
1
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Abstract: A massive distributed storage system is the foundation
for big data operations. Access latency performance is a key met-
ric in distributed storage systems since it greatly impacts user ex-
perience while existing codes mainly focus on improving perfor-
mance such as storage overhead and repair cost. By generating
parity nodes from parity nodes, in this paper we design new XOR-
based erasure codes HTSC and FH HTSC to reduce access latency
in distributed storage systems. By comparing with other popu-
lar and representative codes, we show that, under the same repair
cost, HTSC and FH HTSC codes can reduce access latency while
maintaining favorable performance in other metrics. In particular,
under the same repair cost, FH HTSC can achieve lower access
latency, higher or equal failure tolerance and lower computation
cost compared with the representative codes while enjoying similar
storage overhead. Accordingly, FH HTSC is a superior choice for
applications requiring low access latency and outstanding failure
tolerance capability at the same time.

Index Terms: Erasure codes, access latency, storage overhead, re-
pair cost, failure tolerance, computation cost.

I. INTRODUCTION

IN 2003, Google described for the first time the Google file
system (GFS) [1]. In GFS, three copies of each file are

stored in different places to deal with potential failures. This
simple replication strategy works well since it can easily sup-
port Google’s frequent read requirements. Though it is easy to
simply store replicated data to combat data losses, GFS suffers
from extremely low storage efficiency. To solve this problem,
erasure coding technique has been adopted to reduce storage
overhead while maintaining high reliability in distributed stor-
age systems. Actually, including storage overhead, there are at
least five metrics to measure the performance in distributed stor-
age systems [2], [3].

Storage Overhead. It measures the storage cost of some
specific code in distributed storage systems, and is equal to the
value of actual storage size over the original file size.

Failure Tolerance Capability. It measures the reliability of
distributed storage systems and is usually equal to the maximum
number of simultaneous failed storage nodes the system can tol-
erate. Note that in this paper, a node means a fragment in a
codeword and actually fragments from different codeword can
be stored in one storage device.

Repair Cost. It is usually defined as the number of nodes re-
quired to repair a failed node [4], [5] and can be further divided
into repair I/O and repair bandwidth. Repair I/O is the number
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of storage nodes required to be accessed when repairing a node.
Repair bandwidth is the volume of data transferred when repair-
ing a storage node. For most codes, repair I/O and bandwidth
increase or decrease at the same time, while some codes such
as Regenerating Code (RC) [6] can reduce repair bandwidth by
increasing repair I/O.

Computation Cost. This measures resources used in the en-
coding and decoding processes. Although it is arduous to use
some close-form expression to measure it, it clearly has positive
correlation with the complexity of the encoding and decoding
processes and may have great impact on the performance of dis-
tributed storage systems. Generally, although it is almost im-
possible to get the exact computation cost for each code, we can
compare the computation cost of different codes based on their
Galois Field and the number of data nodes in a codeword. The
more the number of elements in the Galois Field, the higher the
computation cost [7]. We will introduce Galois Field in details
later in this paper.

Access Latency. It measures the availability of storage nodes
and may be reflected by the average time taken to read data from
storage nodes. In this paper, we consider a typical append-only
distributed storage system such as Hadoop distributed file sys-
tem (HDFS) [8] and Windows Azure Storage system (WAS) [4].
In such systems, when you save something, the dispatcher can
usually quickly distribute it to some applicable idle storage
nodes. Actually, in an append-only system, when modifying any
portion of a file that is already stored, the system will rewrite the
whole file and store it in other nodes within a new codeword and
then we can choose whether to delete the original version or not
according to practical needs. Or we can just save the updated
part to another node in another codeword. In distributed storage
systems, we usually will not directly update some stored part in
the original node, thus saving the trouble of updating the corre-
sponding parity nodes. Therefore, update operations can just be
regarded as write requests in such systems. In addition, users
often do not care much regarding the latency of their write re-
quests as long as they can be done within a reasonable period.
But things are totally different for read requests. The access la-
tency of read requests can greatly impact user experience. As an
example, Google found that users performed up to 0.74% fewer
searches after a 400 millisecond additional delay has been im-
plemented for 4 to 6 weeks [9]. Besides, since there are only
limited nodes in the system storing the data desired by certain
read request, higher frequency of read requests will inevitably
increase the access latency under the same conditions. When
some storage node fails, the system will send a repair request,
and to ensure no data loss, repair requests probably enjoy higher
priority compared with read and write requests. That is, repair
requests will be served before read requests and may greatly im-
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pact their access latencies. Accordingly, in this paper, we focus
on the access latency of read requests and the impact of repair
requests on the access latency of read requests.

