly resulting
in collapse. Although the Young’s modulus of steel is not
much affected after cooling, the ‘yield’ strength, ultimate
strength and ductility will degrade depending on the peak
temperature reached, and they thus need to be properly
assessed.

Empirical equations for the Young’s modulus and yield
strength of grade 1670 prestressing wires used in China
at temperatures up to 600°C were proposed by Fan and Lv
(2001). Fan (2004) further tested grade 1860 prestressing
strands under different cooling processes, and proposed cubic
polynomials for Young’s modulus, yield strength and ultimate
strength after cooling. Hertz (2004, 2006) proposed an
equation for the deterioration of quenched and tempered
prestressing steel and of quenched and self-tempered rein-
forcement. Neves et al. (1996) conducted tests and found the
residual strength of reinforcing and prestressing steel wires to
depend on the cooling process. Atienza and Elices (2009)
investigated the tensile strength of prestressing wires in and
after fire up to 600°C. Galvez et al. (2011) studied the strain
rate effect on the tensile strength of prestressing wires at elev-
ated temperatures. The ultimate strength and thermal creep
effect of the central wires of prestressing strands conforming to
BS 5896 (BSI, 2012) at elevated temperature were investigated
by optical strain measurement (Gales et al., 2012).
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Performance-based design, instead of the simpler prescriptive-
based design, is often adopted as it can achieve safety, economy
and stability (Pang, 2006). BS EN 1992-1-2 (Eurocode 2) pro-
vides reduction factors for prestressing steel at elevated temp-
eratures but not those for residual properties after cooling
(BSI, 2004). The work described in this paper attempted to
develop consistent models for predicting the mechanical prop-
erties of prestressing steel conforming to GB/T 5224 (SAC,
2003) and BS 5896 (BSI, 2012), used extensively in Mainland
China and Europe respectively, at elevated temperatures and
after cooling.

Axial response of straight seven-wire
prestressing strands

Strands and wires are usually tested as straight specimens in
regular testing. In applications of prestressed concrete struc-
tures, the cable curvature is normally small compared with the
cable size and hence the test results will be applicable in this
case. By studying the axial response of a straight seven-wire
prestressing strand, it is possible to relate the response of the
strand to that of the central wire.

Costello (1997) presented an analytical model to determine the
axial static response of a simple straight strand by considering
the respective contributions from the straight central wire
and the outer helical wires. That analysis assumed an elastic
response, frictionless contact between the wires and that the
central wire was of sufficient size to prevent the outer wires
touching each other. In the tested prestressing steel strand of
nominal diameter 127 mm conforming to GB/T 5224, the
diameter of the central wire was determined to be 4-35 mm.
The diameter of the helical wire was measured and taken
as the same although, strictly speaking, it should be slightly
smaller in order to avoid the helical wires contacting each
other. The pitch of the helical wires is defined as the axial
distance along the length of strand that a helical wire twists
around the central wire by one revolution. In this case, the
pitch was taken as 15 times the nominal diameter of the
strand, or 190-5 mm. Poisson’s ratio of the prestressing steel
was taken as 0-3. Analysis was carried out for this case accord-
ing to the analytical model presented in chapter 3 of Costello’s
Theory of Wire Ropes (Costello, 1997). The loads carried by
the helical wires and the central wire were determined to be
85:29% and 14-71% respectively of the total load applied. The
share of each helical wire was 14-21% of the total load. The
share of loading among wires was not uniform, but reasonably
close to the average value of 14-29%. In the elastic stage,
once the mechanical properties are determined from the central
wire, it is possible to calculate those for the entire strand.
However, since the deviation from the average stress is so
small, estimation of the mechanical properties of a strand
based on those of the central wire is reasonably accurate even
beyond the elastic stage.

Experimental investigation

Test specimens and equipment

Two different kinds of seven-wire strands were tested — grade
1860 steel conforming to GB/T 5224 used in Mainland China
and grade 1860 steel conforming to BS 5896 used in European
countries. As it is difficult to measure the strain of a strand ac-
curately due to its helical structure, extracted central wires were
tested and this allowed better clamping and control. Table 1
shows the nominal dimensions and properties of the central wire
specimens, while Table 2 shows their chemical compositions.

