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Abstract
Cataract is the most common cause of visual loss in humans. A spontaneously occurred,

autosomal dominant mouse mutant Secc, which displayed combined features of small eye,

cataract and closed eyelid was discovered in our laboratory. In this study, we identified the

mutation and characterized the cataract phenotype of this novel Seccmutant. The Secc
mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has

a significant reduction in size and with opaque spots clustered in the centre. Histological

analysis showed that in the core region of the mutant lens, the fiber cells were disorganized

and clefts and vacuoles were observed. The cataract phenotype was evident from new born

stage. We identified the Seccmutation by linkage analysis using whole genome microsatel-

lite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by

SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cata-

ract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base

deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence

from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th

Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of

75 residues long. Coincidentally, the point mutation generated a HindIII restriction site,

allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of

3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc

mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression

constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins

were enriched in the insoluble fractions and appeared as insoluble aggregates in the trans-

fected cells. In conclusion, we have demonstrated that the Seccmutation leads to the gen-

eration of CrygaSecc proteins with reduced solubility and prone to form aggregates within

lens cells. Accumulation of mutant proteins in the lens fibers would lead to cataract forma-

tion in the Seccmutant.
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Introduction
Cataract is the opacification of the lens, it is the most common cause of visual loss in humans.
Congenital cataract has an estimated incidence of 1–6 per 10,000 births and it is the leading cause
of visual disability in children worldwide [1–3]. To date, about 15 cataract-related genes have
been identified from patients with inherited cataract, these include: (a) genes encoding the struc-
tural proteins crystallins: CRYAA, CRYAB, CRYBA1, CRYBB1, CRYBB2, CRYGC, and CRYGD;
(b) genes encoding the membrane proteins of the lens:MIP, LIM2, GJA1, GJA3 andGJA8 (codes
for MIP26, MP19, connexin43, connexin46 and connexin50 respectively); (c) genes encoding
cytoskeletal proteins, e.g. BFSP2; and (d) transcription factor genes PITX3 andHSF4. However,
even identical mutations can give rise to different clinical phenotypes; hence environmental or
other genetic modifiers may contribute to the phenotype of a particular individual [2,3].

Opacification of the lens is a well recognized phenotype in mice, many mouse cataract
mutant alleles that occur spontaneously or identified from mutagenic screens have been docu-
mented to date [1,4], contributing to an expanded list of candidate genes for human cataract.
Most of the mutant alleles are mapped to the crystallin gene families but there remain a num-
ber of cataract mutants with unknown genetic basis. The advantage of cataract mouse mutants
is the availability of series of mutant alleles which greatly facilitate the studies of genotype-phe-
notype correlations and the understanding of the roles of these genes both in normal lens
development and in cataract formation.

Many mutations causing cataract in mice also affect the overall growth of the eye, leading to
an associated small eye phenotype. Examples of these mouse mutants include genes responsible
for synthesizing structural proteins and gap junction proteins such as Cryaa [5], CrygeCat2-t,
Gja1 [6]; and other mutant alleles with unknown mutations such as ldis1 [7], Cat3vao [8] and
Tcm [9]. There are also genes that lead to combined cataract and microphthalmia phenotypes
in human patients,MAF [1] and CHX10 [10], but mutations of these same genes in mice cause
different ocular abnormalities [1, 11]. Also, there are a number of microphthalmia mutants
that do not develop cataract, e.g.Mab21l1 [12],Mitf. All these mutant studies suggest a coordi-
nated development of the lens and other tissues of the eye, but the cellular and molecular link
for their development is not well understood. There are a few mouse mutants that have closed
eyelid, e.g. Cle, Bmp [13], but the correlation between the mutation and the phenotype remains
unknown.

We have identified a novel mouse mutant named Secc which displays small eye, cataract
and closed eyelid. The abnormal ocular phenotypes are different from mutants described in the
literature and mouse genome database. The Seccmutant founder was originally identified
among a colony of FVB/NJ inbred mice used for our routine transgenic DNAmicroinjection
experiments. However, genotyping using transgene specific primers and probes could not
detect any transgene DNA in the mutant genome, suggesting that the phenotypes came from a
de novomutation unrelated to transgene insertional mutagenesis. In this study, by gene map-
ping and direct candidate gene sequencing, we identified the causative mutation of the Secc
mutant to be located on the γA-crystalline gene Cryga. We have shown by protein and cell
transfection analyses that the mutant protein formed aggregates with reduced solubility, per-
turbing normal cell maintenance and leading to cataract formation.