For erasure codes with maximum-distance-separable (MDS)
property, like the Reed-Solomon (RS) code [10], n coded sym-
bols consist of a codeword and any k out of n coded symbols are
sufficient to recover all the original file in the codeword. Com-
pared with the three-replica strategy, it has superior storage over-
head and failure tolerance capability, but worse repair cost and
computation cost. Codes used in practice are usually systematic
codes, namely, there is one copy of the data existing in uncoded
form in a codeword and this can facilitate applications such as
keyword searching [11]. The codes proposed in this paper will
be systematic code in line with almost all the practical codes.

Some recent focus is on reducing repair cost. Dimakis
et al. [6] demonstrated that RC code can use network coding to
lower repair bandwidth. This work spawned many papers [12]-
[16]. But RC will increase repair I/O and cannot realize com-
plete exact repair. In addition, the randomized construction of
RC suffers from a high computation cost, especially when pa-
rameters are not chosen properly [17].

Duminuco et al. [18] came up with the local repair degree
concept and Hierarchical Code (HC) to reduce repair cost. But
the repair cost of this code changes from 2 to k and the fail-
ure tolerance capability is hard to obtain even though all the
parameters of the code are available. Huang et al. [4] pro-
posed the Local Reconstruction Code (LRC) and applied it to
WAS. The key idea is to divide the storage nodes into different
groups and generate local parity node in each group to reduce
repair cost and also generate global parity node to improve fail-
ure tolerance capability. But when the global parity node fails,
repair cost remains high. Sathiamoorthy et al. [5] proposed Lo-
cally Repairable Codes (LRCs) to solve this problem, at the cost
of higher storage overhead and using a deterministic algorithm
with exponential complexity in the construction of code coeffi-
cients.

Flat XOR-based erasure codes usually enjoy low computa-
tion cost compared with MDS code, but many such codes,
such as EVENODD [19], X-Code [20], RDP Code [21] and
STAR [22], possess low failure tolerance capability (of not more
than 3). Some flat XOR-based erasure codes such as WEAVER
Codes [23] have outstanding failure tolerance capability but high
storage overhead (of not less than 2).

Recently, based on traditional erasure codes, quite a few
schemes have been proposed to reduce access latency in dis-
tributed storage systems. Huang et al. [24] proposed the BoS
algorithm and first manifested analytically that codes can reduce
queueing delay. And a lot of work demonstrates that we can re-
duce access latency by sending redundant requests. Some of the
work [25]-[27] is based on theoretical analysis, while some [28]
also performs tests in trace-driven simulations. A code designed
to reduce the access latency while retaining excellent perfor-
mance of other metrics is still lacking. In this paper, we design
HTSC and FH HTSC which focus on reducing access latency
while ensuring good performance in other metrics.

Our Contributions: In this paper, to the best of our knowl-
edge, we are the first to propose the idea of generating par-
ity nodes from parity nodes to increase the availability of data

nodes. Based on this idea, we propose the tree-structured XOR-
based erasure codes, HTSC and FH HTSC. Under the same re-
pair cost, HTSC not only achieves better access latency, but also
lowers storage overhead and computation cost compared with
other popular and representative codes. FH HTSC is based on
HTSC and compared with HTSC, under the same repair cost, it
slightly increases storage overhead while maintaining the same
effectiveness on reducing access latency while greatly increas-
ing the failure tolerance capability. Compared with other repre-
sentative codes, FH HTSC is a superior choice for applications
requiring high data reliability and low access latency at the same
time.

