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Abstract

We study the effect of introducing an options market on investors’ incentive to collect pri-

vate information in a rational expectation equilibrium model. We show that an options market

has two effects on information acquisition: a negative effect, as options act as substitutes for

information, and a positive effect, as informed investors have less need for options and can

earn profits from selling them. When the population of informed investors is high due to

low information acquisition cost, the supply for options is large, leading to low option prices.

Low option prices in turn induce investors to use options instead of information to reduce

risk, while informed investors earn little profits from selling options to cover their information

acquisition cost. Introducing an options market thus decreases investors’ incentive to acquire

information, and the prices of the underlying assets become less informative, leading to lower

prices and higher volatilities. A dynamic extension of this analysis shows that introducing an

options market increases the price reactions to earnings announcements. However, when the

information acquisition cost is high, the opposite effects arise. Further analysis shows that

our results are robust for more general derivatives. These results provide a potentially unified

theory to reconcile the conflicting empirical findings on the options listing of individual stocks

in both the U.S. market and international markets.
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1 Introduction

As one of the largest derivative markets, the options market has experienced tremendous growth

in the past decade(see Figure 1).1 Further, the effect of options listing on the underlying asset

market is a hot topic in policy, industry and academia, and it has become extremely important

since the financial crisis of 2007-08.2 Although many empirical studies address this issue, the

empirical findings regarding options listing around the world are conflicting. As one example, in

the U.S. market, the effects of options listing on the underlying individual stocks over the last

30 years are completely different from such effects 30 years ago.3 To be specific, for the period

before 1980, previous empirical studies find that options listing increased underlying stock prices,

decreased volatilities, and decreased price reactions to earnings announcements (Conrad, 1989,

Detemple and Jorion, 1990 and Skinner, 1989). However, for the period after 1980, recent studies

find the opposite effects (Sorescu, 2000 and Mayhew and Mihov, 2000). There are no plausible

explanations for these conflicting findings. Hence, they remain puzzling.

Figure 1: Trading Activity in the U.S. Options Market (in millions of dollars)

To our knowledge, few theoretical studies examine the effects of derivatives on their underlying

assets with endogenous information acquisition. Among the few studies, Cao (1999) and Massa

(2002) show that introducing derivatives increases the underlying asset’s price, decreases volatility

and decreases price reactions to earnings announcements. They thus provide explanations to the

1Data Source: SELECT SEC AND MARKET DATA FISCAL 2013. Data is about all sales of options listed on
exchange and excludes options on indexes

2After credit crunch of 2007-08, The Dodd-Frank Wall Street Reform and Consumer Protection Act , which was
signed into federal law on July 21, 2010, is considered to bring most significant changes to financial regulation
on derivative markets including interest rate option and currency option. Then there is a hot debate on whether
Dodd-Frank is enough to prevent systemic risk.

3Although most empirical studies are about U.S. market, there are some evidences to show that option listing
decreases price and increases volatility of underlying individual stocks in developed markets, such as Germany (Heer
et al., 1997), while it increases price and decreases volatility in developing markets, such as India (Nair, 2008).
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empirical findings regarding options listing in U.S. before 1980, but offer little guidance on the

empirical findings after 1980.

In this paper, we exam the effect of an options market on investors’ incentive to collect private

information in a rational expectation equilibrium model. Following the canonical frameworks

of Grossman and Stiglitz (1980) and Hellwig (1980), our economy has one risky asset and one

risk-free asset. We then introduce an options market that includes a set of call and put options

on the risky asset. Investors choose whether to acquire private information before trading. We

compare investors’ information acquisition decisions before and after the options market opens.

More important, we examine the effect of the options market on the underlying asset through its

effect on information acquisition.

We find that introducing an options market has two effects on information acquisition. First,

options act as substitutes for private information because both options and private information

are valuable in reducing risk.4 Investors can hence choose whether to acquire information or use

options. Thus, introducing an options market negatively affects investors’ incentive to acquire

information. This first effect is a substitution effect. Second, options are valuable for investors

with imprecise information because such investors face high uncertainty. Informed investors

therefore have less need for options than uninformed investors. In an equilibrium where the

net supply of options is zero, informed investors earn profits by selling options to uninformed

investors. Thus, introducing an options market positively affects investors’ incentive to acquire

information. This second effect is a profit-making effect. The effect of an options market on

information acquisition depends on these two effects. When the information acquisition cost is

low, the population of informed investors is high, which leads to a lower demand than supply for

options. Consequently, the option prices are low, affording informed investors little opportunity

to cover the information acquisition cost by selling options. Meanwhile, investors can use cheap

options instead of private information to reduce their risk. Therefore, the two effects work in

conjunction to decrease investors’ incentive to acquire information. The price of the underlying

asset then becomes less informative, resulting in a lower price and higher volatility. With less

precise private information, investors must rely more on public information, which generates

greater price reactions to earnings announcements. By contrast, when the information acquisition

cost is sufficiently high, the population of informed investors is low, which leads to a higher demand

than supply for options. Consequently, option prices are high, offering informed investors large

opportunity to cover the information acquisition cost by selling options. Therefore, the profit-

making effect exerts a larger counteracting force against the substitution effect, leading to opposite

effects on information acquisition and asset pricing. Moreover, we show that our mechanism is

4The intuition can be shown from the Black-Scholes model, which shows that the option price increases with
underlying asset value’s volatility
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robust for other derivatives, such as straddles.

We also find that the effect of an options market on information acquisition depends on the

precision of public information. When public information is precise, the population of informed

investors is low before the options market opens. Consequently, the demand for options is larger

than the supply, affording informed investors large opportunity to earn profits. Thus, introducing

an options market increases investors’ incentive to collect private information, increases the price of

the underlying asset, decreases volatility, and decreases price reactions to earnings announcements.

When public information is imprecise, the population of informed investors is high, leading to low

option prices. Consequently, the opposite effects on the underlying asset arise.

Moreover, we show that the introduction of additional trading rounds has similar effects to the

introduction of an options market. Brennan and Cao (1996) argues that additional trading rounds,

which can be interpreted as after-hour or round-the-clock trading, can improve the welfare of all

investors because both additional trading rounds and derivatives markets increase risk-sharing

opportunities. However, their effect on information acquisition is unclear. Following Brennan

and Cao (1996), we extend our model to consider multiple rounds of trading, where each round

provides a new public information. Complementing to their study, we find that additional trading

rounds produce asymmetric benefits for different groups, which leads to non-monotonic effects on

information acquisition. Because risk sharing occurs between different groups, the relative benefits

depend on the competition within each group. For example, when the population of informed

investors is high, the competition within the group of informed investors is high. Consequently, the

benefit from more risk-sharing opportunities is lower for informed investors than for uninformed

investors, which reduces the marginal benefit of information. Thus, when the population of

informed investors is high because of the low information acquisition cost, introducing additional

trading rounds decreases investors’ incentive to acquire information, lowering the asset price and

increasing volatility. When the information acquisition cost is high, the opposite effects arise.

Our results indicate that the effects of options listing on the underlying assets depend on

the information acquisition cost. Our results therefore provide a unified explanation for the

conflicting findings regarding the effects of options listing on underlying individual stocks in the

U.S. market and international markets. For example, before 1980 when information acquisition

cost is conventionally believed to have been high, our results are consistent with the findings in U.S.

that options listing increased underlying stock prices (Branch and Finnerty, 1981, Conrad, 1989

and Detemple and Jorion, 1990), decreased volatilities (Hayes and Tennenhaum, 1979, Skinner,

1989, Conrad, 1989, Ho, 1993 and Damodaran and Lim, 1991), and decreased price reactions to

earnings announcements (Jennings and Starks, 1986, Skinner, 1990, Damodaran and Lim, 1991

and Ho, 1993 ).5 After 1980 when information acquisition cost is conventionally believed to be

5Information acquisition cost is lower after 1980 than that before 1980 because the technology is developed and
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low, our results are consistent with the opposite empirical findings that options listings decrease

underlying stock prices (Sorescu, 2000 and Mayhew and Mihov, 2000), increase volatilities(Bollen,

1998 and Mayhew and Mihov, 2000), and increase price reactions to earnings announcements

(Mendenhall and Fehrs, 1999). Meanwhile, our results could also explain the empirical findings

in international markets. For example, according to the conventional belief, the information

acquisition cost is high in emerging markets, but low in developed markets. Our results are

consistent with existing empirical findings: options listings increase the underlying stock prices and

decrease volatilities in emerging markets, such as India (Nair, 2008), but decrease the underlying

stock prices and increase volatilities in some developed markets, such as Germany (Heer et al.,

1997).

Related Literature Our study is related to several strands of literature. First, this study

is associated with theoretical studies on the effects of derivatives on underlying assets, such as

those by Grossman (1988), Biais and Hillion (1994), Huang and Wang (1997), Cao (1999) and

Massa (2002). Cao (1999) and Massa (2002) are the most relevant to the present study, as they

examine the effects of derivatives on information acquisition. Both authors find that introducing

derivatives increases the prices of underlying assets, decreases price volatilities and decreases the

price reactions to earnings announcements. The derivative examined in Massa (2002) conveys new

information, which leads to increased price informativeness. By contrast, the derivatives examined

in Cao (1999) and our study do not convey any additional information by themselves. However,

Cao (1999) finds only a profit-making effect for the examined derivatives. Specifically, the author

considers two groups of investors: inactive investors, who are unable to acquire information, and

active investors, who determine the precision of private information. The author concludes that

introducing derivatives increases the information precisions for active investors. However, in his

model, the inactive investors are not able to acquire information, which hinders the substitution

effect. Thus, derivatives have monotonic effects on information acquisition. In contrast to Cao

(1999) and Massa (2002), we find that derivatives have two effects on information acquisitions:

substitution effect and profit-making effect. More important, we find that the effects of derivatives

on information acquisition and the underlying asset depend on the information acquisition cost

and the precision of public information.

Meanwhile, our approach takes a first step to model an explicit options market in an economy

with information asymmetry. AlthoughCao (1999) studies the effects of derivatives on their un-

derlying assets, the derivatives in the proposed model take reduced forms and they are interpreted

as straddles. The most relevant paper to ours is by Cao and Ou-Yang (2009), who also model a

set of call and put options. However, the authors only conduct the analysis in an economy with

heterogeneous beliefs without any implications for information acquisition.

it is easier for investors to search for information.

4



Our work is also related to the large strand of literature on financial innovation (Allen and

Gale, 1994, Brock, Hommes and Wagener, 2009, Dow, 1998, Dieckmann, 2011, Duffie and Rahi,

1995, Simsek, 2013a,b, Weyl, 2007 and Chabakauri, Yuan, Zachariadis, 2014). However, most

studies in this literature stream examine the impact of financial innovations without information

asymmetry. For example, Brock, Hommes and Wagener (2009), Simsek (2013a) and Simsek

(2013b) emphasize the destabilizing effect of financial innovations due to heterogeneous beliefs.

The most relevant paper to ours in this body of literature is by Dow (1998), who proposes a

hedge-more/bet-more effect in an economy with asymmetric information. The author finds that

a new asset induces risk averse arbitrageurs to hedge their positions in the preexisting security,

which affects the old market’s liquidity. This hedge-more/bet-more effect may have a negative

effect on all investors’ welfare. However, we show that options do not have a direct effect on the

underlying asset, which confirms the findings by Chabakauri, Yuan, Zachariadis (2014). Moreover,

we find that options affect the underlying assets through their effects on information acquisition.

The reminder of the paper is organized as follows. We introduce the model setup in Section

2 and solve a model without an options market. In Section 3, we study the effects of an options

market on information acquisition and the underlying asset in a static model. Section 4 then

extends the static model to a dynamic model. Section 5 discusses more general derivative. Section

6 concludes and discusses our empirical predictions.