Materials and Methods

Animals and Breeding
A spontaneous mutant mouse (named Secc) with small eye, closed eyelid and cataract was dis-
covered among a colony of FVB/NJmice. The original stock of FVB/NJ and C57BL/6J were
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obtained from the Laboratory Animal Unit of the University of Hong Kong. In a backcross
breeding scheme, Seccmutant inbred strain in FVB/NJ background was first outcrossed with
wild type C57BL/6J to generate F1 heterozygous mutant mice. Then, F1 mutants were back-
crossed with wild type C57BL/6Jmice to obtain N2 and N3 generations [14]. All mutant mice
were observed to be fully viable and fertile. Animal experiments in this study were approved by
animal research ethics committee of the University of Hong Kong (CULATR No. 1184–05).

Lens Morphology and Histological Analysis
For gross phenotype analysis, lenses were prepared under a dissecting microscope (Leica
MZ8), images were captured with a Sony DXCS500 digital camera on a Leica FL III micro-
scope. For histological analysis, mouse eyes were dissected and fixed in 4% paraformaldehyde,
7μm sections prepared and stained with hematoxylin and eosin, examined with an Olympus
BX51 microscope and images captured with an Olympus DP72 camera.

Genetic Mapping
DNA samples used for genotyping were extracted from backcrossed mice of the N2 and N3
generations as described above. Microsatellite markers (81 in total) which were specific for the
FVB/NJ and C57BL/6Jmouse strains and spaced on average about 20cM across all the autoso-
mal chromosomes were selected and obtained commercially (Applied Biosystems). The micro-
satellite markers were amplified by PCR and scored by the ABIPRISM 3700 DNA sequencer
(Size standard, GS500 (-250) LIZ). The ratio of parental allele for each marker, reflected by het-
erozygosity percentage, was calculated and evaluated by Chi-square test for significant linkage.

Informative single nucleotide polymorphisms (SNPs) were obtained by searching the
Mouse Genome Informatics (MGI) database (http://www.informatics.jax.org). A total of 35
SNPs on chromosome 1, which can differentiate the FVB/NJ and C57BL/6Jmouse strains, were
used for the mapping experiment. The genotyping procedures were carried out using a high
throughput SEQUENOMMassARRAY system. A region covering the selected SNP was ampli-
fied by PCR using specific primers. The PCR products containing the specific SNPs were
extended using oligonucleotide probes (hME primers) with deoxynucleotides and dideoxynu-
cleotides so as to produce extended products with different size and mass for homogeneous
MassEXTEND (hME) assay. The mass of each extended product was measured and analyzed
using SEQUENOMMALDI-TOF mass spectrometry. All oligonucleotides used in both the
PCR and extension were designed by the MassARRAY software.

Gene Sequencing
By linkage analysis, we mapped the Secc critical region containing the Cryg gene cluster
(Cryga-Crygf). All exons and splicing regions of the Cryg gene cluster from wildtype and homo-
zygous mutant genomic DNAs were amplified and sequenced with specific primers using Big-
Dye terminator v3.1 cycle sequencing kit (Applied Biosystems), then further analyzed with the
ABIPRISM 3700 DNA sequencer. Sequence results were compared to reference sequences
from the NCBI (GeneBank NM_007774, Cryga; NM_144761, Crygb; NM_007775, Crygc;
NM_007776, Crygd; NM_007777, Cryge; NM_027010, Crygf).

Lens Protein Extraction andWestern Blot
Fresh lenses were dissected from the eyes of postnatal day 21 (P21) mice. Lens samples (2
pairs) from wild type (50ul per pair of lens) and mutant (25ul per pair of lens) mice were
homogenized in radioimmunoprecipitation (RIPA) lysis buffer (Upstate, Temecula, CA)
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containing 0.5M Tris-HCl, 1.5M NaCl, 2.5% deoxycholic acid, 10% Nonidet P-40, 10mM
EDTA and protease inhibitor cocktail (Complete, Roche) with sonication. The concentrations
of the protein extracts were determined. Protein samples were denatured in SDS buffer and
equal amount of protein extracts (5μg) were loaded onto a 16% SDS-PAGE gel for separation
and detection by western blot using antibodies against γ-crystallin (Santa Cruz; SC-27746;
1:100) and β-actin (Sigma; A5441; 1:3000). The analyses were performed in triplicate.