The remainder of this paper is organised as follows. In Sec-
tion II we propose the system model for HTSC and FH HTSC
codes and analyze their performance. In Section III we build a
model to measure access latency and discuss the relationship of
access latency between HTSC and FH HTSC codes. In Section
IV we compare the performance of different codes and illustrate
the advantages of HTSC and FH HTSC codes. Finally, in Sec-
tion V, we conclude and discuss some open questions.

II. SYSTEM MODEL

A. Generating Parity Nodes from Parity Nodes

Existing erasure codes mainly make use of data nodes to gen-
erate the corresponding parity nodes. This can increase failure
tolerance capability and the more parity nodes, the more choices
we have to recover the original files. However, increasing the
number of parity nodes will not only increase the storage over-
head, but also increase the repair burden on data nodes since data
nodes are probably accessed to help repair parity node failures.
For example, in LRC [4], any global parity node failure needs
all the data nodes for repair. The increased repair burden on data
nodes will increase the access latency of read requests for data
nodes. This is especially undesirable in those applications with
frequent data retrievals, such as in Google search.

If we not only generate parity nodes with data nodes, but also
generate parity nodes with parity nodes, we can transfer part of
the repair burden from data nodes to parity nodes, thus reducing
access latency. That is, when any parity node fails, we can just
repair it with other parity nodes and thus increasing the avail-
ability of data nodes. However, generating parity nodes with
parity nodes may seem to increase storage overhead. But in the
latter subsections, we will manifest that, with some reasonable
design, generating parity nodes with parity nodes will help re-
duce access latency while not increasing or even lowering the
storage overhead.

Here we will propose Hierarchical Tree Structure Code
(HTSC) and High Failure-tolerant Hierarchical Tree Structure
Code (FH HTSC) and study their performance on different met-
rics.

B. HTSC Storage System

A Galois Field [29] is an algebraic structure that contains a
finite number of elements. Galois Field has the property that the
results of all the operations applied to its elements still belong
to this field. The XOR operation can be regarded as a linear
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combination of the original data nodes in a Galois Field of size
2 and can be denoted as GF(2). Generally speaking, in a Galois
Field GF(2q), elements can be expressed with q-bit words.

Proposition 1: In a storage system with linear codes, suppose
di, i = 1, 2, 3, ... are the original data nodes. Then the parity

nodes generated are pi =
n∑

j=1

ci,jdj , where ci,j ∈ GF (2q).

It is obvious that the more number of elements in Galois Field,
i.e., the more possible different values of cij in Proposition 1, the
higher the computation cost of the code.

To facilitate understanding, we first give a simple example to
illustrate our HTSC storage system. In Fig. 1, the HTSC system
is constructed by a full binary tree structure with height 3. Leaf
nodes at level 3 are all data nodes and level 2 contains the parity
nodes generated by two data nodes at level 3. Similarly, parity
nodes at level 1 are generated by parity nodes at level 2 and the
parity node at level 0 is generated by parity nodes at level 1.
Only blue leaf nodes are data nodes and all other brown nodes
are parity nodes.
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Fig. 1. A simple example: HTSC(2,3) Code.

Note that whenever a parity node fails, we can use other par-
ity nodes instead of using data nodes to repair it, thus increasing
the data nodes availability in the storage system. To construct
and repair storage nodes in this system, simple XOR operation
is sufficient, that means, in Proposition 1, cij = 1 ∀ i, j =
1, 2, 3, ....

In general, we use (D,h) to describe an HTSC storage sys-
tem, where h stands for the height of the tree, and in the full
tree, each node other than leaves has D child nodes.