A material testing system (MTS 810) of 250 kN capacity was
employed for the tests at The University of Hong Kong
(HKU). The heating device was an MTS 653 high-temperature
furnace with three heating chambers and a maximum heating
temperature of 1400°C. The central 185 mm portion of the
specimen was heated inside the furnace, which was monitored
by a temperature controller (MTS model 409-83). The strain of
the heated part of the specimen was measured by an axial
extensometer for high-temperature testing (MTS 632-54F-11),
having a gauge length of 25 mm and a maximum strain of
10%. The extensometer had two extension arms for convenient
mounting. The centre-split design of the furnace allowed it to
be opened slightly for the attachment and detachment of the
extensometer while reducing adverse effects on the temperature
inside the furnace. A thermocouple was placed in contact with
the heated part of the specimen to measure its temperature.

GB/T 5224 BS 5896
Diameter: mm 4-35 5-39
Area: mm? 14-86 22-82
Density: kg/m> 7800 7800
Total length: mm 800 800

Gripped length: mm 150 150
Clear length: mm 650 650
Young's modulus: GPa 200 2041

Table 1. Nominal dimensions and properties of central wire
specimens

GB/T 5224 BS 5896
Chromium: % — 0-13
Manganese: % 0-73 0-74
Silicon: % 02 0-41
Phosphorus: % 0-015 < 0-01
Carbon: % 0-8 0-8
Sulfur: % 0-008 0-016

Table 2. Chemical compositions of prestressing steel wire
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The whole testing system was covered with an aluminium foil
heating shield for temperature stabilisation, as shown in Figure 1.

Test procedure

In the tensile tests at elevated temperatures, each specimen was
heated to a target temperature (i.e. 100-800°C) and maintained
for 15 min with one end gripped and the other end free. Free
expansion of the specimen was allowed before applying load to
avoid any influence of thermal expansion on strain measure-
ments. Afterwards, the free end was gripped and the extens-
ometer was attached to the heated part of the specimen. A
constant displacement-controlled loading rate of 2 mm/min
was applied until the specimen ruptured. The extensometer
was detached before the specimen failed to protect the exten-
sion rods. The data obtained showed that the strain rate
was approximately 0-003/min, which fell into the range of
0-005%0-002/min as specified in ASTM E 21-09 (ASTM,
2009). The load and strain were recorded continuously by a
computer at a sampling frequency of 5 Hz.

In the tensile tests after cooling, each specimen was first heated
to the target temperature and maintained constant for 15 min
for stabilisation, with one end gripped and the other end free.
The furnace was then switched off and opened slightly, allow-
ing the specimen to cool naturally to ambient temperature.
When the specimen reached ambient temperature (25°C), the
free end was gripped and a constant displacement-controlled
loading rate of 2 mm/min was applied until failure, as before.

Test results

Mechanical properties at elevated temperatures

The stress obtained was engineering stress, assuming a constant
cross-sectional area and ignoring the necking effect. Young’s
modulus E was taken as the tangent value of the initial pro-
portional section of the stress—strain curve. The yield strength
fo2, was taken as the 0-2% proof stress (non-proportional
elongation). The ultimate strength £, was the maximum stress
in the stress—strain curve. Their corresponding values at elev-
ated temperature 7" °C were similarly defined, giving reduction
factors (BSI, 2004) as E(T)E, fo(T)/fo., and fu(T)/f,. The
stress—strain curves of prestressing wires conforming to GB/T
5224 and BS 5896 at elevated temperatures are plotted in
Figures 2 and 3 respectively. Young’s modulus, yield strength
and ultimate strength are affected differently by temperatures
above 200°C. The corresponding reduction factors are shown
in Table 3. They are also shown graphically in Figures 4-6 and
compared with available results reported by Fan and Lv (2001,
2002), Fan (2004), Atienza and Elices (2009), Wang et al.
(2010) and Gales et al. (2012) as summarised in Table 4.

Figure 4 shows that the Young’s moduli of prestressing wires
conforming to BS 5896 and GB/T 5224 showed similar degra-
dation below 500°C, but the wire conforming to GB/T 5224
deteriorated more above 500°C. At temperatures of 600°C,

Furnace
4

-

ExtensomTte [

stand

2 A

!

