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ABSTRACT 

A resonance between long and short waves will occur if the phase velocity of 

the long wave matches the group velocity of the short wave. In this paper, a system 

with two distinct packets of short waves in resonance with a common long wave is 

studied. Breather solutions are calculated by the Hirota bilinear method, and rogue 

wave modes (unexpectedly large displacements from an otherwise calm 

background state) are obtained from the breathers through a long wave limit. The 

location and magnitude of the maximum displacement are determined 

quantitatively. Remarkably this coupling enables a rogue wave to attain a larger 

magnitude than that in a configuration with just one single short wave component. 

Furthermore, as the wavenumber varies, a transition from an elevation rogue wave 

to a depression rogue wave is possible. This transformation of the wave profile is 

elucidated in terms of the properties of the carrier envelope. The connection with 

the modulation instability of the background plane wave is investigated. Some 

numerical simulations are performed to demonstrate both the robust nature and 

unstable behavior for these rogue waves, depending on the parameters of the 

system. Dynamics and properties of rogue waves with three or more short wave 

components are also considered. 
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1 Introduction 

Three-wave resonance is important in many areas of physics, such as fluid 

dynamics [1] and optics [2]. From a general perspective, in any nonlinear wave 

system with a linear dispersion relation ω = ω(k) (ω = angular frequency, k = 

wavenumber), if three wave components satisfy the resonance conditions: 

    ω3 = ω1 + ω2,   k3 = k1 + k2, 

then one member of such a triad can be generated spontaneously if two other 

members are present. The ‘long wave-short wave’ (or just ‘long-short’) resonance 

is a special limiting case of the triad resonance when one member is much longer 

than the other two [1, 3]. Specifically, if k1 = k, k2 = Δk, k3 = k +Δk, then the 

resonance condition becomes ω(k +Δk) = ω(k) + ω(Δk), which to leading order 

reduces to  

                       
 

dk

kd

k

k )(





 

when |Δk| << k, i.e. the phase velocity of the long wave must match the group 

velocity of the short wave. Under such circumstances, a standard multiple scale 

asymptotic expansion will give the governing equations of a slowly varying, 

complex-valued short wave packet envelope (S) and a real-valued induced long 

wave (L) as [3, 4],  
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iSt – Sxx = LS ,  Lt = – σ(|S|2)x .                                                                          (1) 

The real parameter σ will depend on the specific physical application. The 

resonance between a long internal wave and a short surface wave in a stratified 

fluid is one important application, but the model Eq. (1) applies to many other 

physical systems.  

Exact solutions of Eq. (1) with interpretation as bright and dark solitons have 

been given, see [5] for instance. The objective of the present work is to take these 

studies further. More specifically, we shall investigate rogue waves for waveguides 

consisting of such a coupled long-short system with multiple short waves. 

Rogue waves (or freak waves) are unexpectedly large displacements from the 

background state. Typically these modes are localized in both space and time. 

Although such large amplitude motions have been known to the maritime 

community for several decades, scientific interest has exploded in the past ten 

years with the availability of new ocean and laboratory data, all leading to the 

realization that the nonlinear Schrödinger equation could play a central role in 

modeling these events. The analytical and experimental identification of the 

counterparts in optical waveguides have only strengthened these topical appeals 

[6]. Indeed rogue waves have been invoked in many scientific disciplines, ranging 

from crowd dynamics [7] to tunneling in waveguides with graded index [8]. 
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The most widely used model is the Peregrine breather/rogue wave [9] solution 

of the focusing nonlinear Schrödinger equation, for which plane waves are 

modulationally unstable. This rogue wave is localized in both space and time (i.e. 

it breathes only once), and decays algebraically to the background state. Recently 

studies of rogue waves have been extended to systems with two or more 

waveguides, i.e. those governed by coupled systems, e.g. Bose-Einstein 

condensates [10, 11], optical fibers [12], and even modeling in finance [13]. 

Rational solutions are still obtained [14]. 