There are two crucial assumptions for our HTSC(D,h) stor-
age system: 1) in line with most of the previous work, such
as [4]-[6], we suppose the failures on different nodes in the stor-
age system are independent; 2) the tree structure is a full tree,
in which any node other than leaves owns the same number of
child nodes. The reason for the full tree assumption is that the
full tree structure has elegant properties and more importantly,
this structure can geometrically decrease the number of parity
nodes, thus greatly reducing storage overhead.

When using HTSC(D,h) to store files, we usually combine
different files into a fixed sizeM and divide them intoK parts to
be stored in theK data storage nodes. The general HTSC(D,h)
is illustrated in Fig. 2.

Proposition 2: In HTSC(D,h), we first divide the fixed size
M intoK = Dh pieces, each with size M

K ,whereK is the num-
ber of leaf nodes and the number of all nodes is N = Dh+1−1

D−1 .
At level h, the storage nodes are all original data nodes di, i =
1, 2, 3, ..., Dh, and at level h − 1, the storage nodes are all par-
ity nodes generated by original data nodes of level h. They are
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Fig. 2. A general model of HTSC(D,h) Codes.

ph−1,i =
D∑

j=1

dD(i−1)+j , i = 1, 2, 3, ..., Dh−1. At other levels

less than h − 1, we can similarly get the parity nodes ph−l,i =
D∑

j=1

ph−l+1, D(i−1)+j , i = 1, 2, 3, ..., Dh−l, l = 2, 3, ..., h.

Theorem 1: In an HTSC(D,h) storage system, the storage
overhead S = N

K = Dh+1−1
Dh(D−1) , then 1 < S < D

D−1 , and the
value of the storage overhead has negative correlation with D
and positive correlation with h.

Proof: Let the storage overhead be S(D,h) = Dh+1−1
Dh(D−1) ,

then ∂S(D,h)
∂h = Dh(D−1)lnD

D2h(D−1)2 > 0, since D ≥ 2, S(D,h) has
positive correlation with h.

Similarly, we have ∂S(D,h)
∂D = Dh−1(hD+D−h−Dh+1)

D2h(D−1)2 , let

S1(D,h) = hD + D − h − Dh+1, then we have ∂S1(D,h)
∂D =

(h + 1)(1 − Dh) < 0. Since D ≥ 2, h ≥ 1, S1(D,h)Max =

h+ 1− 2h+1 < 0, therefore we have ∂S(D,h)
∂D < 0, and storage

overhead has a negative correlation with D.
Besides, we can get lim

D→∞
S(D,h) = lim

D→∞
Dh+1−1
Dh(D−1) =

lim
D→∞

1− 1

Dh+1

1− 1
D

= 1, as well as lim
h→∞

S(D,h) = lim
h→∞

Dh+1−1
Dh(D−1) =

lim
h→∞

1− 1

Dh+1

1− 1
D

= D
D−1 , and consequently 1 < S < D

D−1 . 2

Theorem 1 indicates that under the full tree structure and with
appropriate placements of data nodes and parity nodes, the stor-
age overhead is controlled within a reasonable range. We will
compare it with other codes later.

In accordance with [4], [5], we calculate repair cost as the
number of nodes required to repair a failed node.

Proposition 3: In an HTSC(D,h) storage system, for any one
failure, the repair cost is R = D .

Actually the repair cost here stands for both repair I/O and
repair bandwidth. From Proposition 3 we can see that, in the
HTSC system, the repair cost for any one failure is a constant.
Since HTSC incorporates the idea of LRC that divides the data
nodes into small groups, the repair cost is usually much smaller
than K = Dh. Some other hierarchical codes such as HC [18]
also contains the idea of local reconstruction, but its repair cost
varies from D to K. This is a big range and it is exceedingly
hard to estimate the average repair cost. Accordingly, the repair
cost in HTSC(D,h) is both small and constant.

In the HTSC storage system, we use parity nodes to repair
the failed parity node, but use data nodes to repair only as a last
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resort. We achieve constant repair cost D that is much smaller
than K, the number of original data nodes.