2 Model

Based on the canonical frameworks with one risky asset and one risk-free asset by Grossman and

Stiglitz (1980) and Hellwig (1980), we introduce an options market. Our goal is to compare the

equilibrium population of informed investors and asset pricing before and after an options market

is introduced into the economy. Before we solve the equilibrium in the economy with the options

market, we solve the equilibrium in the economy without the options market in this section.

2.1 Timeline and assets

There are two periods in our economy, T = 0, 1. There is one risk-free asset and one risky asset.

The risk-free asset is in zero supply, and it pays off one unit of a consumption good without

uncertainty. The risky asset pays off D and has a positive supply of X, where D ∼ N(D, 1h).

There is an options market in our economy, and the underlying asset is the risky asset.

Following Cao and Ou-Yang (2009), we assume that the options market consists of a set of

call and put options. The strike price of one specific option is denoted by G. The call option with

strike price G then has a payoff as (D − G)+, whereas the put option with strike price G has a

payoff as (G−D)+ . The net supply of each option is zero. Because of the put-call parity, we can
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only consider call options with positive strike prices and put options with negative strike prices

to simplify our analysis.6 We assume that informed investor i’s demand for risky asset is Xi, that

his demand for call options with strike prices G to G + dG is Xi,CG, and that his demand for

put options with strike prices G to G + dG is Xi,PG. Moreover, we assume that the uninformed

investors’ demand for risky asset is XU , that their demand for call options with strike prices G to

G+dG is XU,CG, and that their demand for put options with strike prices G to G+dG is XU,PG.

The price of the risky asset is denoted by P . The price of a call option with strike price G is

PCG and the price of a put option with strike price G is PPG. Our model differs from that of Cao

and Ou-Yang (2009) in that we introduce an options market into an economy with asymmetric

information, whereas they focus on the heterogeneous beliefs.

2.2 Investors and information acquisition

There is one continuum of investors. The investors’ utility function over the final wealth at T = 1

follows a standard CARA utility function with risk-averse coefficient γ:

− exp(−γW1) , (2.1)

where W1 is the wealth at T = 1 and is equal to W0 +Xi(D−P ). Each investor is indexed by

i, where i ∈ [0, 1]. Without a loss of generality, we assume that all investors have zero endowment

of the risky asset, and that they have the same initial wealth W0. The market opens at T = 0.

For informed investor i, he or she has a private signal about the risky asset’s payoff before trading

at T = 0:

Si = D + εi , (2.2)

where εi follows normal distribution N(0, 1s ) and is independent of cross investors (corr(εi, εj) = 0

for i 6= j). We assume that the precision of private signals that investors acquire is the same.

Fruther, investors can only acquire one private signal. If the investors choose to acquire the

private signals, then they need to pay a cost C, which is called then information acquisition cost.

The population of informed investors is denoted by ω, which is endogenous in our economy. At

T = 1, the payoff is realised and all investors consume their total wealth.

In addition to these investors,some noisy traders exist in the market. We assume that the

total demand from noisy traders is n, which follows normal distribution N(0, 1q ).

6If we introduce options with all strike prices, our results are robust because call options with negative strike
prices are redundant because they can be replicated by put options with negative strike prices and stock.
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2.3 Information acquisition without an options market

We first derive the equilibrium given the population of informed investors ω and then solve

the equilibrium ω. This section shows that the equilibrium ω decreases with the information

acquisition cost. In the analysis that follows, we compare the equilibrium ω in the economy with

and without an options market. This comparison demonstrates the effect of an options market

on the underlying asset pricing through the information acquisition channel.

All of the investors submit their demand conditional on their information sets, and the

equilibrium price clears the market. Informed investor i’s information set is Fi = {Si, P}, whereas

uninformed investors’ information set is FU = {P}. As shown by Grossman and Stiglitz (1980)

and Hellwig (1980), the following linear equilibrium exists:

P = D − γX

B
+

(ωs+ ω2s2q
γ2

)(D −D + γ
ωsn)

B
, (2.3)

Informed investor i’s demand:

Xi =
E(D|Fi)− P
γV ar(D|Fi)

, (2.4)

Uninformed investors’ demand:

XU =
E(D|FU )− P
γV ar(D|FU )

, (2.5)

where

B = h+ ωs+
ω2s2q

γ2
, (2.6)

E(D|Fi) = D +
s(Si −D) + ω2s2q

γ2
(D −D + γ

ωsn)

h+ s+ ω2s2q
γ2

and V ar(D|Fi)−1 = h+ s+
ω2s2q

γ2
, (2.7)

E(D|FU ) = D +

ω2s2q
γ2

(D −D + γ
ωsn)

h+ ω2s2q
γ2

and V ar(D|FU )−1 = h+
ω2s2q

γ2
. (2.8)

We substitute the investors’ demand into their final wealth and the expected utility of informed

investors/uninformed investors is given by (where UI is the informed investors’ expected utility,

and UU is the uninformed investors’ expected utility):

UI = − exp[−γW0 −
X

2

2γB2V ar(D − P )
]× 1√

V ar(D − P )Bi
, (2.9)

UU = − exp[−γW0 −
X

2

2γB2V ar(D − P )
]× 1√

V ar(D − P )BU
, (2.10)

where

Bi = h+ s+
ω2s2q

γ2
and BU = h+

ω2s2q

γ2
. (2.11)
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The informed investors’ utility is clearly higher than the uninformed investors’ utility. Thus,

the informed investors gain from private information. In the equilibrium, the population of

informed investors ω should render the gain from private information and the cost C equal.

Then, we define the gain from information acquisition G as: 7

Definition 2.1. The Gain from information acquisition is G = (UU/UI)
2

Figure 2: The Relationship between the Population of Informed Investors and the Acquisition
Cost

The gain from information acquisition is Bi
BU

. We can therefore show the results regarding ω∗

as follows (see Figure 2).

Proposition 2.1. In the equilibrium without an options market, the population of informed

investors renders the gain from information acquisition and its cost equal. Then, there are three

cases:

Case 1: If C ≥ Cd1, the equilibrium population of informed investors is ω∗ = 0.

Case 2: If Cd2 < C < Cd1, the equilibrium population of informed investors is ω∗ ∈ (0, 1).

Case 3: If C ≤ Cd2, the equilibrium population of informed investors is ω∗ = 1.

where Cd1 and Cd2 are defined as in the Appendix.

7We set h=1,s=1 and q=1 in the Figure 2
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Corollary 2.1. When Cd2 < C < Cd1, ω∗ is monotonically decreasing with the information

acquisition cost C.

Based on the equilibrium population of informed investors, we examine the effect of introducing

an options market on ω and the underlying asset in the following sections. Because we have corner

solutions in Case 1 and Case 3, we focus on the Case 2 to conduct the study.

3 Introduction of an Option Market

In this section, we analyze the effects an options market on investors’ information acquisition

decisions and the underlying asset. We study the role of the information acquisition cost in the

effects. We first solve a static model with an option markets, and then we extend this static model

to a dynamic model in next section. We demonstrate the robustness of the results.

After an options market in introduced, the investors’ information sets differ from before

the options market is introduced. For informed investor i, his or her information set is

Fi = {Si, P, PCG, PPG}, whereas uninformed investors’ information set is FU = {P, PCG, PPG}.
Our conjecture is that the underlying risky asset’s price is a linear function of fundamental payoff

D and the noisy traders’ demand n. The partially revealing rational expectations equilibrium

regarding P , PCG, PPG and the investors’ demands is described in the following proposition.

Proposition 3.1. There exists one equilibrium in T = 0. Equilibrium P and PG are given by:

P = D − γX

B
+

(ωs+ ω2s2q
γ2

)(D −D + γ
ωsn)

B
, (3.1)

PCG = (P −G)N(
√
B(P −G)) +

1√
B

exp(−B(P −G)2

2
) , where G > 0 , (3.2)

PPG = (G− P )N(
√
B(G− P )) +

1√
B

exp(−B(G− P )2

2
) , where G < 0 , (3.3)

Informed investor i’s demands for risky asset is:

Xi =
E(D|Fi)− P
γV ar(D|Fi)

− (B −Bi)
γ

P , (3.4)

Informed investor i’s demands for options is:

Xi,CG =
1

γ
(B −Bi) and Xi,PG =

1

γ
(B −Bi) , (3.5)
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Uninformed investor’s demand for risky asset is:

XU =
E(D|FU )− P
γV ar(D|FU )

− (B −BU )

γ
P , (3.6)

Uninformed investor j’s demands for options is:

XU,CG =
1

γ
(B −BU ) and XU,PG =

1

γ
(B −BU ) , (3.7)

where B = h+ ωs+ ω2s2q
γ2

, Bi = h+ s+ ω2s2q
γ2

and BU = h+ ω2s2q
γ2

.

Several interesting features of Proposition 3.1 are notable. First, the option prices are functions

of the price of the underlying asset, and they do not convey any additional information, in

contrast to the derivative in Massa (2002), which carries additional information by itself. Because

options do not carry additional information, we can isolate the effect proposed by Massa (2002)

based on this feature. Second, BU and Bi represent information precisions of information for

uninformed and informed investors respectively, whereas B is the precision of the aggregate

information. Following the intuition that the value of options depends on investors’ conditional

volatility regarding the underlying asset’s payoff, informed investors’ demand for options is lower

than uninformed investors’s demand. In the equilibrium where the net supply of each option is

zero, informed investors are on the short side of options. Thus, introducing an options market

provides an opportunity for informed investors to profit from selling options. Following the same

mechanism, the third feature is that the aggregate option prices decrease with the precision of

aggregate information B, which is shown in the following Lemma 3.1. The analysis implies that

options have a similar effect to information in reducing risk. 8

Lemma 3.1. The aggregate price of options is
∞∫
0

PCGdG+
0∫
−∞

PPGdG = 1
2( 1
B + P 2).

In line with Grossman and Stiglitz (1980), the equilibrium population of informed investors

renders the expected utility of informed and uninformed investors equal. Before we perform the

comparisons, we must show that there is a unique equilibrium in information acquisition with an

options market. Otherwise, showing the effects of options would be difficult. To demonstrate the

existence of a unique equilibrium, we only need to show that the gain from information decreases

with the population of informed investors ω, which can be shown as follows.9

Lemma 3.2. The gain from information G with an option market is exp( sB ).

8The aggregate payoff of options is: D2 = 2
∞∫
0

(D −G)+dG+ 2
0∫
−∞

(G−D)+dG.

9We set h=1,s=1, q=1 and γ = 0.5 in the Figure 3
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Figure 3: Gain from Information Acquisition: Effect of an Options Market

The gain from information clearly decreases with the population of informed investors, which

implies that a unique solution exists for information acquisition. However, whether the equilibrium

population of informed investors in the economy with options is higher than that without options

is unclear. Because the information acquisition cost is constant, the equilibrium population of

informed investors is higher in the economy with options if exp( sB ) is higher than Bi
BU

, and vice

versa. Figure 3 shows that when the population of informed investors is zero, exp( sB ) is higher

Bi
BU

. This result indicates that when the population of informed investors is close to 0, the gain

from information is higher in the economy with options than in the economy without options.

Thus, introducing an options market increases investors’ incentive to acquire information. When

the population of informed investors is 1, exp( sB ) is smaller than Bi
BU

. This result indicates

that when the population of informed investors is close to 1, the gain from information is lower

in the economy with options than in the economy without options. Thus, introducing an option

market decreases investors’ incentive to acquire information.10 Because the population of informed

investors depends on the information acquisition cost, we obtain the following formal results with

10The analysis here uses the relations: x
1+x

< ln(1 + x) < x for x > 0
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regard to the effect of options on information acquisition.