Generation of Myc-Tagged γA-Crystallin DNA Constructs
Total RNA from wildtype and homozygous mutant lens were isolated using Trizol reagent
(Invitrogen). cDNA was synthesized by RT-PCR using oligo-dT primer and SuperScript III
reverse transcriptase (Invitrogen). Full length, partial and Secc Cryga cDNAs were amplified
using specific primers and cloned into the EcoR1/ EcoRV sites of the plamid pCMV-Tag 3B
(Stratagene) to generate myc-CrygaWT, myc-CrygaSecc and myc-CrygaPartial expression con-
structs. DNA sequence of the constructs were verified by sequencing.

Cell Culture and Transfection
Human Lens Epithelial (HLE) cell line B3, 293T and COS-7 cell lines were maintained in Dul-
becco modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and
1% antibiotics and incubated at 37°C in a humidified chamber with 5% CO2 balanced with air.
The absence of endogenous γ-crystallins was verified by RT-PCR before transfection. Cells
were transfected with myc-CrygaWT, myc-CrygaSecc or myc-CrygaPartial expression contructs
using FuGene 6 (Fugene) according to the manufacturer’s protocol. To monitor the transfec-
tion efficiency, the pEGFP-N1 expression vector (Clontech) was co-transfected as internal
control.

Analysis of Solubility of γA-Crystallin
Cells expressing WT or mutant myc-tagged Cryga were washed twice with ice-cold PBS, lysed
in RIPA buffer (5 x 106 cells/ml) for 30 minutes on ice and then sonicated. After centrifugation,
the supernatant was collected as RIPA-soluble fraction. The pellet containing RIPA-insoluble
proteins was washed twice with ice-cold PBS, sonicated and denatured in 9M Urea-RIPA
buffer (5 x 106 cells/ ml). To obtain total protein extract, transfected cells (5 x 106 cells/ml)
were lysed in 9M Urea-RIPA buffer and sonicated.

Total protein, RIPA-soluble and RIPA-insoluble proteins from samples equivalent to 7.5 x
105 cells were analyzed by 16% SDS-PAGE andWestern blotting using antibodies against c-
Myc (Santa Cruz; SC-789; 1:1000), GFP (Abcam; ab6556; 1:2000), β-actin (Sigma; A5441;
1:3000) and appropriate HRP-conjugated secondary antibodies (anti-rabbit 656120, anti-
mouse 626520; 1:8000). Signals were detected by ECL (GE Healthcare). Immunostaining of
GFP and β-actin served as loading controls for transfected cells and protein amounts
respectively.

Results

Morphologies of the SeccMouse Mutant
We have identified a spontaneously occurring mouse mutant named Secc, which displays com-
bined features of small eye, cataract and closed eyelid. The transmission of the abnormal eye
phenotype is consistent with a single gene autosomal dominant mode of inheritance. The eye
phenotypes of heterozygous and homozygous mutants are similar. The Seccmutants do not
fully open their eyelids which remain half-closed throughout life (Fig 1E and 1F), they do not
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display any eye blinking reflex when tested with light or approaching object. Dissection of
mutant eyes and lenses revealed an obvious and significant reduction in their size; opaque
spots clustering around the centre of the lens could be readily recognized (Fig 1B and 1C).

Congenital Cataract Developed in SeccMutant Lenses
By histological analysis we found that abnormal lens phenotypes could be observed as early as
E14.5 in the Seccmutants (Fig 2B and 2C). In the core region of the mutant lenses, the fiber
cells were disorganized and swollen, clefts and vacuoles were observed in the cortex of the
mutant lenses. These phenotypes became more severe in new born P0 mutant mice (Fig 2E
and 2F). In wildtype postnatal P14 lens, fiber cell nuclei could only be seen in the lens cortex
region with but not in the lens core (Fig 2G). However, in P14 mutants, nucleus-like structures
could be readily observed in the centre of the lens, the morphology of the fiber cells and struc-
ture of the lens were disorganized (Fig 2H and 2I). No significant difference could be observed
between heterozygous and homozygous mutants.