Definition 1: In an HTSC system, data loss happens whenever
there is some failure in the system we cannot repair.

As illustrated in Fig. 1, if at level 3, two paired nodes (paired
nodes refer to those nodes that generate parity nodes together)
fail simultaneously, there will be data loss in the storage system,
i.e., data failure that cannot be repaired. To realize other per-
formance improvement, HTSC sacrifices some failure tolerance
capability compared with MDS codes. In practice, the proba-
bility of one failure is much higher than the probability of more
than one failure [4], [30]. Therefore, a little sacrifice of fail-
ure tolerance capability in HTSC is acceptable as long as we
can control the data loss probability within a reasonable range
acceptable to specific applications.

Next, we will discuss the data loss probability of the HTSC
storage system in detail.

Theorem 2: In an HTSC(D,h) storage system, let p
be the failure probability of a storage node, when n fail-
ures happen, the probability of data loss, Pn(loss) =
K(D−1)Cn−2

N−2

2 pn(1− p)N−n, where K is the number of leaves,
K = Dh, Cn

N is the number of feasible combinations of choos-
ing n numbers fromN numbers, n ≥ 2. Pn(loss) has a positive
correlation with n and a negative correlation with D and h.

Proof: In an HTSC(D,h) storage system, when any
two of n failed nodes belong to the same D-data node group,
there will be data loss for the system. That is, when n storage
nodes fail, to study the the conditional probability of data loss,
P (loss|n), we can just focus on two failed nodes which belong
to the same D-data node group. It is easy to get that there are
Dn−1 D-data node groups at level h. Since each D-data node
group has only D nodes, the number of possibilities that the
two failed nodes belong to any such group is C2

D = D(D−1)
2

and at the same time, the number of possibilities for the other
n − 2 failed nodes from the other N − 2 nodes is Cn−2

N−2, so
the total number of possibilities for data loss when n storage
nodes fail is Dn−1C2

DC
n−2
N−2. Since K = Dh, we can express

it as
K(D−1)Cn−2

N−2

2 . It is obvious that when any n from N nodes
fail, the total number of possibilities is Cn

N . Therefore, when
n storage nodes fail, the conditional probability of data loss,

P (loss|n) =
K(D−1)Cn−2

N−2

2Cn
N

. When p is the failure probabil-
ity of a node in the storage system, the probability of n fail-
ures is P (n) = Cn

Np
n(1− p)N−n, so the data loss probability

when n failures happen equals Pn(loss) = P (loss|n)P (n) =
K(D−1)Cn−2

N−2

2 pn(1− p)N−n. Although there may be some dif-
ference between the access frequency of data and parity nodes,
some recent studies such as the one from Google [31] points out
that temperature and activity levels are not correlated with stor-
age node failures as previously thought and in line with almost
all previous work on different kinds of codes, we also assume
the same failure rate p for data and parity nodes. With mathe-
matical induction, it is easy to prove that Pn(loss) has a positive
correlation with n and a negative correlation with D and h. 2

For instance, consider an HTSC(4,3) code. Suppose the in-
dependent failure probability of each node in the storage system
p =0.1, then we can get the data loss probability of two failures

as P2(loss) = 0.015%, three failures as P3(loss) = 0.14% and
four failures as P4(loss) = 0.64%. We can see that in this stor-
age system, although we can only ensure 100% no loss when
one failure happens, the probability of data loss when more than
one failure happens is actually rather small. Actually, in dis-
tributed storage systems, as in the Facebook warehouse cluster,
single failure recovery usually accounts for more than 98% stor-
age repair [30]. That is, the data loss probability can be even
lower in practice.

In HTSC(D,h), to reduce the probability of data loss, we
need to use a structure with large D and h, while at the same
time, we need to consider jointly the repair cost and storage
overhead.