Proposition 3.2. When C ∈ (Cd2, Cd1), cutoffs C3 and C4 exists, which satisfies the following

conditions:

(1) when C > C4, introducing an options market increases the population of informed in-

vestors.

(2) when C < C3, introducing an options market decreases the population of informed in-

vestors.

where C3 and C4 are defined as in the Appendix and C3 < C4.

Figure 4: The Relationship Between Population of Informed Investors and Acquisition Cost:
Effect of Option Market

Proposition 3.2(see Figure 4) shows that introducing an options market increases investors’

incentive to acquire information when the information acquisition cost is high and decreases

investors’ incentive to acquire information when the information acquisition cost is low.11 From

the Proposition 3.1, we know that the supply of options is higher than the demand when the

11We set h=1,s=1, q=1 in the Figure 4
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population of informed investors is high. Meanwhile, as shown in Lemma 3.1, the aggregate

option prices tend to be low. The selling profits of informed investors in the options markets clearly

depend on both the demand per supplier and the option prices. Thus, the profits from selling

options are low for informed investors, and they will not cover the information acquisition cost

when the demand is too low. Moreover, investors could use cheap options instead of information to

hedge their portfolios risk, which implies that introducing an options market decreases investors’

incentive to acquire information. By contrast, the supply of options is lower than then demand

when the population of informed investors is low, leading to high aggregate option prices. In

particular, when the demand per supplier is sufficiently large, information investors’ profits from

selling options will cover the information acquisition cost, which implies that introducing an op-

tions market increases investors’ incentive to acquire information. Given its effect on information

acquisition, the options market has a direct effect on the price informativeness. To show the effect

of options on price informativeness, we define price informative as follows.

Definition 3.1. The price informativeness I: I = 1
V ar(D|P ) .

Because the option prices do not convey any additional information, the above definition of

I captures all of the information that is conveyed by the market. Thus we can conveniently

show the effect of options on price informativeness. Price informativeness is clearly ω2s2q
γ2

, and

it increases with the population of informed investors. Because introducing an options market

affects the population of informed investors, we obtain the following formal results regarding price

informativeness.

Proposition 3.3. When C ∈ (Cd2, Cd1),

(1) when C > C4, introducing an options market increases price informativeness I.

(2) when C < C3, introducing an options market decreases price informativeness I.

where C3 and C4 are defined as in the Appendix and C3 < C4.

In addition to the effect of options on information acquisition, we also examine their effects

on the price and volatility of the underlying asset. Because uncertainty exists regarding the asset

payoff, the price is discounted. The expected difference between the asset payoff and price is

called the cost of capital: E(D − P ). The cost of capital E(D − P ) decreases with the expected

asset price. Thus the result for expected asset price is equivalent to the analysis on the cost of

capital. The expected asset price is given by:

E(P ) = D − γX

B
, (3.8)
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and the volatility V (D − P ) is given by:

V ar(D − P ) =
1

B
+
ωs+ γ2q−1

B2
. (3.9)

The expected asset price clearly increases with B, and the volatility decreases with B. Thus, we

have the following results:

Proposition 3.4. When C ∈ (Cd2, Cd1),

(1) when C > C4, introducing an options market increases the expected asset price and decreases

the price change volatility.

(2) when C < C3, introducing an options market decreases the expected asset price and increases

the price change volatility.

These results arise from the effect of options on information acquisition. When the information

acquisition cost is high, introducing an options market increases the population of informed in-

vestors. Because informed investors have information that is precise, they trade more aggressively,

and they are more willing to absorb noisy supply, which indicates that the demand for the

underlying asset increases, along with a higher expected price level. The price then becomes

less sensitive to noisy supply because increased price informativeness. Consequently, the non-

fundamental volatility decreases, leading to decreased total volatility. When the information

acquisition cost is low, a similar mechanism generates the opposite results. In contrast to the

findings of Cao (1999) and Massa (2002), these results imply that the information acquisition

cost plays an important role in the effect of options on asset pricing.

We also examine the effect of the information acquisition cost on the trading volume of options.

The trading volume in the options market is calculated as follows:

Lemma 3.3. The trading volume in option market VO = 1
γ (

ω∫
0

|(Bi − B)|di+ (1− ω)|B − BU |) =

2ω(1−ω)s
γ .

Because the short side comes from informed investors and long side comes from uninformed

investors in the options market, intuitively, the trading volume is zero when all investors are

informed or uninformed. When the information acquisition cost increases from zero, the popula-

tion of uninformed investors increases, which enhances the trading between the different groups.

When the information acquisition cost is sufficiently high, the population of uninformed investors

is high, which makes total total trading volume vanish.

Proposition 3.5. The trading volume in the options market exhibits a hump shape as a function

of the information acquisition cost: Vo decreases with the information acquisition cost when C is

higher than CM , and increases with the information acquisition cost when C is lower than CM ,

where CM is defined as in the Appendix.
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4 Dynamic Model with an Options Market

This section aims to demonstrate the robustness of the results in Section 3 are robust. Moreover,

the dynamic model is helpful for studying the effect of an options market on the price reaction to

public information.

4.1 Dynamic model without an Options Market

To model dynamic trading, following Brennan and Cao (1996), we assume that there is an

approximate continuous trading time from T = 0 to T = 1. The trading ends at t, where t

is between T = 0 and T = 1. To make the model tractable, we assume that investors can trade

only once in a small time interval z, which means that trading occurs only in the time intervals

[0, z), [z, 2z), [3z, 4z)....[(K − 1)z,Kz), where K is the largest integer satisfying Kz ≤ t. 12 We

index the interval [(j − 1)z, jz) by trading round j. Before each trading round j, a public signal

is released. The public signal before trading round j is

Sc,j = D + εc,j , (4.1)

where j = 1, 2....K and εc,j follows normal distribution N(0, 1
cjz

). εc,j is independent from trading

rounds and is independent from noise in investors’ private signal. We assume that z tends to

be zero throughout our analysis. This assumption guarantees that the public information flow is

sufficiently smooth and that the price change volatility tends to be zero between two consecutive

trading rounds when the time interval is close to zero. We further assume that the precision of

the aggregate public information until trading round j is Fj , where Fj =
k=j∑
k=1

ckz. Therefore, FK

is the aggregate precision of public information in this dynamic model. Furthermore, to simplify

the analysis, we assume that there are no additional noisy traders after the initial trading round.

13

Investors submit their demand schedules conditional on their information sets. The informa-

tion set for informed investor i in trading session j is Fi,j = {Si, Sc,k, Pk, k = 1, 2....j}, whereas the

information set for uninformed investors in trading session j is FU,j = {Sc,k, Pk, k = 1, 2....j}. We

assume that investor i submits optimal demand schedule Xi,j in trading round j. Our conjecture

is that the risky asset’s price function is a linear function of fundamental payoff D, the noisy

traders’ demand n, and public signals. The partially revealing rational expectations equilibrium

is described in the following proposition.

12Here, z is similar to dt in continuous-time model and it captures the feature of fast trading in practice. When
z approximates to be zero, this model converges to the continuous-time model in Brennan and Cao (1996)

13Without additional noise traders, it is possible that there are two equilibria (Brennan and Cao, 1996). As
argued by Brennan and Cao (1996), one of the equilibria is fully revealing equilibrium and investors make portfolio
choices neither conditional on price nor private information, which is not appealing.
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Proposition 4.1. Given the population of informed investors ω, one partially revealing rational

expectations equilibrium exists, where investors’ demand schedule, investors’ beliefs and equilib-

rium prices are given by:

Pj = D − X

Bj
+

(ωs+ ω2s2q
γ2

)(D −D + γ
ωsn) +

∑j
k=1 ckz(Sc,k −D)

Bj
, (4.2)

where j = 1, 2....K,K + 1, ...L.

Informed investors’ demand is:

Xi,j =
E(D|Fi,j)− Pj
γV ar(D|Fi,j)

, (4.3)

where

E(D|Fi,j) = D +
s(D −D + εi) + ω2s2q

γ2
(D −D + γ

ωsn) +
∑j

k=1 ckz(Sc,k −D)

h+ s+ ω2s2q
γ2

+
∑j

k=1 ckz
, (4.4)

V ar(D|Fi,j) =
1

h+ s+ ω2s2q
γ2

+
∑j

k=1 ckz
, (4.5)

Uninformed investors’ demand is:

XU,j =
E(D|FU,j)− Pj
γV ar(D|FU,j)

, (4.6)

where

E(D|FU,j) = D +

ω2s2q
γ2

(D −D + γ
ωsn) +

∑j
k=1 ckz(Sc,k −D)

h+ ω2s2q
γ2

+
∑j

k=1 ckz
, (4.7)

V ar(D|FU,j) =
1

h+ ω2s2q
γ2

+
∑j

k=1 ckz
, (4.8)

and

Bj = h+ ωs+
ω2s2q

γ2
+

j∑
k=1

ckz . (4.9)

Proposition 4.1 shows that the prices only reveal information through D−D+ γ
ωsn, and that

the investors behave myopically because there are no additional noisy traders. The expected

utilities of informed and uninformed investors are shown in the following Lemma 4.1.

Lemma 4.1. The expected utility of informed investors in the economy with K trading rounds is

given by
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UI = − 1√
V ar(D − P1)Bi,1

exp[−γW0 + γC − γX
2

2B2
0V ar(D − P0)

]×
j=K∏
j=2

1√
1 +

cjz(Bj−Bi,j)2
Bi,j−1B2

j

,

(4.10)

and the expected utility of uninformed investors is given by

UU = − 1√
V ar(D − P1)BU,1

exp[−γW0 −
γX

2

2B2
0V ar(D − P0)

]×
j=K∏
j=2

1√
1 +

cjz(Bj−BU,j)2
BU,j−1B

2
j

. (4.11)

where Bi,j = h + s + ω2s2q
γ2

+
∑j

k=1 ckz, BU,j = h + ω2s2q
γ2

+
∑j

k=1 ckz and Bj is defined as

above.

The gain from information G is obviously
Bi,1
BU,1

j=N∏
j=2

1+
cjz(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cjz(Bj−BU,j)2

BU,j−1B
2
j

, where
1+

cjz(Bj−Bi,j)
2

Bi,j−1B
2
j

1+
cjz(Bj−BU,j)2

BU,j−1B
2
j

is the

additional gain generated by trading round j. To provide a further comparison, we must show that

there is a unique equilibrium of information acquisition. Thus, we must show whether the gain

from information decreases with the population of informed investors. We obtain the following

result regarding information acquisition:

Proposition 4.2. The gain from information G decreases with the population of informed

investors ω.

Proposition 4.2 shows that a unique equilibrium exists. Further, the equilibrium population

of informed investors decreases with the information acquisition cost, which is shown below.

Corollary 4.1. In an economy with K trading rounds, the population of informed investors

renders the gain from information and the information acquisition cost equal. There are three

cases:

Case 1: If C ≥ C1, the equilibrium population of informed investors ω∗ = 0.

Case 2: If C2 < C < C1, the equilibrium population of informed investors ω∗ ∈ (0, 1).

Case 3: If C ≤ C2,the equilibrium population of informed investors ω∗ = 1.

where C1 and C2 are defined as in the Appendix.

Corollary 4.2. When C2 < C < C1, ω∗ decreases with the information acquisition cost C.