Linkage Analysis Using Strain-Specific Genetic Markers
The Seccmutant arose among a colony of FVB/NJ inbred mice. To identify the mutation, we
generated hybrid congenic mouse strain to transfer the mutant allele to the C57BL/6J genetic

Fig 1. Gross abnormalities of the Seccmutant mouse eye.Wildtype FVB/NJ (A, D), heterozygous (B, E) and homozygous (C, F) Seccmutant lenses and
mice at P20 and P30. Seccmutant mice have closed eyelid (E, F), smaller eyes (B, C, E, F) and lens opacity (B, C). Scale bars: 500μm (A-C).

doi:10.1371/journal.pone.0160691.g001
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background [14]. We set up outcross and then backcross between the Seccmutant and wildtype
C57BL/6J to obtain N2 hybrids and performed linkage analysis. Eighty-one microsatellite
markers specific for the two mouse strains and spaced on average about 20cM across all the
autosomal chromosomes were selected. Seccmutants from the N2 generation were genotyped

Fig 2. Histological analysis of Seccmutant eye. Lens abnormalities were first observed at embryonic E14.5 (B & C) mutant eyes. The lens defects
progressed and becamemore severe by neonatal stages P0 (E & F) and P14 (H & I) as compared with wildtype (A, D, G). Scale bars: 100μm (A-F) and
200μm (G-I).

doi:10.1371/journal.pone.0160691.g002
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using these markers. The ratio of parental allele for each marker, reflected by heterozygosity
percentage, was calculated and evaluated by chi-square test for significant linkage. As shown in
Table 1, a high probability of linkage between the Chromosome 1 markers D1Mit169,
D1Mit132, D1Mit215, D1Mit440 and the Seccmutant locus was observed.

Next, we selected 19 strain-specific SNP markers spaced approximately 1.5Mb apart and
evenly spanning across the susceptible intervals D1Mit169 –D1Mit440 on Chromosome 1, for
further mapping of the mutant locus. Genotyping was performed on 117 Seccmutants from
the N2 generation. The Secc locus was mapped to an 11Mb region in Chromosome 1 which
was flanked by rs13475879 (57.8Mb) and rs3659932 (69.2Mb) (Fig 3, left panel). Further

Table 1. Summary of linkage analysis with Chromosome 1microsatellite markers.

Microsatellite marker Position (cM) Heterozygosity p value LOD score

D1Mit430 10 71% 5.61 x 10−4 2.59

D1Mit169 15 82% 2.23 x 10−6 4.85

D1Mit132 43.1 93% 2.29 x 10−10 8.74

D1Mit215 47 91% 4.94 x 10−11 9.39

D1Mit440 54 87% 3.17 x 10−8 6.65

D1Mit60 58.7 78% 2.87 x 10−6 3.80

D1Mit495 67 80% 8.70 x 10−7 5.26

D1Mit102 73 72% 1.07 x 10−3 2.33

D1Mit507 87.8 68% 3.18 x 10−3 1.89

D1Mit292 107.3 64% 6.93 x 10−2 0.72

doi:10.1371/journal.pone.0160691.t001

Fig 3. Haplotype analysis of SNP genotypes. A total of 117 N2 Seccmutants were genotyped using 19 SNPmarkers. The critical region spanning the
Secc locus is mapped between the markers rs13475879 (57.8Mb) and rs3659932 (69.2Mb) within a range of around 11Mb. Further mapping was performed
by genotyping 177 N3 mice with additional 16 SNPmarkers covering the region. By defining flanking proximal and distal recombinants, the Secc locus is
mapped between the markers rs3158129 (61.8Mb) and rs13475900 (65.9Mb) spanning around 4.1Mb. Clear boxes represent the FVB/NJ alleles, and black
boxes the C57BL/6J alleles. The number of offspring inheriting each haplotype of chromosome is given at the bottom of each column.

doi:10.1371/journal.pone.0160691.g003
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refined mapping was performed using another 16 strain-specific SNP markers distributed
across the mapped 11Mb region. A total of 177 N3 mice, including 91 wildtype and 89 mutants,
were genotyped. By defining the flanking proximal and distal recombinants, the Secc locus was
mapped between the markers rs3158129 (61.8Mb) and rs13475900 (65.9Mb), spanning around
4.1Mb (Fig 3, right panel).