The Darboux transformation has been commonly used in the theoretical search 

for rogue waves, but the classical Hirota method has also recently been shown to 

be applicable [15]. The merit of the Hirota method is that it has been successfully 

employed in the theory of nonlinear waves to search for soliton modes for over 

forty years [16].  Given this, we note that the Darboux transformation has been 

applied to the single component long-short system Eq. (1) to obtain a ‘dark’ rogue 

wave, an unexpected ‘depression’ from the background state [17]. It would thus be 

instructive to study the combination of modes in a coupled system with two (or 

more) components, i.e. elevation rogue wave in one waveguide but a depression 

rogue wave in the other. The Hirota method will be an effective tool in such 
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investigations. Nevertheless, in anticipation for future studies, the Lax pairs for 

such coupled systems will be formulated too. 

Modulation instability (MI) refers to the general process whereby sidebands of 

the central wavenumber in the wave packet grow in a nonlinear system. As the 

system evolves, nonlinear effects play a central role, and this relationship 

connecting MI, breather and rogue wave has been studied in the literature, see e.g. 

[18]. The structural stability of a rogue wave mode can also be investigated from 

the perspective of MI.  

The structure of the paper is now described. The Hirota bilinear transform and 

the Lax pair of a coupled long-short system will be formulated, and the breather 

mode will be computed by the bilinear method (Section 2). A long wave limit is 

then taken and the rogue wave is obtained (Section 3). The transformation of the 

wave profile, from an elevation to a depression rogue wave mode, will be traced 

analytically (Section 4). Many varieties in the combination of modes will be 

investigated further in Section 5. MI and numerical simulations will be discussed 

(Section 6). Extension to a general multi-component system will be discussed in 

Section 7, followed by the Conclusions (Section 8). 
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2 Formulation 

 A system consisting of two short wave components, each in resonance with 

a common long wave, is considered in a general theoretical setting. In terms of 

applications in a fluid dynamics context, two wave packets in a stratified fluid are 

coupled to the induced mean flow (long wave) of the system. The constraint is that 

the group velocities of the two short wave packets must be identical, and in this 

group velocity frame the governing equations become 

iAt – Axx = LA , iBt – Bxx = LB , Lt = – σ(|A|2 + |B|2)x ,                                       (2) 

where A, B, L are the short waves and long wave respectively [1, 19]. The real 

parameter σ depends on the precise physical properties of the system, e.g. the 

density stratification profile in a fluid. Although it can be normalized to unity by 

changes of variables, we retain it here as a useful measure of the long-short wave 

interaction. The scattering and eigenvalue problems of Eq. (2) have been studied, 

and localized solitons have been derived [18]. The system is conservative, and one 

representation of the intensity or energy of each mode, namely, 

∫|A|2dx, ∫|B|2 dx, ∫Ldx ,                                                                                       (3) 

remains constant. The focus of this paper is to study the breather and rogue wave 

modes of Eq. (2). Both the Hirota bilinear transform and Lax pair formulations will 

be developed, and the breather mode will be computed from the former. 
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The Hirota bilinear formulation 

The well established Hirota bilinear transformation is given by: 

',')','(),( ttxx
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 .                                (4) 

The appropriate dependent variable transformation is (G, H complex, f real) 

  ,log2,, xxfL
f
H

B
f
G

A                                                                            (5) 

which converts Eq. (2) to  

       2222 ,0,0 HGffCDDfHDiDfGDiD txxtxt   .     (6)                                 

The breather (pulsating) solutions are now derived, using complex conjugate 

wavenumbers. The two possible types of breathers, namely, those periodic in space 

and those periodic in time, can be attained through a suitable choice of 

wavenumbers. Rogue waves are then obtained by taking the long wave limit of 

these breathers.  