Given the information acquisition cost C, we show how the precision of public information

FK affects the equilibrium population of informed investors ω in the following results.
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Corollary 4.3. In an economy with K trading rounds, the population of informed investors

renders the gain from information and the information acquisition cost equal. There are three

cases:

Case 1: If FK ≥ F1, the equilibrium population of informed investors ω∗ = 0.

Case 2: If F2 < FK < F1, the equilibrium population of informed investors ω∗ ∈ (0, 1).

Case 3: If FK ≤ F2,the equilibrium population of informed investors ω∗ = 1.

where F1 and F2 are defined in the Appendix.

Corollary 4.4. When F2 < FK < F1, ω∗ decreases with the public information precision Fk.

Corollary 4.3 intuitively indicates that investors’ incentive to acquire private information

decreases with the precision of public information owing to the decreasing marginal benefit of

information. Because there are corner solutions in Case 1 and Case 3, we focus on the Case 2 to

perform the analysis regarding the public information.

4.2 Dynamic model with an options market

In this section, we solve a dynamic model with an options market to demonstrate that the

robustness of the results regarding the effects of options on information acquisition and the

underlying asset from the static model. Furthermore, we show the effect of an options market on

price reactions to public information.

We introduce an options market, that consists of a section of call and put options, as in

Section 3. Let Pk be the risky asset’s price in trading round k, PCG,k be the price for a call

option with strike price G, and PPG,k be the price for a put option with strike price G. The

information set for For informed investor i in trading round j is Fi,j = {Si, Sc,k, Pk, PCG,k, PPG,k,
k = 1, 2....j}, whereas the information set for uninformed investors in trading round j is FU,j =

{Sc,k, Pk, PCG,k, PPG,k, k = 1, 2....j}. We assume that investor i submits optimal demand schedule

Xi,j for the risky asset, Xi,CG,j for call option with strike price G, and Xi,PG,j for put option with

strike price G in trading round j. Our conjecture is that the underlying asset’s price function is

a linear function of fundamental payoff D, the noisy trader n, and public signals. The partially

revealing rational expectations equilibrium is described in the following proposition.

Proposition 4.3. Given the population of informed investors ω, one partially revealing rational

expectations equilibrium exists, where investors’ demand schedule, investors’ beliefs and equilib-

rium prices are given by:

Pj = D − γX

Bj
+

(ωs+ ω2s2q
γ2

)(D −D + γ
ωsn) +

∑j
k=1 ckz(Sc,k −D)

Bj
, (4.12)
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PCG,j = (Pj −G)N(
√
Bj(Pj −G)) +

1√
Bj

exp(−Bj(Pj −G)2

2
) where G > 0 , (4.13)

PPG,j = (G− Pj)N(
√
Bj(G− Pj)) +

1√
Bj

exp(−Bj(G− Pj)
2

2
) where G < 0 , (4.14)

where j = 1, 2....K.

Informed investors’ demand for the underlying asset is:

Xi,j =
E(D|Fi,j)− Pj
γV ar(D|Fi,j)

− (Bj −Bi,j)
γ

Pj , (4.15)

Informed investors’ demand for options is

Xi,CG,j =
1

2γ
(Bj −Bi,j) and Xi,PG,j =

1

2γ
(Bj −Bi,j) , (4.16)

Uninformed investors’ demand for the underlying asset is:

XU,j =
E(D|FU,j)− Pj
γV ar(D|FU,j)

−
(Bj −BU,j)

γ
Pj , (4.17)

Uninformed investors’ demand for options is

XU,CG,j =
1

2γ
(Bj −BU,j) and XU,PG,j =

1

2γ
(Bj −BU,j) . (4.18)

where Bj = ωBi,j + (1− ω)BU,j, Bi,j = h+ s+ ω2s2q
γ2 +

∑j
k=1 ckz and BU,j = h+ ω2s2q

γ2 +
∑j
k=1 ckz

Proposition 4.3 shows that investors’ optimal demands for the underlying asset and options are

similar to that found in the static model. An interesting finding is that option prices only depend

on the price of the underlying asset, and that they do not convey any additional information.

Regarding investors’ utility, we obtain the following lemma

Lemma 4.2. Informed investor i’s expected utility in trading round j is

EVi,j = − 1√
Bj
Bi,j

E{exp[−γWi,j −
[E(D|Fi,j+1)− Pj+1]

2

2γV ar(D|Fi,j+1)
+
Bj −Bi,j

2

1

Bj
]} , (4.19)

and uninformed investors’ expected utility in trading round j is:

EVU,j = − 1√
Bj
BU,j

E{exp[−γWU,j −
[E(D|FU,j+1)− Pj+1]

2

2γV ar(D|FU,j+1)
+
Bj −BU,j

2

1

Bj
]} . (4.20)

Lemma 4.2 shows that the gain from information is exp( sB ), where B = h+ωs+ ω2s2q
γ2

. Further,
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this gain decreases with the population of informed investors. Thus, a unique interior solution

exists to render the gain from information and the cost equal. To conduct the analysis over the

expected asset price and price change volatility, we know that the expected price is given by

E(Pj) = D − γX

Bj
, (4.21)

The price change volatility is given by

V ar(Pj+1 − Pj) =
1

Bj
− 1

Bj+1
+

c2j+1

B2
jB

2
j+1

(ωs+
γ2

q
), (4.22)

and the price informativeness is given by

I =
1

V ar(D|Pj)
. (4.23)

We demonstrate the robustness of the effects of options on information acquisition and the

underlying asset in the dynamic model as follows.

Proposition 4.4. When C ∈ (C2, C1), cutoffs C3 and C4 exists, which satisfies the following

condition:

(1) When C > C4, introducing an options market increases the population of informed

investors, increases price informativeness, increases the expected asset price, and decreases price

change volatility.

(2) When C < C3, introducing an options market decreases the population of informed

investors, decreases price informativeness, decreases the expected asset price, and increases price

change volatility.

where C3 and C4 are defined as in the Appendix and C3 < C4.

Findings regarding price reactions to earnings announcements in the U.S. market are also

conflicting, as previous studies suggest that options listing decreased earnings announcements’

surprise before 1980 (Jennings and Starks, 1986, Skinner, 1990, Damodaran and Lim, 1991 and

Ho, 1993), but increases earnings announcements’ surprise after 1980 (Mendenhall and Fehrs,

1999). The proxy for the price reactions to public information in trading round j is
cjz
Bj

, which

decreases with Bj . When investors have more information about fundamental value, intuitively,

the surprise to earnings announcements would be smaller. The result presented below shows

that the effect of options listing on the price reactions to public information depends on the

information acquisition cost. This result also differs from that by Cao (1999), who concludes that

options listing decreases price reactions to public information.
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Proposition 4.5. When C ∈ (C2, C1),

(1) When C > C4, introducing an options market decreases price reactions to public informa-

tion.

(2) When C < C3, introducing an options market increases price reactions to public informa-

tion.

where C3 and C4 are defined as in the Appendix and C3 < C4.

As shown in Corollary 4.3, the precision of public information also affects investors’ incentive

to acquire information. Thus, we can expect the effect of an options market on information

acquisition and asset prices to depend on the precision of public information. According to

Proposition 4.6, the effects of options in the economy with precise public information are similar

to those with high information acquisition costs, whereas the effects of options in an economy

with imprecise public information are similar to those with low information acquisition costs. The

population of informed investors is low when public information is precise before the introduction

of options, which leads to a high demand for options and high option prices. Introducing an

options market then provides informed investors with an opportunity to earn profits from selling

options to cover the information acquisition cost, which increases investors’ incentive to acquire

information. When public information is imprecise, the population of informed investors is high,

leading to low option prices. Thus, investors can use cheap options instead of information to

reduce risk, which lowers investors’ incentives to acquire information.

Proposition 4.6. When FK ∈ (F2, F1),

(1) When FK > F4, introducing an options market increases investors’ incentive to acquire

information, increases price informativeness, increases the expected asset price and decreases price

change volatility.

(2) When FK < F3, introducing an options market decreases investors’ incentive to acquire

information, decreases price informativeness, decreases the expected asset price and increases price

change volatility.

where F3 and F4 are defined as in the Appendix and F3 < F4.

4.3 Effect of additional trading rounds

As argued by Brennan and Cao (1996), additional trading rounds have a similar effect to deriva-

tives in improving investors’ welfare. However, whether additional trading rounds have similar

effects to an option market in affecting investors’ incentive to acquire information is unclear. This

issue is important because it has important implications on the after-hour or round-the-clock

trading, which is associated high operational costs. This section formally addresses this question.
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We assume that introducing additional trading rounds increases trading time from t to s,

where s > t. The increase in trading time from t to s can be interpreted as after-hour or round-

the-clock trading. Additional trading time increases the number of time intervals and the last

time interval is [(L − 1)z, Lz), where L is the largest integer satisfying Lz ≤ s.14 Before each

trading round, a public signal is released. The public signal before trading round j is

Sc,j = D + εc,j , (4.24)

where j = 1, 2....K,K + 1, ...L and εc,j follows normal distribution N(0, 1
cjz

). εc,j is independent

cross trading sessions and is independent of noise in investors’ private signal. The analysis follows

the dynamic model without options. The expected utilities of informed investors and uninformed

investors in the economy with additional trading rounds are given by:

The expected utility of informed investors is:

UI = − 1√
V ar(D − P1)Bi,1

exp[−γW0+γC− γX
2

2B2
0V ar(D − P0)

]×
j=L∏
j=2

1√
1 +

cjz(Bj−Bi,j)2
Bi,j−1B2

j

, (4.25)

and the expected utility of uninformed investors is:

UU = − 1√
V ar(D − P1)BU,1

exp[−γW0 −
γX

2

2B2
0V ar(D − P0)

]×
j=L∏
j=2

1√
1 +

cjz(Bj−BU,j)2
BU,j−1B

2
j

, (4.26)

where Bi,j = h+s+ ω2s2q
γ2

+
∑j

k=1 ckz, BU,j = h+ ω2s2q
γ2

+
∑j

k=1 ckz and Bj is defined as above

It is obvious that gain ∆G from additional trading rounds is
Bi,1
BU,1

j=L∏
j=K+1

1+
cjz(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cjz(Bj−BU,j)2

BU,j−1B
2
j

. If

∆G is larger than 1, additional trading rounds provide a greater benefit to informed investors

than uninformed ones. Then, investors have a greater incentive to acquire information after

the introduction of additional trading rounds. If ∆G is less than 1, additional trading rounds

decrease investors’ incentive to acquire information. Proposition 4.7 shows that additional trading

opportunities encourage more investors to acquire information when the information cost is high,

but discourage investors from acquiring information when this cost is low. Although additional

trading opportunities improve the welfare of all investors (Brennan and Cao, 1996) owing to more

risk-sharing opportunities, the benefits are asymmetric for different groups. When the population

of informed investors is high because of low information acquisition costs, this additional benefit is

14This modeling about after-hour or round-the-clock trading is similar to Brennan and Cao (1996). The only
difference is that we assume there are approximate continuous trading times, while they assume discrete trading
sessions.
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low for informed investors because of the high competition within this group, whereas the benefit

is high for uninformed investors. Thus, investors’ incentive to acquire information is diminished

and the equilibrium population of informed investors is reduced. When the cost is high, the

opposite effect arises.

Proposition 4.7. When C ∈ (C2, C1),

(1) When C > C4, introducing additional trading rounds increases the population of informed

investors, increases price informativeness, increases the expected asset price, decreases price

change volatility and decrease price reactions to public information.

(2) When C < C3, introducing additional trading rounds decreases the population of informed

investors, decreases price informativeness, decreases expected asset price, increases price change

volatility and increases price reactions to public information.

where C3 and C4 are defined in the Appendix and C3 < C4.