Thermocpuple;

4

—L Specimen

(b)

Figure 1. (a) MTS 810 material testing system with aluminium
shield. (b) MTS 632-54F-11 axial extensometer

700°C and 800°C, the reduction factors for Young’s modulus
of prestressing wire conforming to BS 5896 were 46:6%, 20-5%
and 18-2% respectively, while those for GB/T 5224 wire were
only 37-9%, 7-:3% and 3-6%. The BS 5896 prestressing steel
wire showed better resistance above 500°C in terms of Young’s
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Figure 2. Stress—strain curves of prestressing wire conforming to
GB/T 5224 at elevated temperatures

—— 25°C
----100°C
2000 200°C
----- 300°C
350°C
-------- 400°C
1500 A 500°C
& 600°C
S — 700°C
B | pe— — 800°C
¢ 1000 A ~
&
500 A
0 T T T T 1
0 0-02 0-04 0-06 0-08 0-10
Strain

Figure 3. Stress—strain curves of prestressing wire conforming to
BS 5896 at elevated temperatures

modulus at elevated temperature. The values specified in BS
EN 1992-1-2 (BSI, 2004) are conservative at temperatures of
500-800°C compared with those for BS 5896, but the specified
values are close to those for GB/T 5224. Most of the reduction
factors for Young’s modulus from other research works are
lower at temperatures above 400°C.

Figure 5 shows generally good agreement between the reduc-
tion factors for the yield strength of prestressing wires con-
forming to GB/T 5224 and BS 5896. The reduction factors for
yield strength specified by BS EN 1992-1-2 are conservative at
temperatures of 200-500°C, but adequate for 500-800°C.
Figure 6 shows less variability in ultimate strength at elevated
temperatures compared with yield strength. BS EN 1992-1-2
(BSI, 2004) gives conservative reduction factors for ultimate
strength at temperatures of 200-500°C, but agrees relatively
well at other temperatures.

In general, a mechanical property &T') at temperature 7 °C
can be expressed as

1. &T) =& xf(T)

in terms of the mechanical property at ambient temperature
& and the corresponding mechanical reduction factor f(T)
(Hertz, 2004) given by

1-k

2 ) = R o T T+ (T + (T

where the parameters k, a, b, ¢ and d can be determined from
experimental data.

The reduction factors for Young’s modulus, yield strength and
ultimate strength at elevated temperatures of the prestressing

Temperature: °C GB/T 5224

BS 5896

Young's modulus

Yield strength  Ultimate strength  Young's modulus

Yield strength  Ultimate strength

20 1-000 1-000 1-000 1-000 1-000 1-000
100 1-013 0-985 0-998 0-944 0-974 0-984
200 0-97 0-888 0-965 0-94 0-906 0-949
300 0-886 0-792 0-796 0-858 0-779 0-754
350 0-853 0-677 0-654 0-817 0-717 0-662
400 0-829 0-607 0-591 0-798 0-607 0-568
500 0-578 0-295 0-318 0-571 0-301 0-319
600 0-379 0-131 0-147 0-466 0-116 0-135
700 0-073 0-049 0-049 0-205 0-033 0-042
800 0-036 0-027 0-035 0-182 0-025 0-034

Table 3. Reduction factors for mechanical properties of
prestressing steel wires conforming to GB/T 5224 and
BS 5896 at elevated temperatures
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Prestressing wire, GB/T 5224
- Prestressing wire, BS 5896
- BS EN 1992-1-2 (BSI, 2004)
- Wang et al. (2010)
- Fan and Lv (2001)
- Fan and Lv (2002)
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Figure 4. Reduction factors for Young's modulus at elevated
temperatures

—— Prestressing wire, GB/T 5224
—@— Prestressing wire, BS 5896
BS EN 1992-1-2 (BSI, 2004)
- Wang et al. (2010)
Fan and Lv (2001)
- Fan and Lv (2002)
Atienza and Elices (2009)
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Figure 5. Reduction factors for yield strength at elevated
temperatures

steels tested as obtained from curve fitting are shown in
Figure 7. The values of adjusted R? for curve fitting are rea-
sonably close to unity, indicating a good fit based on the exper-
imental data. The corresponding parameters k, @, b, ¢ and d of
prestressing steel wires conforming to GB/T 5224 and BS 5896
prestressing steel are presented in Table 5.