Mutation Identification by Direct Sequencing
Within the Secc critical region in the 4.1Mb interval identified by linkage analysis, the candi-
date Cryg gene cluster is located, prompted us to examine potential mutation in this gene clus-
ter by direct sequencing. Using homozygous Seccmutant genomic DNA, we sequenced the
exons and splice junctions of all 6 Cryg genes and identified a single G deletion at nucleotide
position 299 in exon 3 of Cryga (Fig 4A). No additional coding mutation was detected in the
other five members of the cluster (Crygb-Crygf). The single G deletion generated aHindIII
restriction site (Fig 4A underlined sequence), therefore we could confirm the Seccmutation by
restriction fragment length polymorphism (RFLP). As shown in Fig 4B, HindIII digestion of a
1.2kb fragment containing the Seccmutation site produced 2 bands (300 and 900bp) in homo-
zygous mutant DNA, while heterozygous mutant DNA displayed a full-length band from the
wildtype allele, and 2 bands from the Seccmutant allele. The Seccmutation would cause a

Fig 4. Identification of the Seccmutation in theCryga gene. (A) DNA sequencing revealed a single base (G) deletion in the exon 3 of Cryga gene,
resulting in a frame-shift of amino acid codes from position 91. The mutation also generated a HindIII restriction site (AAGCTT, underlined). (B) RFLP
(restriction fragment length polymorphism) analysis of the Seccmutation by PCR andHindIII digestion. The region spanningCryga exon 3 from wildtype and
mutant were amplified, digested with HindIII, and examined in a 1.5% agarose gel. (C) Schematic alignment of the wild-type and Seccmutant Cryga amino
acid sequences. The position of the four Greek key motifs and connecting peptide of γA-crystallin are indicated.

doi:10.1371/journal.pone.0160691.g004
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frameshift at the 91st amino acid and disrupt the 3rd and 4th Greek-key motifs, producing a
mutant CrygaSecc protein with an unrelated peptide of 75 amino acids at the C-terminal
(Fig 4C).

Secc Mutant Lens Protein CrygaSecc Displays Reduced Solubility
To investigate the effect of the Seccmutation on the expression of the protein, western blot
analysis was performed. The predicted mutant protein is estimated to have a molecular mass of
approximately 18.7kDa, which is smaller than all other γ-crystallins. However, analysis of solu-
ble proteins extracted from P21 mutant lenses using a pan-γ-crystallin antibody failed to show
any protein band of the expected size (18.7kDa). Moreover, the expression levels of total γ-
crystallins in the mutant lenses were greatly reduced with reference to the β-actin protein (Fig
5A). As aggregation of crystallin proteins has been described in cataractogenesis[15,16], we
hypothesized that the CrygaSecc mutant protein might form aggregates and could not be recov-
ered from the lens protein extracts using standard procedures.

To test our hypothesis, we characterized the expression of the CrygaSecc mutant protein in a
cellular model. Myc-tagged cDNA expression vectors for full-length CrygaWT and CrygaSecc

mutation were generated. We also constructed a CrygaPartial cDNA with a partial sequence
encoding the N-terminal 90 amino acids of γA-crystallin, without the unrelated C-terminal
peptide present in the Seccmutant protein (Fig 5B). The expression vectors were transfected
into COS-7 cells, proteins were collected as total protein as well as soluble and insoluble frac-
tions by using buffers with different reducing power. The expected size of the recombinant pro-
teins are approximately 23kDa for myc-CrygaWT, 21kDa for myc-CrygaSecc and 13kDa for
myc-CrygaPartial. Western blot analysis using anti-myc antibody showed that myc-CrygaWT

and myc-CrygaPartial were well dissolved in RIPA buffer and could not be detected in the insol-
uble fraction (Fig 5C). However, considerable amount of myc-CrygaSecc was detected in the
insoluble fraction, which was recovered using 9M Urea-RIPA buffer (Fig 5C, insoluble frac-
tion). Our results indicated that the CrygaSecc mutant protein indeed had a reduced solubility
in standard conditions and could be prone to form insoluble aggregates.