We avoid the trivial case of identical short wave components by insisting on 

distinct carrier wave envelopes,  

   hHgtkxiG  ,exp , 2k , k ≠ 0,                                           (7) 
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where k, ω, ρ stand for (real valued) wavenumber, angular frequency and wave 

amplitude respectively. For simplicity attention is restricted to the case of equal 

background amplitude for both short waves. The case of unequal amplitudes will 

be left for future studies. The appropriate expansion is then (* = complex 

conjugate) 
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Substituting into the bilinear forms (Eq. (6)) will yield 
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In contrast to the single mode case, the dispersion relation is now a polynomial of 

degree five (rather than degree three), 
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For k = 0, we have A = B and this whole analysis then degenerates to a scenario 

equivalent to the single component case. Eq. (2) simplifies to 

 iAt – Axx = LA , Lt = – 2σ(|A|2)x ,                                                                 (11) 

which is equivalent to Eq. (1) except the parameter is now 2σ. The dispersion 

relation Eq. (10) also reduces to a cubic polynomial similar to results published 

earlier [15]. 

 

The Lax pair formulation 

It is widely believed that the integrability of nonlinear evolution equations, the 

existence of an infinite number of conservation laws and the Lax pair are closely 

related. It is thus highly valuable to find a Lax pair representation of the system Eq. 

(2). This involves searching for matrices U and V such that the partial differential 

equations 

Rx = U·R,  Rt = V·R 

reduce to the original nonlinear system under the compatibility condition Rxt = Rtx 

or the associated zero-curvature equation Ut – Vx + [U,V] = 0, where the 

commutator is defined as [U,V] = UV –VU. 
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More precisely, the matrices 
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are the appropriate choices to give the generalized system 

iAt + fd Axx + fi LA = 0, 

iBt + fd Bxx + fi LB = 0, 

 Lt = (σ1 AA* + σ2 BB*)x, 

where the constant fd determines the strength of dispersion, the constant fi 

determines the strength of the nonlinear long wave-short wave interaction, and the 

constants σ1 and σ2 measure the relative weight of this interaction between the 
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short wave components. As before, changes of variables can be made to normalize 

both σ1 and σ2. 

While arbitrary coupling schemes do not guarantee integrability, it is 

noteworthy that this generalized system can be extended to any number of 

components, essentially by replacing the scalar short-wave function in the single-

component Lax pair [15] with a vector field. Lax pairs are generally very important 

entities, as they form the basis of many ingenious methods for constructing 

solutions explicitly [20]. A particular selection of parameters, namely, fd = fi = –1, 

σ1 = σ2 = –σ, will give the resonance equations Eq. (2). Although the Hirota 

formulation is sufficient for the present work, the Lax pair mechanism will form 

the foundation for further theoretical development in the future. 

 

3 Rogue waves of the coupled long-short system 

Although one should in principle analyze the dispersion relation Eq. (10) for 

arbitrary complex wavenumber p, it will be instructive to obtain the breather 

solution for a purely imaginary value, namely, 

0ipp  , where 0p  is a real number,                                                                (12)  
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since such a solution corresponds to a breather strictly periodic in the x direction, 

commonly known as the Akhmediev breather in the literature [21]. The asymptotic 

expansion for   in that case is  

  2

000 pOp  , where 0  satisfies 

088444 22
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Performing now a long wave expansion (p0 → 0), with the phase factors exp(ζ(n)) = 

–1, n = 1, 2, will yield rational expressions for f, g and h,  
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Consequently rational solutions are obtained as 
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where a, b are the real and imaginary parts of the complex angular frequency Ω0: 

Ω0 = a + ib.                                                                                                     (18) 

Simple contour plots of such rogue waves for typical values of the parameters 

exhibit displacements localized in space (x) and time (t) (Figs. 1(a)-1(d)). 

 

4 Amplitude of the rogue wave  

Rogue waves of elevation and depression 

The maximum amplitude of a rogue wave in an otherwise relatively calm sea 

state is obviously a factor of interest in the maritime community, and also in other 



15 
 

physical contexts. Analytically this is also a crucial issue as the knowledge 

gathered reveals valuable structural information concerning these localized entities. 

We focus on the exact solution Eqs. (13, 15-18) of Eq. (2). The short wave 

components are studied first, and one considers the turning points of the function 

K(x,t),  

2

2




A
K  where A is given by Eq. (15).                                                       (19) 

At the point (x,t) = (0,0), one has  

0



x
K

, 0



t
K

 with  

2

2
2

1

4
10,0

























 




a
kb

K .  