5 Discussion

The previous sections focus on the analysis of an options market. Considering some general

derivatives is also interesting. Thus, this section provides a further analysis of the derivatives

that are modeled by Cao (1999) and shows that our main mechanism is robust to the use of

derivatives other than options.

Following Cao (1999), we assume that a derivative asset’s payoff is a function of D and P . The

specific function is denoted by g(|D − P |), where g(·) is a monotonic function. We assume that

informed investor i’s demand for this derivative is XGi, and uninformed investors’ demand for this

derivative is XGU . Moreover, the equilibrium price of this derivative is denoted by PG. Following

Cao (1999), we obtain the following results regarding investors’ demand and equilibrium prices:

P = D − γX

B
+

(ωs+ ω2s2q
γ2

)(D −D + γ
ωsn)

B
, (5.27)

Informed investor i’s demand is:

Xi =
E(D|Fi)− P
γV ar(D|Fi)

, (5.28)

Uninformed investors’ demand is:

XU =
E(D|FU )− P
γV ar(D|FU )

, (5.29)

Informed investors’ demand for the derivative satisfies:

∫ +∞

0
(g(y)− PG) exp[−Biy2/2− γXGig(y)]dy = 0 , (5.30)
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Uninformed investors’ demand for the derivative satisfies:

∫ +∞

0
(g(y)− PG) exp[−BUy2/2− γXGUg(y)]dy = 0 , (5.31)

The market clearing condition is:

ωXGi + (1− ω)XGU = 0 (5.32)

Then, the expected utility of informed investors is:

UGI = UI

√
2Bi
π

∫ +∞

0
exp[−BIy2/2− γ(XGi − PG)g(y)]dy, (5.33)

UGU = UU

√
2BU
π

∫ +∞

0
exp[−BUy2/2− γ(XGU − PG)g(y)]dy, (5.34)

We know the gain from information with this derivative is G = (UGU /U
G
I )2. Because obtaining

analytical solutions is difficult, we rely on numerical studies. In the numerical studies, we consider

two special cases for g(·): first, g(y) = y; second, g(y) = y2. In particular, we compare the

gain from information in the economy with and without this derivative, given the population

of informed investors. The results are illustrated in Figure 5 and Figure 6.15 The gain from

information is clearly larger in the economy with derivatives than in that without derivatives

when the population of informed investors is small. The opposite results is obtained when the

population of informed investors is large.

It is noticed that introducing a call option at the money is equivalent to introducing a derivative

with payoff |D − P |. Because the payoff of a call option at the money is given by C = max(D −
P, 0) = (|D−P |+V −P )/2, buying one call option at the money is equivalent to buying 0.5 share

of a straddle given above and 0.5 share of the underlying asset. Thus, a call option at the money

has same effects on information acquisition and the underlying asset market as the straddle with

payoff |D − P |.

6 Conclusions

This paper examines the effect of introducing an options market on investors’ incentive to acquire

private information and the pricing behaviour of the underlying asset. As a novel finding, this

paper demonstrates that introducing an options market increases investors’ incentive to acquire

15The detailed proof can be found in Cao (1999). We set h=1,s=1, q=1 and γ = 0.5 in the Figure 5 and Figure 6
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Figure 5: Gain from Information Acquisition: g(y) = y

Figure 6: Gain from Information Acquisition: g(y) = y2
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private information when the information acquisition cost is high, but decreases their incentive to

acquire private information when the cost is low. Consequently, when the information acquisition

cost is high, an options market increases the underlying asset’s price informativeness, increases

the expected asset price, decreases price volatility and decreases market responses to earnings

announcements. By contrast, when the information acquisition cost is low, the opposite effects

arise. These results can provide a potentially unified theory for the conflicting findings on the

effect of options listing in the U.S. market and international markets.

Moreover, this paper also provides some innovative predictions: First, although we do not

formally study the effect of options listing on market liquidity, this paper predicts that an options

market increases the liquidity of the underlying asset market in an illiquid market and decreases

liquidity in a liquid market. When the population of informed investors is high, price is less

sensitive to noisy supply, reducing the price impact of the noisy supply. Thus, the market has

high liquidity. As shown above, a large population of informed investors leads to a higher supply

for options than demand, which is associated with low option prices and low profits from selling

options. Introducing an options market decreases investors’ incentive to acquire information,

which results in lower price informativeness. Consequently, the price impact of the noisy supply

increases and market liquidity deteriorates. Opposite effect of options listing arises in illiquid

market with a small population of informed investors. This is consistent with the findings by

Fedenia and Grammatikos (1992). Second, options listing has stabilizing effect (increasing price

informativeness, raising asset price, decreasing price volatility and market reactions to earnings

announcements) when the public information is precise, but has destabilization effect (decreasing

price informativeness, decreasing asset price, increasing price volatility and market responses to

earnings announcements) when the public information is imprecise. third, introducing an options

market and implementing after-hour or round-the-clock trading have stabilizing effects (improving

informational efficiency, decreasing price volatility) on the underlying assets with high information

acquisition costs, such as small firms and firms with low analyst coverage; Fourth, introducing

an options market and implementing after-hour or round-the-clock trading have destabilization

effects (harming informational efficiency, increasing price volatility) on the underlying assets with

low information acquisition costs, such as large or well-known firms and firms with high analyst

coverage.

Although previous theoretical studies on derivatives find that introducing derivatives increase

asset prices and decrease price volatilities (Cao, 1999 and Massa, 2002), these studies can not

reconcile the findings: options listing increases asset prices, decreases price volatility and decreases

price reactions to earning announcements in U.S. market before 1980, but yields the opposite

effects after 1980. Further, these studies can not explain the findings: options listing tends to

have stabilizing effects in emerging markets, such as India, but have destabilization effects in some
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developed markets, such as Germany. Our results not only explain these conflicting facts regarding

the effects of options listing, but also shed new light on debates about whether a derivative market

has (de)stabilizing effects on the underlying asset market.

Because we aim to obtain tractable solutions, our model assumes that there are no additional

noisy traders after the initial trading round in the dynamic model. However, extending our model

to consider time-varying noisy traders may provide an interesting future research avenue. Such

as extension would also be useful for studying market liquidity in a general dynamic model. In

addition, future research may study the effect of other financial innovations on investors’ incentive

to acquire information, as in the study by Simsek (2013a,b). More important, we notice that the

options have no direct impact on underlying assets because of the assumptions of CARA utility

and normal distributions. Although this feature helps to elucidate the effects of options on

information acquisition, relaxing these assumptions and analyzing the effects derivatives on asset

prices under general utility functions may provide a fruitful research avenue. We leave all of these

to further studies.
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7 Appendix

This appendix provides all proofs omitted above.

Proof of Proposition 2.1.

EVi = − exp[−γW0 −
X

2

2γB2V ar(D − P )
]× 1√

V ar(D − P )Bi
(7.1)

EVU = − exp[−γW0 −
X

2

2γB2V ar(D − P )
]× 1√

V ar(D − P )BU
(7.2)

The Gain G in the case without derivative security is Bi
BU

. In the equilibrium, investors should

break even the gain from information acquisition and cost. If G(0) ≤ exp(2γC), the equilibrium

fraction of informed investors ω∗ = 0. If G(0) > exp(2γC) > G(1), the equilibrium fraction

of informed investors ω∗ ∈ (0, 1) which satisfies G(ω∗) = exp(2γC). If exp(2γC) ≤ G(1),the

equilibrium fraction of informed investors ω∗ = 1.. Therefore, we can get the lemma. And Cd1

satisfy G(0) = exp(2γCd1) and Cd2 satisfy G(1) = exp(2γCd2). Since G is a decreasing function

of ω, it is obvious that ω∗ is a decreasing function with C when Cd2 < C < Cd1

Proof of Proposition 3.1 and Proof of Lemma 3.1. To prove that price function and de-

mands are in the equilibrium, we should prove that the market is clearing in the equilibrium

and Euler condition holds for the demand of different assets. Given the informed investors and

uninformed investors’ demand of the risky assset and options, we have the following market

clearing condition:

for the stock, we have

ωXi + (1− ω)XU + n = X (7.3)

It is clear that the price in the proposition clears the market of the risky asset.

for the options, we have

ω

γ
(B −Bi) + (1− ω)(B −BU ) = 0 (7.4)

Since B = h+ ωs+ ω2s2q
γ2

+ c, it is clear that the option market is clearing.
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Next we will show the Euler condition holds for the demand of different assets. For informed

investor i’s final wealth is given by:

Wi,1 = Wi,0 +Xi(D−P ) +

∞∫
0

Xi,CG[(D−G)+−PCG]dG+

0∫
−∞

Xi,PG[(G−D)+−PPG]dG (7.5)

Given the equilibrium Xi,CG and Xi,PG, we firstly prove that the proposed demand of risky asset

satisfies the first order condition for investors’ optimization problem.

Due to D2 = 2
∞∫
0

(D −G)+dG+ 2
0∫
−∞

(G−D)+dG, we have

Wi,1 = Wi,0 +Xi(D − P ) +
B −Bi
γ

D2

2
− B −Bi

γ
(

∞∫
0

PCGdG+

0∫
−∞

PPG]dG) (7.6)

Informed investors maximize expected utility

−E{exp(−γWi,1)|Fi}

= −E{exp[−γ(Wi,0 +Xi(D − P ) + B−Bi
γ

D2

2 −
B−Bi
γ (

∞∫
0

PCGdG+
0∫
−∞

PPG]dG))]|Fi}

= − 1√
1+(B−Bi) 1

Bi

exp[−γWi,0 + (B −Bi)(
∞∫
0

PCGdG+
0∫
−∞

PPG]dG))] + γXiP − γXiE(D|Fi)

−B−Bi
2 E2(D|Fi) + 1

2(γXi + (B −Bi)E(D|Fi))2 1
Bi

1
1+(B−Bi) 1

Bi

]

(7.7)

FOC, we have: γP − γE(D|Fi) + (γXi + (B − Bi)E(D|Fi)) γB = 0 ⇒ Xi = Bi
γ (E(D|Fi) − P ) −

1
γ (B −Bi)P

This proves that the proposed demand of risky asset satisfies the first order condition for

investors’ optimization problem. Now we show that proposed demands and prices for the options

satisfy the Euler conditions. This means that we need to prove that:

E[((D−G)+−PCG) exp(−γWi,1)|Fi] = 0 E[((G−D)+−PPG) exp(−γWi,1)|Fi] = 0 (7.8)

Since
∫ +∞
0 (P−G)N(

√
B(P−G))dG+

∫ +∞
0

1√
B

exp(−B(P−G)2

2 )dG+
∫ 0
∞(G−P )N(

√
B(G−P ))dG+∫ +∞

0
1√
B

exp(−B(G−P )2

2 )dG

=
∫ +∞
0 (P −G)N(

√
B(P −G))dG+

∫ 0
∞(G− P )N(

√
B(G− P ))dG+ 1

B

=
∫ +∞
0 (P −G)

∫ √B(P−G)
−∞

1√
2π

exp(−1
2x

2)dxdG

+
∫ 0
−∞(G− P )