Mutant CrygaSecc Protein Forms Intracellular Aggregates
To further characterize the mutant CrygaSecc proteins in mammalian cells, recombinant myc-
Cryga proteins were expressed in three different cell lines 293T, COS-7 and human lens epithe-
lial cell line B3. Analysis by immunostaining of transfected cells with anti-myc antibody
showed that myc-CrygaWT and myc-CrygPartial were localized in both nuclear and cytoplasmic
regions (Fig 6), whereas punctate distribution of myc-CrygaSecc was observed in all three cell
lines examined. Abnormal staining of myc-CrygaSecc was mainly found in the cytoplasmic
regions (Fig 6C and 6F). Together with the previous observation of the decreased solubility of
mutant CrygaSecc, our results suggested that the mutant CrygaSecc protein could form intracel-
lular aggregates. As no punctate staining could be observed in cells transfected with myc-Cry-
gaWT and myc-CrygPartial cDNAs, the protein aggregate formation could be due to the presence
of the C-terminal unrelated peptide resulted from the frameshift mutation in the Secc
mutation.

Discussion
In this study, by linkage analysis and sequencing of candidate genes, we identified a new cata-
ract mutation in the γA-crystallin gene CrygaSecc in the novel spontaneous mouse mutant Secc.
The Seccmutant was originated in the FVB/6J strain, congenital nuclear cataract developed in
the mutant strain as early as embryonic day E14.5, shortly after the expression of γ-crystallins
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was initiated. As demonstrated by our histological analysis (Fig 2), the mutant showed disorga-
nized and swollen fiber cells in the core region of the lenses. As the mice grew, the phenotypes
became more severe with clefts and vacuoles formed and rupture of the lens. A regular arrange-
ment of lens fiber cells is essential for maintaining the transparency of the lens. Improper

Fig 5. Expression of wildtype and Seccmutant γ-crystallins. (A) P21 lenses were analyzed by western blotting with antibodies against total γ-crystallins
and β-actin. The expression of γ-crystallins reduced significantly in Seccmutant lenses. (B) A schematic diagram of the structure of the wildtypeand mutant
myc-tagged Cryga cDNA expression constructs. (C) Analysis of myc-tagged wildtype, Secc and partial γA-crystallin expression in COS-7 cells.
Immunostaining of GFP and β–actin indicated the transfection efficiency and protein loading in each of the samples.

doi:10.1371/journal.pone.0160691.g005
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alignment, presence of vacuoles or nuclei within fiber cells, as well as lens rupture will perturb
light transmission and cause serious scattering.

The Seccmutant mouse strain is a unique cataract model that is different from previously
reported γA-crystallin mutants. In addition to the CrygaSeccmutation described here, Cryga1Neu

[17] and Crygatol [18] which are point mutations with single amino acid substitution in the
mouse Cryga gene have been previously reported. All three Crygamutations display dominant
trait of inheritance and cataract phenotypes. Both Cryga1Neu and Crygatolmutants exhibit
nuclear opacities. Dense nuclear opacity, microphthalmia and lens rupture were observed in
Crygatolmutant at 3 weeks of age. In the Seccmutant, lens rupture phenotype occurred at an

Fig 6. Localization of myc-tagged wildtype, Secc and partial γA-crystallin in 293T, COS-7 and B3 cells. Immunofluorescence of myc-tagged γA-
crystallins (red) showing the distribution of wildtype CrygaWT (A, D, G) and CrygaPartial (B, E, H) γA-crystallins in both nucleus and cytoplasm of the
transfected cells. Punctate distribution of the CrygaSecc mutant protein (C, F, I) was readily observed in the transfected cells, suggesting the formation of
mutant protein aggregates.

doi:10.1371/journal.pone.0160691.g006
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earlier stage of P14, with the presence of numerous vacuoles. The series of Crygamutants dis-
play different extent of phenotype severity in lens defects and microphthalmia, allowing further
studies on cataractogenesis and genotype-phenotype correlation. Notably, CrygaSecc is a frame-
shift mutation which could lead to the production of a very different mutant γA-crystallin pro-
tein and cause a more severe phenotype.