The second order derivatives at (0,0) are  
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There are thus three possible scenarios:   
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(i) For 
3
12

0
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kb
, (0,0) is a local maximum point with |A| ranging from 3ρ 

to 2ρ, where again ρ is the amplitude of the background wave; 

(ii) For 3
2

3
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a

kb
, (0,0) is a saddle point with |A| ranging from 2ρ to 0; 

(iii) For 
2

2
3 






 


a

kb
, (0,0) is a local minimum point with |A| ranging from 0 to ρ. 

By setting k = 0 in the above analysis, we can arrive at similar results for |B|.  

As the integral ∫Ldx over the entire domain must be conserved for localized 

initial conditions, there must be ‘elevations’ above and ‘depressions’ below the 

(zero) mean level. This is verified for the case of a stationary plane wave 

background. The long rogue wave L, Eq. (17), attains a maximum value of 4a2 at 

(0,0), and a minimum at the points 
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substantiating the fact that L goes both above and below the (zero) mean level (Fig. 

1(c)). These analytic formulations can help to explain the transformation of the 

wave profiles in the next section [17]. 
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Comparison with the case of a single short wave 

It is instructive to compare the present results with that of a single short 

wave on a stationary background which is studied earlier in the literature. The 

system Eq. (1) has rogue wave mode [15]: 
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By elementary algebra, as the expression 
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is negative, the upper bound of K0 is thus 4, which is attained at (x,t) = (0,0).  

Hence the amplitude of the short wave S will be just two times that of the 

background plane wave (upper bound of K0 of Eq. (21) being 4). These analytic 

formulations can help to explain the transformation of the wave profiles in the next 

section [17]. 

 

Comparison with the nonlinear Schrödinger equation 

The Peregrine breather of the nonlinear Schrödinger equation has been widely 

used as a simple model of a rogue wave, and the maximum amplitude there is three 

times that of the background plane wave [21]. For a long-short system with one 

single short wave, this amplification ratio is two. For a long-short system with two 

short waves, the amplification ratio can be larger than two but will be shown here 

to be strictly less than three. To establish this fact analytically, it is sufficient to 

prove that, for Eqs. (15-18), b ≠ 0 and b ≠ –2k. Hence we can deduce that both |A| 

and |B| cannot attain 3ρ at (x,t) = (0,0). 
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● b is non-zero: Assume the contrary holds, i.e. a0 (real), the dispersion 

relation then becomes 084 2325  kaaka  and 0844 22224  kaka . 

Eliminating σ will give a contradiction   07 4222  kka  and hence b is non-

zero. 

● b ≠ –2k: Assume the contrary holds, i.e. b = –2k, the dispersion relation then 

becomes 0812 2325  kaaka , and   08486 222234  kakka . 

Straightforward algebra will give 
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a ,  

and thus σk must be negative. Back substitution yields  

  0
2
7

4 32

0

232

0  kk , 

which is not possible if σk < 0, and hence b ≠ –2k. 

 

Nonlinear coupling enhances the amplitude of the rogue wave  

A surprising feature of the nonlinear dynamics of this system is the 

enhancement of the maximum displacement through coupling. More precisely, the 

amplitude of the rogue wave of Eq. (2), the system with multiple short waves, can 

be larger than the corresponding mode in the configuration with just one short 



20 
 

wave. As a concrete example, consider ρ = 1, σ = 1, k = 1, Ω0 = 1.15 + 0.569i (Fig. 

1(b)). From the analysis above, 
3
1

245.0
2









a
b

 and hence (0,0) is a maximum 

point with |B(0,0)| = 2.22 > 2ρ = 2. This is greater than the maximum value that the 

single component model can achieve. 

 

5 Wave profile of the rogue wave mode  

Borrowing terminology from optical solitons [2], elevation/depression rogue 

waves will be labeled as ‘bright’ and ‘dark’ respectively in the discussion below. 