∫ √B(G−P )
−∞

1√
2π

exp(−1
2x

2)dxdG+ 1
B

=
∫ P√B
−∞

1√
2π

∫ P− x√
B

0 (P−G)dG exp(−1
2x

2)dx+
∫ −P√B
−∞

1√
2π

∫ 0
P+ x√

B

(G−P )dG exp(−1
2x

2)dx+ 1
B

=
∫ P√B
−∞

1√
2π

(P
2

2 −
1
2Bx

2) exp(−1
2x

2)dx+
∫ −P√B
−∞

1√
2π

(P
2

2 −
1
2Bx

2) exp(−1
2x

2)dx+ 1
B
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= P 2

2 N(P
√
B) + P 2

2 N(−P
√
B)− 1

2B

∫ P√B
−∞

1√
2π
x2 exp(−1

2x
2)dx

− 1
2B

∫ −P√B
−∞

1√
2π
x2 exp(−1

2x
2)dx+ 1

B

= P 2

2 + 1
2B

This indicates that
∞∫
0

PCGdG +
0∫
−∞

PPG]dG = 1
2( 1
B + P 2). Then we put

∞∫
0

PCGdG +

0∫
−∞

PPG]dG = 1
2( 1
B + P 2) into final wealth, we have:

Wi,1 = Wi,0 + [Biγ (E(D|Fi)− P )− 1
γ (B −Bi)P ](D − P ) + B−Bi

γ
D2

2 −
B−Bi
γ

1
2( 1
B + P 2)

= Wi,0 + Bi
γ (E(D|Fi)− P )(D − P ) + B−Bi

γ
D2

2 −
B−Bi
γ

1
2( 1
B + P 2)

= Wi,0 + Bi
γ (E(D|Fi)− P )(D − P ) + B−Bi

2γ [(D − P )2 − 1
B ]

(7.9)

For the Euler Equation E[((D − G)+ − PCG) exp(−γWi,1)|Fi] = 0, we have

E[exp(−γWi,1)|Fi] = − 1√
B
Bi

exp[−γWi,0 + B−Bi
2B − Bi

2 (E(D|Fi) − P )2]. Let x = D − P ,

µ = E(D|Fi)− P , Bi = V ar(D − P |Fi)

E[(D−G)+ exp(−γWi,1)|Fi] =
+∞∫
G−P

[x−(G−P )] exp[−γWi,0+
B−Bi
2B ]

√
Bi√
2π

exp(−Biµx−B−Bi
2 x2−

Bi(x−µ)2
2 )dx

=
+∞∫
G−P

[x− (G− P )] exp[−γWi,0 + B−Bi
2B − Bi

2 (E(D|Fi)− P )2]
√
Bi√
2π

exp(−B
2 x

2)dx

=exp[−γWi,0 + B−Bi
2B − Bi

2 (E(D|Fi) − P )2][
+∞∫
G−P

x
√
Bi√
2π

exp(−B
2 x

2)dx +
+∞∫
G−P

(P −

G)
√
Bi√
2π

exp(−B
2 x

2)dx]

= exp[−γWi,0+ B−Bi
2B − Bi

2 (E(D|Fi)−P )2][(P −G) 1√
B
Bi

N(
√
B(P −G))+

√
Bi
B exp(−B(P−G)2

2 )]

(where
+∞∫
G−P

(P−G)
√
Bi√
2π

exp(−B
2 x

2)dx =
+∞∫

√
B(G−P )

(P−G)
√
Bi√

2π
√
B

exp(−y2

2 )dy = (P−G) 1√
B
Bi

[1−

N(
√
B(G− P ))] = (P −G) 1√

B
Bi

N(
√
B(P −G))

+∞∫
G−P

x
√
Bi√
2π

exp(−B
2 x

2)dx =
+∞∫

√
B(G−P )

y
√
Bi√
2πB

exp(−y2

2 )dy =
√
Bi
B exp(−B(G−P )2

2 ))

From the Euler Condition, we have PCG = (P −G)N(
√
B(P −G))+ 1√

B
exp(−B(P−G)2

2 ). This

verifies the proposed the price function in the proposition. Following the similar procedure, it is

obvious that the price function of put option takes the form in the propositions. Following the

similar procedure, we can prove that uninformed investors’ demand functions of risky asset and

options take the forms in the proposition.

Proof of Lemma 3.2. In the case with derivative security, for the informed investors’ utility,

34



we put Xi = E(D|Fi)−P
V ar(D|Fi) and Xi,G = 1

2γ ( 1
PG
− 1

V ar(D|Fi)) into

− 1√
1+2γXi,GV ar(D|Fi)

exp[−γ(Wi,0 −Xi,GPG)

+
V ar(D|Fi)[γXd−

E(D|Fi)−P
V ar(D|Fi)

]2

2(1+2γXd,GV ar(D|Fi)) − 1
2
(E(D|Fi)−P )2

V ar(D|Fi) ]

(7.10)

⇔

− 1√
V ar(D−P )

PG

exp[−γ(Wi,0 +
(1− ω)s

2B
− X

2

2γB2V ar(D − P )
) (7.11)

we follow the same calculation, we can get the uninformed investors’ utility as

− 1√
V ar(D−P )

PG

exp[−γ(Wi,0 −
ωs

2B
)−− X

2

2γB2V ar(D − P )
] (7.12)

Therefore, the gain G in the case with derivative security is exp( sB )

Proof of Proposition 3.2. Whether the introduction of derivative security increase the fraction

of informed investors depends on exp( sB ) − Bi
BU

. We can transform exp( sB ) − Bi
BU

into s
B −

ln( BiBU ). From the proof of Proposition 4.2, we know that
T∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1

=

1
B1∫
1
BT

(1−ω)2s2t
1+(1−ω)stdt = (1− ω)s( 1

B1
− 1

BT
)− [ln(1 + (1−ω)s

B1
)− ln(1 + (1−ω)s

BT
)]

when BT →∞, we have
∞∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
= (1−ω)s

B1
− ln(1 + (1−ω)s

B1
)

Furthermore,
∞∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−BU,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
= −ωs

B1
− ln(1 + −ωs

B1
)

It is obvious that

s
B1
− ln( BiBU )

=
∞∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
−
∞∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1

(7.13)

If
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
>

(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
, then exp( sB ) − Bi

BU
> 0 and introduction of

derivative security will increase the fraction of informed investors.

If
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
<

(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
, then exp( sB ) − Bi

BU
< 0 and introduction of

derivative security will decrease the fraction of informed investors. Following the proof the

Proposition 4.7, we can get results in this proposition.
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Proof of Proposition 3.3. Price informativeness I = ω2s2q
γ2

. It is obvious that I is an increasing

function of omega. Following Proposition 3.2, this proposition can be derived directly.

Proof of Proposition 3.4. (a)The expected asset price is D− X
Bj

. Since B = h+ωs+ ω2s2

γ2
q+c,

thus B is an increasing function of ω and then we can conclude that expected asset price is also an

increasing function of ω. (b) The market response to public information is c
B which is a decreasing

function of ω. (c) The price change volatility is

V ar(D − P ) =
1

B
+
ωs+ γ2q−1

B2
(7.14)

The derivative of V ar(D − P ) with ω is:

−
s+ 2ωs2

γ2
q

B2
+

s

B2
− 2(ωs+ γ2q−1)

B3
(s+

2ωs2

γ2
q) < 0 (7.15)

So we can conclude that first derivative of V ar(D − P ) with ω is negative and thus the

price change volatility is a decreasing function of ω. Therefore, we can get the results in the

proposition.

Proof of Proposition 3.5 and Lemma 3.3 . As shown in the analysis, Vo =
ω∫
0

|(Bi −B)|di+

(1 − ω)|B − BU | = 2ω(1 − ω)s. When ω ≤ 1
2 , Vo is an increasing function of ω. As proved in

Lemma 4.1, in (Cd2, Cd1), the equilibrium fraction of

informed investors is a decreasing function of information acquisition cost and there is unique

corresponding information acquisition cost CM which induces the fraction of informed investors

to be 1
2 . This means that when C > CM , Vo is a decreasing function of C; when C < CM , Vo is

a increasing function of C. This completes the proof.

Proof of Proposition 4.1 and Lemma 4.1 . We use backward induction to prove the linear

price function and investors’ demand. This means that we firstly prove that the Pj , Xi,j and XU,j

follows the proposition, and then we prove that Pj−1, Xi,j−1 and XU,j−1 follows the proposition.

In the economy of T trading sessions (where T = N or N +M), informed investor i’s final wealth

Wi,F = W0+Xi,1(P2−P1)+Xi,2(P3−P2)+ Xi,3(P4−P3) +....Xi,T (D−PT ) and liquidity suppliers’

final wealth WU,F = W0 + XU,1(P2 − P1) + XU,2(P3 − P2)+ XU,3(P4 − P3) +....XU,T (D − PT )

. We also have the dynamic of investors’ wealth as: Wi,j = Wi,j−1 + Xi,j−1(Pj − Pj−1) and

WU,j = WU,j−1 +XU,j−1(Pj − Pj−1).
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At trading round T , informed investor i’s information set Fs,T = {si, sc,k, Pk k = 1, 2....T}
and the conditional distribution of D in their beliefs are

E(D|Fi,T ) = D +
s(D −D + εi) + ω2s2

γ2
(D −D + γ

ωsn) +
∑T

k=1 ck(sc,k −D)

h+ s+ ω2s2

γ2
+
∑T

k=1 ck
; (7.16)

V ar(D|Fi,T ) =
1

h+ s+ ω2s2

γ2
+
∑T

k=1 ck
(7.17)

They try to maximize their utility over the final wealth:

EVi,T = max
Xi,T
− exp[−γ{Wi,T +Xi,T (D − PT )}] (7.18)

So informed investor i’s optimal demand is:Xi,T =
E(D|Fi,T )−PT
γV ar(D|Fi,T ) . We substitute Xi,T into the

above equation, we have liquidity demanders’ equivalent utility is:

EVi,T = − exp[−γ{Wi,T−1 +
[E(D|Fi,T )− PT ]2

2γV ar(D|Fi,T )
}] (7.19)

Uninformed investors’ information set FU,T = {sc,k, Pk k = 1, 2....T} and the conditional

distribution of D in their beliefs are

E(D|FU,T ) = D +

ω2s2

γ2
(D −D + γ

ωsn) +
∑T

k=1 ck(sc,k −D)

h+ s+ ω2s2

γ2
+
∑T

k=1 ck
; (7.20)

V ar(D|FU,T ) =
1

h+ ω2s2

γ2
+
∑T

k=1 ck
(7.21)

They try to maximize their utility over the final wealth:

EVU,T = max
XU,T

− exp[−γ{WD,T +XU,T (D − PT )}] (7.22)

So uninformed investors’ optimal demand is:XU,T =
E(D|FU,T )−PT
γV ar(D|FU,T ) . We substitute XU,T into

the above equation, we have uninformed investors’ equivalent utility is:

EVU,T = − exp[−γ{WU,T−1 +
[E(D|FU,T )− PT ]2

2γV ar(D|FU,T )
}] (7.23)

In the market clearing condition:
ω∫

i=0

Xi,Tdi + (1 − ω)XU,T + n = X. We can get the price

function as the description in the proposition.