The CrygaSecc mutant allele has a single nucleotide deletion at n299 and resulted in a frame-
shift from the 91st amino acid residue. The γA-crystallin protein normally consists of four
Greek key motifs, with the 1st and 2nd motif linked to the 3rd and 4th motifs via a short connect-
ing peptide (see Fig 4C). The CrygaSecc mutation occurred immediately after the connecting
peptide region. As a result of the frameshift, the 3rd and 4th Greek key motifs were replaced
with an unrelated peptide of 75 amino acids long. The CrygaSecc mutant gene thus encodes an
abnormal protein of 166 amino acids and approximately 18.7kDa. The CrygaSecc mutation
could significantly affect the structure of the mutant γA-crystallin. It is not known whether the
C-terminal unrelated peptide has any ordered conformation; and more importantly, whether
the folding of the first two Greek-key motifs would be affected in the mutant protein. The con-
formation of the mutant protein is likely to be different from the wildtype and other reported
mutant crystallins. Therefore, protein conformation modulated cataractogenic defects may
occur in the CrygaSecc mutant lens.

It has been suggested that the mechanism of cataract formation is due to the presence of
intranuclear and cytoplasmic inclusions involving altered folding of γ-crystallins. Mutant crys-
tallins may exhibit altered protein conformation, stability and protein-protein interactions;
these alterations would lead to amyloid and aggregation formation [19–26] and cause cataract
in lens. Using an antibody that recognizes members of normal γ-crystallins, we had not been
able to detect any mutant CrygaSecc proteins in the mutant lens extracts by western blotting.
Moreover, the overall expression level of γ-crystallins in the mutant lenses were reduced (Fig
5A). The mutant CrygaSecc protein probably could not be recognized by the antibody used, or
that the mutant protein might be unstable and could not be detected. It is also possible that the
CrygaSecc mutant crystallin was not produced. For instance, the mutant mRNA transcripts
might be degraded due to nonsense-mediated mRNA decay (NMD) and the mutant protein
would not be synthesized. However, we considered the possibility that the mutant γ-crystallin
did express, but formed entangled protein aggregates and became insoluble in standard buffer
conditions, hence could not be detected.

By cell transfection analysis using recombinant myc-CrygaWT, myc-CrygaSecc and myc-Cry-
gaPartial cDNAs, we confirmed that significant portion of CrygaSecc mutant proteins form insol-
uble aggregates in different cell lines, including the human lens epithelial cell line B3.
Interestingly, the levels of expression of full length and partial mutant proteins were lower than
that of wildtype, indicating that the mutant proteins could be less stable than the wildtype. Our
results suggest that the Seccmutation could lead to folding defects of the mutant γA-crystallin
protein which resulted in their aggregation within cells.

It is believed that γ-crystallins are monomeric proteins interacting not only among them-
selves, but also with other proteins such as α-crystallin [27, 28], vimentin [29] and aquaporin
[30, 31]. Therefore, aggregation of mutant γ-crystallins could lead to reduction of other crystal-
lins, as a result of abnormal protein interactions and non-specific aggregate formation. The for-
mation of these mutant aggregates might lead to other downstream effects, such as
denucleation process of lens fiber cells and down-regulation of other γ-crystallin members,
contributing to the cataractogensis process.

In mouse lens ablation study using crystallin promoter driven expression of toxic gene con-
structs, phenotypes were not only restricted to the lens but also in cornea, iris and ciliary body
[32]. These studies support the hypothesis that the lens provides the source of signals for the

Cryga Cataract Mutant with Small Eye and Closed Eyelid

PLOS ONE | DOI:10.1371/journal.pone.0160691 August 11, 2016 12 / 15



anterior part of the eye and retina development. In the case of Seccmutant, the small eye phe-
notype may also be due to diminished support from the lens, although no obvious structural
abnormality is found in other ocular tissues. Interestingly, the Seccmutants also display a
closed eyelid phenotype, similar to blepharophimosis in human patients. Using a mouse model
of tissue specific mutation of the Foxl2 gene which recapitulated the phenotypes of the human
blepharophimosis, ptosis and epicanthus inversus syndrome (BPES), it has been shown that
defective development of cranial neural crest and mesodermal cell derived muscles and skeletal
components would prevent eyelid closure [33]. The closed eyelid phenotype of the Seccmutant
is likely to be secondary to the abnormal lens development, the underlying mechanism needs
to be further investigated.
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