 

Profile changes on varying the envelope wavenumber k 

For a long-short system with one short wave (Eq. (1)), the rogue wave is always 

an elevation with a peak value of 2ρ if the background is of zero frequency and of 

magnitude ρ. For a background with a finite frequency, a depression or ‘dark’ 

rogue wave can occur. In terms of varying this frequency parameter, a regime first 

occurs where the peak is split into two smaller units. The two valleys migrate 

closer to the original location of single maximum. Eventually the two valleys 

merge and form the depression/dark rogue wave [17]. 
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The goals of this section are (a) to provide a theoretical description of this 

splitting and merging process in the coupled system Eq. (2) quantitatively, and (b) 

to show that the dynamics of multiple waveguides is even richer. For point (a), 

from the analysis of Section 4, the point (0,0) is a local maximum of |A| for 

sufficiently small k, implying the occurrence of an ordinary rogue wave mode (Fig. 

2(a)). For larger values of k, for example k = 0.25 and Ω0 = 1.34 + 0.652i, one then 

has 3738.0
2

3

1
2







 


a

kb
 and this maximum splits into two small units which 

move away from the origin. At the same time, the ‘valleys’ start to migrate towards 

the origin, creating a saddle point effect. For still larger values of k (k = 0.4), a 

four-petal type rogue wave is created with 16.1
2

2







 

a

kb
 (Fig. 2(b)). Two 

maxima and two minima are observed. When k reaches about 0.5 (more precisely 

56.1
2

2







 

a

kb
 < 3 with Ω0 = 1.26 + 0.575i), the two depression petals join 

together to form a double-depression rogue wave. Finally, the two valleys actually 

merge and become a single depression/dark rogue wave mode, turning (0,0) into a 

minimum point. This is illustrated by Fig. 1(a), when k reaches 1 with Ω0 = 1.15 + 
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0.569i and thus 98.4
2

2







 

a

kb
 > 3. The analysis of Section 4 shows that the 

short wave A has become a dark rogue wave with the minimum point at (0,0).   

In all of the above cases, B and L remain essentially bright rogue waves. The 

solution for k = 1 is illustrated in Fig. 1. A similar trend can be observed when ρ = 

1, σ = –1, with B changing from a bright rogue wave to a dark rogue wave while A 

maintaining essentially as a bright rogue wave. 

 

Exotic combination of modes  

Furthermore, rogue wave modes of the short wave components A and B can 

have various exotic combinations: bright-bright (Fig. 2(a) and the corresponding 

diagram for B (not shown)), dark-dark (Figs. 3(a), 3(b)), bright-dark (Figs. 3(c), 

3(d)), and dark-bright (Figs. 1(a), (1b)).   

Obviously, the form of the rogue wave mode depends on the parameters ρ, σ, k 

and the value of Ω0 from the dispersion relation. With given values of ρ, σ and k, 

different roots of Ω0 from the quintic dispersion relation can give different types of 

solutions. In Figs. 1(a) and 1(b), A is a dark rogue wave and B is a bright rogue 

wave; whereas in Figs. 3(a) and 3(b), both A and B are dark rogue waves. The 
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values of ρ, σ and k are the same in these two cases but different choices of Ω0 

have been applied. 

 

6 Modulation instability, rogue waves and numerical simulations  

Finally it is valuable to investigate the relationship between modulation 

instability (MI) and the evolution of rogue wave modes with perturbed initial 

conditions. For MI, one starts with the plane (or continuous) wave solution of Eq. 

(2) (L0 = a real constant): 

A = ρ exp[ikx–i(L0 –k2)t],  B = ρ exp(–iL0t),  L = L0 . 