Now we turn to the trading round T − 1. Given the price and optimal demands in trading

37



round T − 1. For the informed investors, they maximize utility

EVi,T−1 = − max
Xi,T−1

exp[−γ{Wi,T−2 +Xi,T−1(PT − PT−1) +
[E(D|Fi,T )− PT ]2

2γV ar(D|Fi,T )
}] (7.24)

Let Bj = h+ωs+ ω2s2

γ2
+
∑j

k=1 ck, Ki,j = h+s+ ω2s2

γ2
+
∑j

k=1 ck and KU,j = h+ ω2s2

γ2
+
∑j

k=1 ck

In the conjecture price, PT =
BT−1PT−1+cT sc,T

BT
⇒ PT − PT−1 =

cT (sc,T−PT−1)
BT

E(D|Fi,T ) =
Bi,T−1E(D|Fi,T−1)+cT sc,T

Bi,T

⇒ E(D|Fi,T )− PT =
Bi,T−1E(D|Fi,T−1)+PTBT−BT−1PT−1

Bi,T
− PT

= ( BT
Bi,T
− 1)(PT − PT−1) +

Bi,T−1

Bi,T
[E(D|Fi,T−1)− PT−1]

So in informed investor i’s belief:E(PT − PT−1|Fi,T−1) =
cT (E(D|Fi,T−1)−PT−1)

BT
and V ar(PT −

PT−1|Fi,T−1) =
c2T (

1
Bi,T−1

+ 1
cT

)

B2
T

=
cTBi,T

Bi,T−1B
2
T

−maxXi,T−1
exp[−γ{Wi,T−2 +Xi,T−1(PT − PT−1)

+
Bi,T (

BT
Bi,T

−1)2(PT−PT−1)
2

2γ

+
Bi,T (

BT
Bi,T

−1)(PT−PT−1)
Bi,T−1
Bi,T

[E(D|Fi,T−1)−PT−1]

γ

+
Bi,T

B2
i,T−1

B2
i,T

[E(D|Fi,T−1)−PT−1]
2

2γ }]
⇔ −maxXd,τT−2

1√
1+Bi,T ((

BT
Bi,T

−1)2
cT Bi,T

Bi,T−1B
2
T

exp[−γ{Wi,T−2

+(Xi,T−1 +
(
BT
Bi,T

−1)Bi,T−1[E(D|Fi,T−1)−PT−1]

γ )
cT (E(D|Fi,T−1)−PT−1)

BT

+
Bi,T

B2
i,T−1

B2
i,T

[E(D|Fi,T−1)−PT−1]
2

2γ

−1
2

[γXi,T−1 + ( BT
Bi,T
− 1)Bi,T−1[E(D|Fi,T−1)− PT−1]

+Bi,T ( BT
Bi,T
− 1)2

cT (E(D|Fi,T−1)−PT−1)
BT

]2

γ(1+Bi,T (
BT
Bi,T

−1)2
cT Bi,T

Bi,T−1B
2
T

)

∗ cTBi,T
Bi,T−1B

2
T
}]

(7.25)

FOC, we have:

cT (E(D|Fi,T−1)−PT−1)
BT

−
cT Bi,T

Bi,T−1B
2
T

1+Bi,T (
BT
Bi,T

−1)2
cT Bi,T

Bi,T−1B
2
T

×{[γ(Xi,T−1 + ( BT
Bi,T
− 1)Bi,T−1[E(D|Fi,T−1)− PT−1]

+Bi,T ( BT
Bi,T
− 1)2

cT (E(D|Fi,T−1)−PT−1)
BT

]}

= 0

(7.26)

⇒ γ(Xi,T−1 + ( BT
Bi,T
− 1)Bi,T−1[E(D|Fi,T−1)− PT−1] +Bi,T ( BT

Bi,T
− 1)2

cT (E(D|Fi,T−1)−PT−1)
BT

]

=
(E(D|Fi,T−1)−PT−1)Bi,T−1BT

Bi,T
(1 +Bi,T ( BT

Bi,T
− 1)2

cTBi,T
Bi,T−1B

2
T

)
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⇒ Xi,T−2 =
(E(D|Fi,T−1)−PT−1)Bi,T−1

γ Since V ar(D|Fi,T−1) = 1
Bi,T−1

. We have proved that

Xi,T−2 is the same as the proposition.

Then we put Xi,T−1 into the utility function, we have:

EVi,T−1 =

− 1√
1+

cT (BT−Bi,T )2

Bi,T−1B
2
T

× exp[−γ{Wi,T−2 +
[E(D|Fi,T−1)−PT−1]

2

2γV ar(D|Fi,T−1)
}]

(7.27)

For the uninformed investors’ demands, we can follow the same methodology and just replace

Bi,j with BU,j . And we have the uninformed investors’ demandXU,T−1 =
(E(D|FU,T−1)−PT−1)BU,T−1

γ

Since V ar(D|FU,T−1) = 1
BU,T−1

. We have proved that Xs,τT−2 is the same as the proposition. The

market clearing condition, we can get the price function P1,τT−2 as the proposition. We can have

liquidity suppliers’ expected utility is

EVU,T−1 = − 1√
1 +

cT (BT−BU,T )2
BU,T−1B

2
T

exp[−γ{WU,T−2 +
[E(D|FU,T−1)− PT−1]2

2γV ar(D|FU,T−1)
}] (7.28)

Proceeding recursively, we can get the price functions and demands as the propositions. This

complete the proof of the proposition.

For the lemma, we proceed recursively and can get that:

EVi =

− exp[−γ{W0 +
[ E(D|Fi,1) −P1]2

2γV ar(D|Fi,1) }]

×
j=T∏
j=1

1√
1+

cj(Bj−Bi,j)2

Bi,j−1B
2
j

=

− exp[−γW0 − γX
2

2B2
0V ar(D−P0)

]

× 1√
V ar(D−P1)Bi,1

j=T∏
j=1

1√
1+

cj(Bj−Bi,j)2

Bi,j−1B
2
j

(7.29)

EVU =

− exp[−γ{W0 +
[ E(D|FU,1) −P ]2

2αV ar(D|FU,1) }]

×
j=T∏
j=1

1√
1+

cj(Bj−BU,j)2

BU,j−1B
2
j

=

− exp[−γW0 − γX
2

2B2
0V ar(D−P0)

]

× 1√
V ar(D−P1)BU,1

j=T∏
j=1

1√
1+

cj(Bj−BU,j)2

BU,j−1B
2
j

(7.30)

Proof of Proposition 4.2 .

ln(G) = ln(1 + s

h+ω2s2

γ2
+c1z

) +
N∑
j=2

ln(1 +
cjz(Bj−Bi,j)2
Bi,j−1B2

j
)−

N∑
j=2

ln(1 +
cjz(Bj−BU,j)2
BU,j−1B

2
j

)

= ln(1 + s

h+ω2s2

γ2
+c1z

) +
N∑
j=2

cjz(Bj−Bi,j)2
Bi,j−1B2

j
−

N∑
j=2

cjz(Bj−BU,j)2
BU,j−1B

2
j

(7.31)
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In the above equation, we have

cjz(Bj−Bi,j)2
Bi,j−1B2

j
= ( 1

Bj−1
− 1

Bj
)

(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1

Bj−1

Bj
=

= ( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1
− ( 1

Bj−1
− 1

Bj
)2

(Bj−Bi,j)2
1+(Bi,j−1−Bj−1)/Bj−1

= ( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1

(7.32)

Therefore,
T∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−Bi,j)2/Bj−1

1+(Bi,j−1−Bj−1)/Bj−1

=

1
B1∫
1
BT

(1−ω)2s2t
1+(1−ω)stdt

= (1− ω)s( 1
B1
− 1

BT
)− [ln(1 + (1−ω)s

B1
)− ln(1 + (1−ω)s

BT
)]

(7.33)

Similarly, we will have

T∑
j=2

( 1
Bj−1

− 1
Bj

)
(Bj−BU,j)2/Bj−1

1+(BU,j−1−Bj−1)/Bj−1
=

1
B1∫
1
BT

ω2s2t
1−ωstdt = −ωs( 1

B1
− 1

BT
)− [ln(1− ωs

B1
)− ln(1− ωs

BT
)]

Therefore, ln(G) = s( 1
B1
− 1

BT
) + ln(1 + s

BU,T
) and it is obvious that ln(G) is a decreasing

function of ω

Proof of Corollary 4.1 . In the equilibrium, investors should break even the gain from infor-

mation acquisition and cost. If G(0) ≤ exp(2γC), the equilibrium fraction of informed investors

ω∗ = 0. If G(0) > exp(2γC) > G(1), the equilibrium fraction of informed investors ω∗ ∈ (0, 1)

which satisfies G(ω∗) = exp(2γC). If exp(2γC) ≤ G(1),the equilibrium fraction of informed

investors ω∗ = 1.. Therefore, we can get the corollary. And C1 satisfy G(0) = exp(2γC1) and

C2 satisfy G(1) = exp(2γC2). Since G is a decreasing function of ω, it is obvious that ω∗ is a

decreasing function with C when C2 < C < C1

Proof of Corollary 4.3 . In the equilibrium, investors should break even the gain from infor-

mation acquisition and cost. If G(0) ≤ exp(2γC), the equilibrium fraction of informed investors

ω∗ = 0. If G(0) > exp(2γC) > G(1), the equilibrium fraction of informed investors ω∗ ∈ (0, 1)

which satisfies G(ω∗) = exp(2γC). If exp(2γC) ≤ G(1),the equilibrium fraction of informed

investors ω∗ = 1.. Therefore, we can get the corollary. And F1 satisfy G(0) = exp(2γC) and

F2 satisfy G(1) = exp(2γC). Since G is a decreasing function of ω, it is obvious that ω∗ is a

decreasing function with Fk when F2 < Fk < F1

Proof of Proposition 4.3 and Lemma 4.2 . There are several steps to prove that the propo-

sition holds.
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Step 1: Following the similar procedure in the proof of Proposition 4.1, we know that
∞∫
0

PCG,jdG+
0∫
−∞

PPG,jdG = 1
2( 1
Bj

+ P 2
j )

Step 2: We want to prove that the expected utility of informed investors and uninformed are

as shown in the Lemma 5.1 given the proposed equilibrium in the Proposition 5.1. Given the

equilibrium in Proposition 5.1, we have

Wi,j+1 = Wi,j + [
Bi,j
γ (E(D|Fi,j)− Pj)− 1

γ (Bj −Bi,j)Pj ](Pj+1 − Pj)
+
Bj−Bi,j

2γ ( 1
Bj+1

+ P 2
j+1 − 1

Bj
− P 2

j )

= Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(Pj+1 − Pj) +

Bj−Bi,j
2γ (Pj+1 − Pj)2

+
Bj−Bi,j

2γ ( 1
Bj+1

− 1
Bj

)

(7.34)

where BT+1 = +∞ (because final payoff is realized and investors have infinite information

precision) and PT+1 = D

We can use backward induction to prove that

EVi,j = − 1√
Bj
Bi,j

exp[−γWi,j −
[E(D|Fi,j)− Pj ]2

2V ar(D|Fi,j)
+
Bj −Bi,j

2

1

Bj
] (7.35)

For last period, this is true following the proof of Proposition 4.1. Now we assume that this

holds for period j + 1, for period j, we have:

EVi,j = − 1√
Bj+1

Bi,j+1

E{exp[−γWi,j+1 −
[E(D|Fi,j+1)− Pj+1]

2

2V ar(D|Fi,j+1)
+
Bj+1 −Bi,j+1

2

1

Bj+1
]} (7.36)

As the proof the Proposition 3.1, we have: E(D|Fi,j+1) − Pj+1 = (
Bj+1

Bi,j+1
− 1)(Pj+1 − Pj) +

Bi,j
Bi,j+1

[E(D|Fi,j)−Pj ] , E(Pj+1−Pj |Fi,j) =
cJ+1(E(D|Fi,j)−Pj)

Bj+1
and V ar(Pj+1−Pj |Fi,j) =

cj+1Bi,j+1

Bi,jB2
j+1

So we substitute them into EVi,j , we have:

EVi,j = − 1√
Bj
Bi,j

E{exp[−γWi,j −
[E(D|Fi,j+1)− Pj+1]

2

2γV ar(D|Fi,j+1)
+
Bj −Bi,j

2

1

Bj
]} (7.37)

The ex-ante expected utility for

EVi = − exp[−γW0 −
X

2

2γB2V ar(D − P )
]× 1√

V ar(D − P )Bi
(7.38)