Mechanical properties after cooling

The stress—strain curves of GB/T 5224 and BS 5896 prestres-
sing wires after natural cooling from peak temperatures
of 100-600°C to ambient temperature are shown in Figures 8
and 9 respectively. The mechanical properties are hardly
affected by heating up to and cooling from 300°C, but the
residual strengths degrade after cooling from peak tempera-
tures above 400°C. As shown in Figure 10, upon cooling from

—l—Prestressing wire, GB/T 5224
—@— Prestressing wire, BS 5896
-[}- Gales et al. (2012)

-/x- Fan and Lv (2001)

-7+ Fan and Lv (2002)

>~ BS EN 1992-1-2 (BSI, 2004)
-<J-- Atienza and Elices (2009)

;
/

e
a1
I

Reduction factor for ultimate strength

400 600 800
Temperature: °C

0 200

Figure 6. Reduction factors for ultimate strength at elevated
temperatures

Author Diameter: Grade Standard Strand Wire
mm

Fan and Lv (2002)  — 1860 - Vv

Fan (2004) - 1860 — Vv

Fan and Lv (2001) 5 1670 GB/T 5224 Vv

Atienza and 5 — — Vv
Elices (2009)

Wang et al. 5 1670 GB/T 5224 Vv
(2010)

Galesetal (2012) 4 1670  BS 5896 Vv

Table 4. Previous tests of prestressing steel at elevated
temperatures

® Reduction factor for Young’s modulus (GB/T 5224)
- Fitted curve for Young's modulus (GB/T 5224)
£ Reduction factor for Young’s modulus (BS 5896)
Fitted curve for Young's modulus (BS 5896)
* Reduction factor for yeild strength (GB/T 5224)
Fitted curve for yeild strength (GB/T 5224)
# Reduction factor for yeild strength (BS 5896)
-~ Fitted curve for yeild strength (BS 5896)
+ Reduction factor for ultimate strength (GB/T 5224)
- Fitted curve for ultimate strength (GB/T 5224)
» Reduction factor for ultimate strength (BS 5896)
Fitted curve for ultimate strength (BS 5896)

—_
o
1

Q
o
|
p

Reduction factor at elevated temperatures

o

0 200 400 600 800
Temperature: °C

Figure 7. Reduction factors for mechanical properties of
prestressing wire by curve fitting
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Steel k a b C d
Young's modulus GB/T 5224 —0-0572 7-00 x 10° 950-37 580-74 100 000
BS 5896 0-0965 7-00 x 10° 724-35 589-82 100 000
Yield strength GB/T 5224 0-0142 7-07 x 10° 594-12 469-91 100 000
BS 5896 0-0027 7-00 x 10° 623:26 470-6 100 000
Ultimate strength GB/T 5224 0-0257 8-00 x 10° 602-83 467-09 100 000
BS 5896 0-0159 7-00 x 10° 564-32 473-03 100 000

Table 5. Parameters for reduction factors for mechanical proper-
ties at elevated temperatures

rrrrrr 100°C
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Figure 8. Stress—strain curves of prestressing wire conforming to
GB/T 5224 after cooling from temperatures up to 500°C
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Figure 9. Stress—strain curves of prestressing wire conforming to
BS 5896 after cooling from temperatures up to 500°C

temperatures of 600°C or above, the elastic range is adversely
affected and plastic deformation begins earlier. This is probably
because of the high-temperature exposure followed by slow
cooling, which resembles annealing. After cooling from 800°C,
the prestressing steel behaves similarly to high-yield steel.

——GB/T 5224 (peak temperature 600°C)
----GB/T 5224 (peak temperature 700°C)
GB/T 5224 (peak temperature 800°C)
-=-=-BS 5896 (peak temperature 600°C)
BS 5896 (peak temperature 700°C)
———————— BS 5896 (peak temperature 800°C)

1200 - p—
& |
s
Y 600 4 /

0-010 0-015

Strain

0 0-005

Figure 10. Stress—strain curves after cooling from temperatures of
600°C and above

To avoid damage to the extensometer by premature failure in
tests after cooling from 600°C or above, the strain was estimated
from cross-head displacement. Where both upper and lower
yield points appeared, the yield strength was based on the
lower. The reduction factors for Young’s modulus, yield strength
and ultimate strength after cooling are presented in Table 6.