Imposing sinusoidal perturbations and isolating modal dependence of  

exp[irx – ist] 

will give a dispersion relation 

   
  08448

44424

5227286242

2325322445





rkrsrrkkr

srkrsrkrkrss
 .                                  (22) 

For a real wavenumber r, complex roots for angular frequency s will imply 

instability. In principle this analysis needs to be performed for all r, assuming σ, ρ 

and k are given. However, from past experience, a disturbance of long wavelength 
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(0 < r <<1) tends to constitute an unstable regime. With that assumption, the speed 

r
s

c   for small r will satisfy the equation 

  088444 222223245  kkccckkccc .                           (23) 

Remarkably, this is identical to Eq. (13) if one makes the transformation  

Ω0 = ic.                                                                                                            (24) 

In hindsight, these equations provide a quantitative correlation between modulation 

instability and the occurrence of rogue waves. In fact the formulations of Eq. (8) 

and Eq. (12) show that the speed of a breather should be given by 
0

00

ip

p 
 which is 

equal to c by Eq. (24). The condition for the existence of rogue wave is thus 

identical to the criterion for modulation instability for disturbances of long 

wavelength. 

To substantiate these ideas, numerical simulations have been performed to test 

whether the occurrence of rogue wave is a robust process. As there are several 

parameters present and the MI analysis has only been implemented for long 

wavelength disturbance, we shall only present a few representative cases. The 

exact solution perturbed by a localized noise with a maximum of 0.1, in a 

background of magnitude one (ρ = 1), was used as the initial condition. Numerical 
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simulations were carried out with spectral discretization in the spatial domain and a 

fourth order Runge-Kutta scheme in the temporal domain. The size of the spatial 

domain was chosen to be from –400 to +400 in both cases presented here. For 

certain favorable parameter regimes, inherently occurring noise in the surrounding 

does not essentially affect the ‘growth phase’ of the rogue wave (Fig. 4). However, 

in other unfavorable parameter regimes, this ‘growth phase’ is significantly 

distorted by the perturbations in the initial conditions (Fig. 5), and other 

instabilities of the system overwhelm the occurrence of the rogue wave mode.  

 

7 Multi-component System 

       The analysis of the previous sections can be generalized to a multi-component 

long wave-short wave model with three or more short wave components. The short 

wave envelopes Sj  , j = 1, 2,…n and the generalized long wave Q will then satisfy 

   j j jt xx
i S S QS  ,  for j = 1, …, n, 

2

1

n

t j j
j x

Q S


    
 
 ,                                        (25) 

where σj measures the nonlinearity and can be normalized numerically to positive 

or negative unity by scaling the short wave envelopes. An intriguing exercise in 

nonlinear dynamics then is to consider the case where the signs of the intensity 
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terms take up various combinations of +1 and –1. However, for simplicity, similar 

to what we have accomplished in the case discussed earlier for n = 2, we restrict 

attention to σj = σ, j = 1... n, and will study other combinations in the future.  

An elegant feature of Eq. (25) is that the intensity of each component 

summed over the entire spatial domain is conserved [22]:  

2

jS dx


  = constant.  

Dynamics and properties of solitons in such long wave-short wave systems in two 

spatial dimensions have been studied in the literature [22, 23], where the Hirota 

bilinear transform is also employed. Painlevé analysis has been performed to 

confirm the ‘integrability’ of the system [22]. Head-on and overtaking collisions, 

as well as energy distribution properties, are investigated [22, 23]. Mixed (bright-

dark) families of solitons are derived theoretically, including cases where the 

coefficients of nonlinearity are not of a uniform sign [24]. In terms of rogue waves, 

rational solutions of Eq. (25) have been derived [22, 25], and the geometry of the 

wavefront in two spatial dimensions has been elucidated. Here we shall further 

enhance the theoretical understanding by performing the modulation instability 

analysis. To highlight the nonlinear dynamics with minimal algebraic complexity, 

the special case with n = 3 will be discussed: 
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   j j jt xx
i S S QS  ,  for j = 1, 2, 3, 

3 2

1
t j

j x

Q S


   
 
 .                                       (26) 

The formulation and methodology are similar to those described in Sections 

2 and 3. Two arbitrary wavenumbers for the background plane waves can be 

allowed in general but the symmetrical case is sufficient to illustrate the features of 

coupling. Along this line of reasoning, the rogue waves for n = 3 are given by 
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2 2

