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Abstract: Rasta resin-TBD (RR-TBD) was found to be an effi-
cient organocatalyst for γ-selective Morita-Baylis-Hillman reac-
tions between α,γ-disubstituted allenones and aryl aldehydes.  In 
these reactions the heterogeneous nature of RR-TBD greatly 
facilitated product isolation since the catalyst could be separated 
simply by filtration. 
Key words: allenones, Morita-Baylis-Hillman reactions, organo-
catalysis, polymer-supported catalysts, rasta resin 

 
The Morita-Baylis-Hillman (MBH) reaction is a 

widely studied C-C bond forming transformation be-
tween an electron-withdrawing group activated alkene 
and an electrophile, typically an aldehyde or related 
compound, that is catalyzed by a nucleophilic organoca-
talyst.1  Generally MBH reactions are α-selective, with 
the new C-C bond formed at the alkene position adjacent 
to the activating group (Scheme 1A).  However, with 
activated allene substrates, the new C-C bond can be 
formed at the γ-position (Scheme 1B).2  Recently Selig 
and co-workers have reported examples of such γ-
selective MBH reactions involving allenoates catalyzed 
by the organic superbase3 7-methyl-1,5,7-
triazabicyclo[4.4.0]dec-5-ene (MTBD, 1, Figure 1) 
(Scheme 1C).4-6   Contemporaneous to this research, we 
were developing  a heterogeneous polystyrene-based 
rasta resin-supported analogue of MTBD (RR-TBD, 2, 
Figure 1) as an organocatalyst.7-9  Initially we studied the 
use of 2 in transesterification reactions such as biodiesel 
production,10,11  and once this research was completed, 
we next turned our attention to examining the utility 2 as 
a nucleophilic catalyst.  Since we had extensive prior 
experience in developing polymer-supported nucleo-
philic phosphine catalysts for MBH reactions,12 we at-
tempted to use 2 in similar reactions and settled on al-
lenoate substrates.  However, in light of the report by 
Selig et al.5 and the fact that Shi and co-workers origi-
nally studied only α-substituted allenones, we changed 
our focus to γ-selective MBH reactions of α,γ-
disubstituted allenones catalyzed by 2, and report our 
results herein. 
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Figure 1 MTBD (1), the rasta resin concept, and RR-TBD (2) 
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Scheme 1 MBH reaction variations  

Polymer 2 was synthesized as previously reported 
starting from the initiator functionalized heterogenous 
core using a combination of styrene and 4-vinylbenzyl 
chloride (5:1 ratio) to install the functionalized grafts by 
a living radical polymerization process.  (Scheme 2A).10  
The benzyl chloride groups of the grafts were subse-
quently treated with deprotonated 1,5,7-
triazabicyclo[4.4.0]dec-5-ene to install the catalytic 
MTBD group analogues.  The allenone substrates 3A-D 
were prepared by olefination of in situ generated ketenes 
according to  literature procedure, starting from α-bromo 
ketones 4A-B via phosphonium salt intermediates 5A-B, 
in moderate overall yields (Scheme 2B).13,14   
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Scheme 2 Synthesis of polymer 2 and allenones 3A-D  

With allenones 3A-D in hand, we first investigated 
the possibility of their participation in γ-selective MBH 
reactions catalyzed by 1.  In the original report by Shi 
and co-workers, DMAP was used as the catalyst in reac-
tions for which the solvent was DMSO.2  We therefore 
applied similar reaction conditions in side-by-side reac-
tions between 3A and 4-chlorobenzaldehyde (6a) cata-
lyzed by either DMAP or 1, and observed that the later 
afforded higher yield of product 7Aa as a nearly 1:1 
mixture of diastereomers than did the former (Table 1, 
entries 1 and 2).  Changing the solvent to NMP and in-
creasing the amount of allenone 3A relative to electro-
phile 6a led to further yield enhancement (Table 1, en-
tries 3-5).15  Unfortunately, when a 1:1 ratio of 3A to 6a 
was used, the reaction did not go to completion, and 
chromatographic purification of 7Aa was required.  On 
the other hand, using a 4-fold excess of the allenone 
substrate compared to the aldehyde was wasteful, made 
product purification tedious, and resulted only slightly 
higher yield.  Thus, we chose to use a 2:1 ratio of alle-
none:aldehyde in future reactions. 

We next turned our attention to examining catalyst 1 
in a range of γ-selective MBH reactions using the opti-
mized reaction conditions (Table 2).  When allenone 3A 
was reacted with other electron-withdrawing group subs-
tituted aldehydes 6b-c, high yields of products 7Ab and 
7Ac were obtained in short reaction times (entries 2 and 
3).  Very high yield of 7Ad could even be obtained when 
unactivated benzaldehyde (6d) was used (entry 4).  
However, when electron rich 4-methoxybenzaldehyde 
(6e) was used, only relatively low yield of the corres-
ponding product 7Ae was obtained after a prolonged 
reaction (entry 5).  Reactions using allenone 3B that 
bears a phenyl group at the γ-position took longer and 
afforded lower product yields than did reactions with 3A 
(entries 6 and 7), perhaps due to steric hindrance.  
Phenyl ketone substrates 3C and 3D showed similar 
reactivity patterns (entries 8-14).  In all cases, the prod-

uct was obtained as a nearly 1:1 mixture of diastereo-
mers. 
 