Figure 11 compares the reduction factors for Young’s modulus
after natural cooling (E,.(T)/E) with available results; E,(T) is
Young’s modulus after cooling from the peak temperature 7' °C
and E is that at ambient temperature. Among the cooling con-
ditions investigated by Fan (2004) (natural cooling, water-spray
cooling, in-furnace cooling and 72 h after natural cooling),
only the results for natural cooling are included in Figure 11.
In general, Young’s modulus of prestressing steel is largely reco-
verable after exposure to elevated temperature and cooling.

The reduction factors for yield strength fy,. (T') of prestressing
steel wire conforming to GB/T 5224 and BS 5896 after cooling
from the peak temperature 7 °C in Figure 12 show an obvious
decline for peak temperatures of 400°C or above but little
effect below 400°C. The results from other sources show

Downloaded%)%zt University of Hong Kong] on [22/03/18]. Copyright © ICE Publishing, al rights reserved.



Magazine of Concrete Research
Volume 69 Issue 8

Mechanical properties of prestressing
steel in and after fire
Zhang, Wei, Au and Li

Peak temperature: °C GB/T 5224 BS 5896
Young's Yield Ultimate Young's Yield Ultimate
modulus strength strength modulus strength strength
20 1-000 1-000 1-000 1-000 1-000 1-000
100 1-032 1-026 1-024 0-956 0-984 0-985
200 1-052 1-022 1-028 0-98 0-996 0-966
300 1-043 1-028 1-019 1-007 1-012 0-997
400 1-049 0-995 0-985 1-007 1-015 0-982
425 1-032 0-964 0-966 0-992 0-967 0-939
450 1-064 0-912 0913 1-012 0-917 0-89
500 1-055 0-83 0-818 1-023 0-845 0-805
600 1-073 0-689 0-643 1-014 0-693 0:619
700 1-028 0-497 0-504 0-946 0-484 0-433
800 1-056 0-343 0413 0-978 0-334 0-416
Table 6. Reduction factors for mechanical properties of
prestressing steel wires conforming to GB/T 5224
and BS 5896 after cooling
12~ 129
ﬁ o\ A /l ]
3 10 -m\z g 3—93! é-e\ o %, 1.0 —5/59_5—*51-4'
g 1 N g | a. - i\
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Figure 11. Reduction factors for Young'’s modulus after cooling

Peak temperature: °C

Figure 12. Reduction factors for yield strength after cooling

similar trends, but the present results appear more consistent.
The reversed trend of results from Fan (2004) for cooling from
temperatures above 700°C could be caused by strength
enhancement because of martensite formation due to rapid
cooling from the critical forming temperature 723°C (Meyers
and Chawla, 2009). Similar trends can also be observed for the
reduction factors for ultimate strength f,.. (T') of prestressing
steel wire conforming to GB/T 5224 and BS 5896 after cooling
from the peak temperature 7 °C, as shown in Figure 13.

Based on the test results, Young’s modulus after cooling from
peak temperature 7 can be regarded as unchanged, that is

3. ET)=E

Based on the test results,
employed to describe the reduction factors for residual yield
and ultimate strengths after cooling. The reduction factors for
yield and ultimate strengths of prestressing steel wire conform-
ing to GB/T 5224 are given respectively as

piecewise linear functions were

4 fulT) = 1 20°C < T < 400°C
’ yae ] 165469 — 0-00164T 400°C < T < 800°C

1 20°C < T < 400°C
1-655 —1-64 x 10737 400°C < T < 700°C
1-142 — 9:175 x 107*T 700°C < T < 800°C

5 fuae(T) =

385
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Figure 13. Reduction factors for ultimate strength after cooling

Similarly, those for prestressing steel wire conforming to BS
5896 are given respectively as