2 2

2 2 2

2
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where 0 ' 'a ib    and 0
  satisfies the dispersion relation, 

       7 5 4 3
2 2 4 2 4

0 0 0 08 6 16 32 0k i k k i              .              (31) 

For a system with n short wave envelopes, this dispersion relation will be a 

polynomial of degree 2n + 1. Properties similar to those discussed in Sections 4 

through 6 can be observed:  

 Coupling can enhance the amplitude of the rogue waves 

As discussed in Section 4, the peak of any bright rogue wave for system (2) 

must be less than 3ρ for the short wave components (ρ = background plane 

wave). In the presence of a third short wave component, the maximum 

amplitude can be three times the background amplitude ρ for one of the short 

wave components. As an illustrative example, for σ = 0.1, ρ = 1, k = 10, the 

maximum displacement of |S3| is 3, whereas the other components have 

insignificant variations in amplitude.  
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 Multiple rogue wave modes 

The degree of the dispersion relation Eq. (31) is higher than that of the 

dispersion relation Eq. (13) for system (2) by two. In certain parameter 

regime, three distinct sets of rogue wave solutions will be possible. A typical 

case is illustrated in Figs. 6-8: S3 can be a bright, four-petal type or dark 

rogue wave depending on the value of the root 0
 .  

 

 Connection with modulation instability 

The connection between existence of rogue waves and the onset of 

modulation instability can be drawn. Consider the plane wave solution of 

system (26): 

      2 2

1 2 3exp , , exp , 0S i kx k t S S i kx k t Q          .  

Imposing sinusoidal perturbations of the form exp[i(Kx-Wt)] to the plane 

wave solution, the angular frequency of these disturbances is given by 

   
 

 

7 4 2 2 5 2 3 4 8 4 4 3

2 7 2 12 2 10 4 8

2 11 2 9 4 7

3 8 6 3 16

12 8 16

6 32 32 0.

W K k K W K W K k K W

K W K k K k K W

K k K k K

     

     

   

 

With '
W

c
K

  , this governing equation for the angular frequency becomes 
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       7 5 4 32 2 4 2 4' 8 ' 6 ' 16 ' 32 0c k c c k c k                  (32) 

in the limit for vanishingly small K. This kind of instability for complex 

roots of Eq. (32), with special restriction to disturbances with vanishingly 

small wavenumbers, has been termed baseband modulation instability. This 

instability was demonstrated to be related to the occurrence of rogue waves 

[26]. By the transformation 0 'ic  , Eq. (31) is mapped to Eq. (32). In 

other words, the existence condition of rogue waves (Eqs. (27-30)) is 

equivalent to the condition for long wavelength instability. Physically, 

baseband modulation instability is necessary for rogue waves to occur in this 

coupled system.  

We have thus utilized the cases with two and three short wave envelopes to 

illustrate a very rich and elegant dynamical system of long wave-short wave 

resonance with n components.  

 

8 Conclusions 

Rogue waves are unexpectedly large displacements from an otherwise calm 

background, and have generated intense scientific interest as such modes occur in 

many physical contexts [6]. Rogue waves for a nonlinear coupled system Eq. (2) of 
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long wave-short wave interactions are obtained analytically as algebraic modes 

localized in both space and time. Besides documenting an analytical solution to a 

nonlinear evolution system, the results and techniques of the present work are 

potentially applicable in fields beyond the problem of long wave-short wave 

resonance through these perspectives:  

● Instead of the widely used Darboux transformation, rogue waves here are 

obtained as a long wave limit of a breather/multi-soliton expression obtained from 

the Hirota bilinear transformation [15]. As the Hirota bilinear forms for most 

integrable equations are known [22-25], this opens an alternative and fruitful path 

for calculating rogue wave modes. 

● A remarkable property of nonlinear dynamics in multiple waveguides is 

demonstrated, by showing that the maximum displacements of the rogue waves in 

a system with multiple short waves can be larger than that of the rogue wave mode 

in a configuration with just one short wave. Multiple configurations of rogue wave 

modes for a fixed set of input parameters are also possible [27]. 