 

Table 1 MBH reactions of 3A with 6aa 
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Entry Catalyst Solvent 3A:6a Time (h) 
Combined 
Yield (%) 

1 DMAP DMSO 1:1 6 54 
2 1 DMSO 1:1 6 67 
3 1 NMP 1:1 5 71 
4 1 NMP 2:1 4 85 
5 1 NMP 4:1 4 89 

a Reaction conditions: allenone 3A, aldehyde 6a (0.4 mmol), catalyst 
(0.08 mmol), and solvent (1.0 mL) were stirred at rt for the indicated 
time.  

 
Having established the general utility of 1 as a cata-

lyst for the reactions of interest, we next used 2 in an 
identical set of reactions (Table 2).  Since we anticipated 
that the heterogeneous nature of 2 would lead to less 
efficient reactions, we performed these reactions at 50 ºC 
rather than at room temperature.  Even at this elevated 
temperature reaction times were much longer using 2 as 
the catalyst than with 1, and product yields were slightly 
lower (entries 1-14).  When a reaction using 2 between 
3C and 6b was performed at room temperature, only 
47% yield of 7Cb was obtained after 24 h, compared to 
81% yield of 7Cb after 6 h at 50 ºC (entry 15 vs. entry 
8).  Gratifyingly, when we used a macroporous polysty-
rene-supported TBD (PS-TBD, 8) in which the catalytic 
groups are located in the interior of a heterogeneous 
polymer bead,16,17 much lower product yield of 7Ca was 
obtained after a much longer reaction time (entry 16 vs. 
entry 10).  This supports the notion that placing the cata-
lytic groups on flexible grafts makes them more accessi-
ble to the substrate molecules and more efficient com-
pared to having them located on the interior of a polysty-
rene bead, as we have observed in our previous studies.9  
Unfortunately, we observed that polymer 2 was not an 
effective catalyst when reused (entries 17 and 18), and at 
this time the reasons for this are unclear.  Reactivation of 
the catalytic groups by washing the polymer with base 
did not improve the situation. 

In summary, we have found that both 1and our pre-
viously reported polymer 2 based on the rasta resin ar-
chitecture are able to effectively catalyze γ-selective 
MBH reactions between α,γ-disubstituted allenones and 
aryl aldehydes.  Superbase 1 was found to be a more 
efficient catalyst than previously used DMAP, and while 
2 was not reusable in these reactions, it did prove to be a 
more efficient catalyst than did a more traditional poly-
styrene-supported analogue.  Importantly, the heteroge-
neous nature of 2 did facilitate product purification when 
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it was used.  We are currently examining other applica-
tions for 2 and will report the results of these studies 
shortly. 

 
 

Table 2 MBH reactions of 3 with 6 catalyzed by 1 or 2a  
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Entry 3 6 R1 R2 R3 7 
1 2 

Time (h) Combined 
Yield (%) 

ratio 
(major:minor) 

Time (h) Combined 
Yield (%) 

ratio 
(major:minor) 

1 3A 6a Et Me Cl 7Aa 4 85 57:43 24 72 56:44 

2 3A 6b Et Me CN 7Ab 1.5 92 50:50 12 80 52:48 

3 3A 6c Et Me NO2 7Ac 3 87 51:49 18 70 50:50 

4 3A 6d Et Me H 7Ad 7 87 52:48 48 50 54:46 

5 3A 6e Et Me MeO 7Ae 18 64 56:44 60 11 50:50 

6 3B 6b Et Ph CN 7Bb 9 74 58:42 48 66 55:45 

7 3B 6a Et Ph Cl 7Ba 12 66 52:48 84 19 52:48 

8 3C 6b Ph Me CN 7Cb 0.5 91 53:47 6 81 50:50 

9 3C 6c Ph Me NO2 7Cc 1.5 95 55:45 10 81 51:49 

10 3C 6a Ph Me Cl 7Ca 3 89 50:50 12 81 56:44 

11 3C 6d Ph Me H 7Cd 5 79 59:41 48 64 55:45 

12 3C 6e Ph Me MeO 7Ce 10 48 50:50 48 40 54:46 

13 3D 6b Ph Ph CN 7Db 6 74 60:40 20 69 58:42 

14 3D 6a Ph Ph Cl 7Da 9 91 52:48 36 40 52:48 

15b 3C 6b Ph Me CN 7Cb - - - 24 47 50:50 

16c 3C 6a Ph Me Cl 7Ca - - - 24 33 50:50 

17d 3C 6a Ph Me Cl 7Ca - - - 12 49 56:44 

18e 3C 6a Ph Me Cl 7Ca - - - 12 0 - 
a Reaction conditions: allenone 3 (0.8 mmol), aldehyde 6 (0.4 mmol), 1 or 2 (0.08 mmol), and NMP (1.0 mL) were stirred at rt (with 1) or 50 
°C (with 2) for the indicated time. b Reaction was carried out at room temperature.  c Reaction was carried out using 8 at 50 °C. d First reuse 
of 2. e Second reuse of 2. 

 
Supporting Information for this article is available online at 
http://www.thieme-connect.com/ejournals/toc/synlett. 
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