1 20°C < T < 400°C

6. yac(T) =
SoaelT) { 1707 — 1-76 x 10737 400°C < T < 800°C

1 20°C < T < 400°C
1.71708—1-83 x 1073T  400°C < T < 700°C
0-55074—1-684 x 10~*T 700°C < T < 800°C

7. fuac(T)=

Effects of heating and cooling

Figure 14 compares the reduction factors for Young’s modulus
at elevated temperatures and after cooling, which is character-
ised by full recovery upon cooling. However, despite the full
recovery of Young’s modulus upon cooling, the reduction of
Young’s modulus during heating will have caused substantial
loss of prestress, thereby affecting the load-carrying capacity
even though the peak temperature may not be too high.
Figures 15 and 16 show the corresponding comparisons for
yield and ultimate strengths, which display striking similarity.
The residual strengths of prestressing steel are essentially fully
recovered if the peak temperature does not exceed 400°C.

Mechanical properties of strands in
prestressed concrete after fire test

Under the same research project, fire tests on a number of
unbonded post-tensioned two-way concrete slab specimens
(Wei et al., 2014) were carried out in a furnace at South China
University of Technology (SCUT) to investigate their structural
fire performance. Grade 1860 prestressing steel strands

—Ml— At elevated temperatures (GB/T 5224)

—[J— At elevated temperatures (BS 5894)
" —@— After cooling (GB/T 5224)
> —0O— After ctz)\ing (BS 5896)
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> H:E‘
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3
>
©
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E
ks -
o
___
L
O T T T . T ¥ T
0 200 400 600 800

Peak temperature: °C

Figure 14. Reduction factors for Young's modulus at elevated
temperatures and after cooling

conforming to GB/T 5224 were used as tendons. After
fire testing, samples of strands were reclaimed from the four
specimens tested to determine their residual strengths after
exposure to elevated temperatures. The length of each strand
specimen was 1100 mm with a nominal cross-sectional area of
98-7 mm?. Each strand had experienced different peak temp-
eratures, as measured by thermocouples provided at key
locations and recorded by a datalogger.

Additional precautions were necessary for the tensile tests at
ambient temperature as the strand samples were imperfect. To
avoid slipping at the grips, additional aluminium clamps
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Figure 15. Reduction factors for yield strength at elevated
temperatures and after cooling
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roughened with ironsand at the surfaces were used. An extens-
ometer of gauge length of 500 mm was used to monitor the
strain. Each strand specimen was loaded until its ultimate
strength was reached. The extensometer was detached before
failure of the specimen for protection of the instrument. The
yield and ultimate strengths obtained from the reclaimed
strands (SCUT) are plotted against the peak temperatures
experienced in Figure 17. Also shown in the figure are the cor-
responding values obtained from the testing of the central wire
(HKU). In general, the trends agree well, but the degradation
of the reclaimed strands appears to be more serious. The
machine used for testing the strands was not as accurate as
that used for testing the central wires, although this may not
explain the higher degradation. The post-tensioned concrete
specimens had been left outdoors for a year before fire testing,
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Figure 16. Reduction factors for ultimate strength at elevated
temperatures and after cooling
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Figure 17. Comparison of residual strengths of prestressing
strand and wire after cooling
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during which some minor corrosion could have taken place,
thus slightly reducing the cross-sectional area. Moreover,
the slab specimen was exposed to fire at the soffit, creating
a rather large thermal gradient; therefore, different wires of a
strand experienced different peak temperatures. During sub-
sequent tensile testing, the most affected wire could fail first
and trigger earlier strand failure.

Conclusions

The mechanical properties of prestressing strands from two
different sources in and after fire were investigated. The results
are generally consistent with available results from the research
literature and design codes. Empirical formulae based on a
unified model are proposed for the degradation of Young’s
modulus, yield strength and ultimate strength of prestressing
steel both at elevated temperatures and after cooling to ambient
temperature. Although Young’s modulus was found to be
largely recoverable upon cooling to ambient temperature, both
yield strength and ultimate strength suffered permanent degra-
dation. To assist in post-fire assessments of prestressed concrete
structures, it is recommended that reduction factors for the key
mechanical properties after fire and cooling be incorporated in
the relevant design codes.
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