● Rogue waves of a nonlinear evolution system can occur as an elevation (above 

the mean level) or a depression (below the mean level), depending on the values of 

the relevant parameters. An analytical description of this transition is offered here, 
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starting from the splitting of a peak, through the migration of the adjacent valleys, 

and finally the merger of these valleys to form a depression rogue wave [27, 28].  

● The connection between the existence criterion of rogue waves and the onset of 

baseband modulation instability is confirmed [26]. 

● Exotic combinations of modes, e.g. bright-dark or dark-dark rogue waves are 

calculated in closed form. 

However, there are still other challenges ahead. Theoretically, the Lax pair of 

the coupled system has been formulated, but investigations of the full analytical 

structures have not been completed. Physically, studies of higher order rogue wave 

modes have been initiated [25], but computational studies of their stability have not 

been undertaken [29]. A comprehensive study on the structural stability of these 

modes will yield further information on this dynamical system. Furthermore, the 

interactions between solitons and rogue waves will constitute an intriguing 

nonlinear dynamical system [22, 30, 31]. These and other issues await future 

efforts. 
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Figures Captions 

Fig. 1 Contour plots of (a) the norm of the short wave component A, (b) the norm 

of the short wave component B, and (c) the long wave component L, of the exact 

solutions Eqs. (15-17) on the x-t plane; (d) a three dimensional plot of the short 

wave component |B|; values for the parameters: ρ = 1, σ = 1, k = 1, Ω0 = 1.15 + 

0.569i. A is a dark rogue wave and B is a bright rogue wave with a maximum value 

greater than 2ρ. L is a bright rogue wave with two minimum points with negative 

values 

Fig. 2 Contour plots of the norm of the short wave component A for ρ = 1, σ = 1, 

and (a) k = 0, Ω0 = 1.37 + 0.794i; (b) k = 0.4, Ω0 = 1.30 + 0.597i. The peak at (0,0) 

splits as k increases 

Fig. 3 Contour plots of (a) the norm of the short wave component A, and (b) the 

norm of the short wave component B for ρ = 1, σ = 1, k = 1, Ω0 = 0.637 – 1.13i, 

which is a dark-dark combination. Contour plots of (c) the norm of the short wave 

component A, and (d) the norm of the short wave component B for ρ = 1, σ = –1, k 

= 1, Ω0 = 0.894 – 2.12i, which is a bright-dark combination 

Fig. 4 An example of robust occurrence of rogue waves: Initial noise disturbances 

do not essentially affect the ‘growth phase’ of the rogue wave:  ρ = 0.25, σ = 1, k = 

1, Ω0 = 0.436 + 0.243i 



39 
 

Fig. 5 An example of the unstable nature of rogue waves: Initial noise disturbances 

can significantly distort the ‘growth phase’ of the rogue wave:  ρ = 1, σ = 1, k = 

1.25, Ω0 = 0.552 – 1.430i 

Fig. 6 Contour plots of the norm of the short wave component (a) S1 (dark), (b) S2 

(dark), (c) S3 (bright), and (d) the long wave component Q (bright), of the exact 

solutions Eqs. (27-30) on the x-t plane; values for the parameters: ρ = 1, σ = 1, k = 

1, 0
  = -0.883 + 2.1i  

Fig. 7 Contour plots of the norm of the short wave component (a) S1 (dark), (b) S2 

(bright), (c) S3 (four-petal), and (d) the long wave component Q (bright), of the 

exact solutions Eqs. (27-30) on the x-t plane; values for the parameters: ρ = 1, σ = 

1, k = 1, 0
  = -0.973 + 0.504i 

Fig. 8 Contour plots of the norm of the short wave component (a) S1 (four-petal), 

(b) S2 (dark), (c) S3 (dark), and (d) the long wave component Q (bright), of the 

exact solutions Eqs. (27-30) on the x-t plane; values for the parameters: ρ = 1, σ = 

1, k = 1, 0
  = -0.661 - 1.16i 
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