EVU = − exp[−γW0 −
X

2

2γB2V ar(D − P )
]× 1√

V ar(D − P )BU
(7.39)
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Step 3: to simplify the analysis, we want to prove that final wealth Wi,F = Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(D − Pj) +

Bj−Bi,j
2γ [(D − Pj)2 − 1

Bj
]

Here, we use backward induction to prove that. For the final period T , this is true following

the proof of Proposition 4.1. We assume that this is true for period j + 1. Then we would like to

prove this is true for period j. Wi,F = Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(Pj+1 − Pj) +

Bj−Bi,j
2γ [(Pj+1 −

Pj)
2 + 1

Bj+1
− 1

Bj
] +

Bi,j+1

γ (E(D|Fi,j+1)− Pj+1)(D − Pj+1) +
Bj+1−Bi,j+1

2γ [(D − Pj+1)
2 − 1

Bj+1
]

(Since E(D|Fi,j+1)− Pj+1 = (
Bj+1

Bi,j+1
− 1)(Pj+1 − Pj) +

Bi,j
Bi,j+1

[E(D|Fi,j)− Pj ] )

= Wi,j +
Bi,j
γ (E(D|Fi,j) − Pj)(Pj+1 − Pj) +

Bj−Bi,j
2γ (Pj+1 − Pj)2 +

Bi,j+1

γ [(
Bj+1

Bi,j+1
− 1)(Pj+1 −

Pj) +
Bi,j
Bi,j+1

[E(D|Fi,j)− Pj ]](D − Pj+1) +
Bj+1−Bi,j+1

2γ [(D − Pj+1)
2 − Bj−Bi,j

2γBj

= Wi,j +
Bi,j
γ (E(D|Fi,j)−Pj)(D−Pj)+

Bj−Bi,j
2γ [(Pj+1−Pj)2 +2(Pj+1−Pj)(D−Pj+1)+(D−

Pj+1)
2]− Bj−Bi,j

2γBj

= Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(D − Pj) +

Bj−Bi,j
2γ [(D − Pj)2 − 1

Bj
]

Step 4: we now prove that Euler conditions hold for every period. We also use backward

induction to prove it. Euler conditions hold for the final period following the proof of Proposition

4.1. We assume that Euler conditions is true for the period j+1. This indicates that the proposed

demands and price functions take the forms in the proposition.

We need to prove that

E[(Pj+1 − Pj) exp(−γWi,j+1)|Fi,j ] = 0 (7.40)

E[(PCG,j+1 − PCG,j) exp(−γWi,j+1)|Fi,j ] = 0 (7.41)

E[(PPG,j+1 − PPG,j) exp(−γWi,j+1)|Fi,j ] = 0 (7.42)

Following Cao and Ou-Yang (2009), we have

Pj+1 exp(−γWi,j+1) = E[D exp(−γWi,F )|Fi,j ] exp(−γWi,j+1) = E[exp(−γWi,F )|Fi,j ]
(7.43)

PCG,j+1 exp(−γWi,j+1) = E[(D −G)+ exp(−γWi,F )|Fi,j ] (7.44)

PPG,j+1 exp(−γWi,j+1) = E[(G−D)+ exp(−γWi,F )|Fi,j ] (7.45)

This means that we need to prove that:
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E[Pj exp(−γWi,j+1)|Fi,j ] = E[Pj+1 exp(−γWi,j+1)|Fi,j ]
= E[D exp(−γWi,F )|Fi,j ]

= E[D exp(−γ(Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(D − Pj)

+
Bj−Bi,j

2γ [(D − Pj)2 − 1
Bj

]))|Fi,j ]

(7.46)

and

E[PCG,j exp(−γWi,j+1)|Fi,j ] = E[PCG,j+1 exp(−γWi,j+1)|Fi,j ]
= E[(D −G)+ exp(−γWi,F )Fi,j ]

= E[(D −G)+ exp(−γ(Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(D − Pj)

+
Bj−Bi,j

2γ [(D − Pj)2 − 1
Bj

]))|Fi,j ]

(7.47)

and

E[PPG,j exp(−γWi,j+1)|Fi,j ] = E[PPG,j+1 exp(−γWi,j+1)|Fi,j ]
= E[(G−D)+ exp(−γWi,F )Fi,j ]

= E[(G−D)+ exp(−γ(Wi,j +
Bi,j
γ (E(D|Fi,j)− Pj)(D − Pj)

+
Bj−Bi,j

2γ [(D − Pj)2 − 1
Bj

]))|Fi,j ]

(7.48)

The above three equations take similar forms in the proof the Proposition 4.1. Following the

similar procedures, the above equations hold for period j. This completes the proof.

Proof of Proposition 4.4 . Following proof or Proposition 3.2, the gain of information ac-

quisition without options is ln(G) = s( 1
B1
− 1

BT
) + ln(1 + s

BU,T
) . When there are infinite

trading periods, the aggregate information precision of public information goes to infinity. That

is BT → ∞ and BU,T → ∞, then ln(G) → s
B1

which is the gain of information acquisition with

options. This indicates that the gain of information acquisition with options is equivalent to the

gain of information acquisition with infinite trading periods (This is consistent with the argument

in Brennan and Cao (1996) ).

Following proof of Proposition 3.3, we know that the gain of information acquisition from

additional one trading period for informed investors is higher than uninformed investors when

information acquisition cost C is higher than C4 and the gain of information acquisition from

additional one trading period for uninformed investors is higher than informed investors when

information acquisition cost C is smaller than C3. Following the same logic in Proposition 3.3,

we complete the proof of this proposition.

Proof of Proposition 4.5 . Price reaction to public information in trading session j is
cjz
Bj

which is decreasing function of omega. Then this result can be directly derived.
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Proof of Proposition 4.6 . Step 1: we characterize F3 and F4.

when ω > 1
2 , since

cjz(Bj−Bi,j)2
Bi,j−1B2

j
/(
cjz(Bj−BU,j)2
BU,j−1B

2
j

) =
(1−ω)2BU,j−1

ω2Bi,j−1
< 1, then

j=L∏
j=K+1

1+
cjz(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cjz(Bj−BU,j)2

BU,j−1B
2
j

< 1

when ω < 1
1+
√

1+ s
h

, since (1−ω)2
ω2 > 1 + s

h >
Bi,j−1

BU,j−1
, then

j=L∏
j=K+1

1+
cj(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cj(Bj−BU,j)2

BU,j−1B
2
j

> 1.

Since G is a decreasing function of ω, there exist F3 which satisfies G(12 , F3) = exp(2γC) and

F4 which satisfies G( 1
1+
√

1+ s
h

, F4) = exp(2γC). When FK > F4, ω
∗ is smaller than 1

1+
√

1+ s
h

and

thus
j=L∏

j=K+1

1+
cj(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cj(Bj−BU,j)2

BU,j−1B
2
j

> 1. Since G(ω∗, FK) = exp(2γC) in the case with K trading sessions,

G(ω∗) ∗
j=L∏

j=K+1

1+
cj(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cj(Bj−BU,j)2

BU,j−1B
2
j

> exp(2γC). It is obvious that the equilibrium fraction of informed

investors in the case with additional trading sessions is higher than ω∗.

When FK < F3, we can get the opposite conclusion following the similar logic.

Step 2: we study option market’s effects on asset pricing for different public information

precision (a)The expected asset price is D − X
Bj

. Since Bj = h + ωs + ω2s2

γ2
+

∑j
k=1 ck, thus

Bj is an increasing function of ω and then we can conclude that expected asset price is also an

increasing function of ω.

(b) The market response to public information is ck
Bj

which is a decreasing function of ω.

(c) The price change volatility is

V ar(Pj+1 − Pj) =
c2j+1

B2
j+1

V ar(sc,j+1 − Pj)

=
c2j+1

B2
j+1

[ 1
cj+1

+ V ar(D − Pj)] = 1
Bj
− 1

Bj+1

+
c2j+1

B2
jB

2
j+1

(ωs+ γ2

q ).

(7.49)

The derivative of V ar(Pj+1 − Pj) with ω is:

− cj+1

B2
jBj+1

(s+ 2ωs
2

γ2
)− cj+1

BjB2
j+1

(s+ 2ωs
2

γ2
) +

c2j+1s

B2
jB

2
j+1

− 2c2j+1

B3
jB

2
j+1

(ωs+ γ2

q )(s+ 2ωs
2

γ2
)− 2c2j+1

B2
jB

3
j+1

(ωs+ γ2

q )(s+ 2ωs
2

γ2
).

(7.50)

since

− cj+1s

B2
jBj+1

− cj+1s

BjB2
j+1

+
c2j+1s

B2
jB

2
j+1

< 0 (7.51)
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So we can conclude that first derivative of V ar(Pj+1 − Pj) with ω is negative and thus the

price change volatility is a decreasing function of ω.

Therefore, we can get the results in the proposition.

Proof of Proposition 4.7 . There are several steps:

Step 1: we characterize C3 and C4 and effects of additional trading opportunities on infor-

mation acquisition. When ω > 1
2 , since

cjz(Bj−Bi,j)2
Bi,j−1B2

j
/(
cjz(Bj−BU,j)2
BU,j−1B

2
j

) =
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< 1, then
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1+
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2
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2
j

1+
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2
j

< 1

when ω < 1
1+
√

1+ s
h

, since (1−ω)2
ω2 > 1 + s

h >
Bi,j−1

BU,j−1
, then

j=L∏
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1+
cj(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cj(Bj−BU,j)2

BU,j−1B
2
j

> 1.

Since G is a decreasing function of ω, there exist C3 which satisfies G(12) = exp(2γC3) and

C4 which satisfies G( 1
1+
√

1+ s
h

) = exp(2γC4). When C > C4, ω
∗ is smaller than 1

1+
√

1+ s
h

and

thus
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j=K+1

1+
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2

Bi,j−1B
2
j

1+
cj(Bj−BU,j)2

BU,j−1B
2
j

> 1. Since G(ω∗) = exp(2γC) in the case with K trading sessions,

G(ω∗) ∗
j=L∏

j=K+1

1+
cj(Bj−Bi,j)

2

Bi,j−1B
2
j

1+
cj(Bj−BU,j)2

BU,j−1B
2
j

> exp(2γC). It is obvious that the equilibrium fraction of informed

investors in the case with additional trading sessions is higher than ω∗.

When C < C3, we can get the opposite conclusion following the similar logic.

Step 2: we study effects on additional trading opportunities on asset pricing. (a)The expected

asset price is D − X
Bj

. Since Bj = h + ωs + ω2s2

γ2
+

∑j
k=1 ck, thus Bj is an increasing function of

ω and then we can conclude that expected asset price is also an increasing function of ω.

(b) The market response to public information is ck
Bj

which is a decreasing function of ω.

(c) The price change volatility is

V ar(Pj+1 − Pj) =
c2j+1

B2
j+1

V ar(sc,j+1 − Pj)

=
c2j+1

B2
j+1

[ 1
cj+1

+ V ar(D − Pj)] = 1
Bj
− 1

Bj+1

+
c2j+1

B2
jB

2
j+1

(ωs+ γ2

q ).

(7.52)

The derivative of V ar(Pj+1 − Pj) with ω is:

− cj+1

B2
jBj+1

(s+ 2ωs
2

γ2
)− cj+1

BjB2
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(s+ 2ωs
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(7.53)
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since

− cj+1s

B2
jBj+1

− cj+1s

BjB2
j+1

+
c2j+1s

B2
jB

2
j+1

< 0 (7.54)

So we can conclude that first derivative of V ar(Pj+1 − Pj) with ω is negative and thus the

price change volatility is a decreasing function of ω.

Therefore, we can get the results in the proposition.
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