For the same h, when D increases, the storage overhead and
the probability of data loss will decrease while the repair cost
will increase, and vice versa. Similarly, for the same D, when h
increases, the storage overhead will increase but the probability
of data loss will decrease, and at the same time, the repair cost
remains the same, and vice versa. That is, in this HTSC(D,h)
storage system, we cannot get the optimal condition of storage
overhead, data loss probability and repair cost at the same time
by adjusting parameters D and h, but we can flexibly change
D and h to achieve different tradeoffs to meet the performance
requirements for different applications.

C. FH HTSC Storage System

Although the probability of data loss is extremely small in
HTSC storage system, for some applications, its failure toler-
ance capability may be insufficient. Hence, we modify HTSC to
get higher failure-tolerance capability, and create an FH HTSC
system.

For general XOR-based erasure codes, to improve the fail-
ure tolerance capability, we have to increase the number of links
between data nodes and parity nodes [32]. Theoretically, the
number of arbitrary failures tolerable is decided by the Ham-
ming distance d and exactly speaking, it equals d − 1. That
is, when any two data nodes do not own more than one shared
parity node, the number of arbitrary failures it can tolerate de-
pends on how many parity nodes a data node is linked with. But
as discussed in [32], to increase the failure tolerance capability,
the repair cost for each node will greatly increase. Considering
the special structure of HTSC, we propose FH HTSC, which
can achieve higher failure tolerance capability compared with
HTSC.
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Fig. 3. A simple FH HTSC(2,3) Code.

FH HTSC(2,3) shown in Fig. 3 can tolerate any two fail-
ures, and it is created by just adding the four dotted links to
HTSC(2,3) in Fig. 1. It is obvious that there is no change in
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the storage overhead. The repair cost for the whole system can
be computed as two cases. For data nodes at level 3, the repair
cost increases from 2 to 3 while the repair cost of parity nodes
remains unchanged at 2. For Stepped Combination codes [32],
to guarantee the tolerance of any two failures, each data node
need to connect at least two parity nodes as illustrated in Fig. 4.

D1 D2 D3 D4 D6 D7 D8 D9D5

P1

D10

P2 P3 P4

Fig. 4. A two-node failure-tolerant Stepped Combination codes.

We can see that, in Fig. 4, since each data node has to be
connected with at least two different parity nodes, the links for
each parity node will greatly increase by more than 100%, and
thus the repair cost for each data node will also greatly increase.

While for FH HTSC(2,3) in Fig. 3, at level 3, for each two-
node group, the first data node only connects one parity node,
thus reducing the number of links for each parity node at level
2. If each data node has to connect two different parity nodes,
the repair cost for each data node will be 4 rather than 3. To tol-
erate any two failures, FH HTSC only increase the repair cost by
50%, thus indicating the advantage of FH HTSC system com-
pared with Stepped Combination codes [32], in terms of repair
cost.

To construct FH HTSC(D,h) with the capability to tolerate
more than two failures simultaneously, we have at least two
choices. The first way is to increase the number of links of the
data nodes that have already connected with two parity nodes to
three or more. This is similar to the way in [32], but [32] will
greatly increase the repair cost for each data node. The other
way is to exploit the special structure for FH HTSC(D,h), and
to connect the first data node in each D-data node group with
two, rather than one, different parity nodes. This is almost
the same structure as the two-failure tolerant Stepped Com-
bination codes [32], but we will prove that in this structure,
we can tolerate any four rather than two failures. Theoreti-
cally, there are many ways to construct the four-failure tolerant
FH HTSC(D,h) storage system that contains different links be-
tween the data nodes and parity nodes at level h−1. To facilitate
the understanding of the logical structure, we give a simple way
to construct it in Proposition 4, and the result is illustrated in
Fig. 5.

Proposition 4: To construct an FH HTSC(D,h) storage sys-
tem which can tolerate any four-node failures, we first di-
vide the fixed size M into K = Dh pieces, each with size
M
K , where K is the number of leaf nodes and the number of
all nodes is N = Dh+1−1

D−1 . At level h, the storage nodes
are all original data nodes di, i = 1, 2, 3, ..., Dh, and at
level h − 1, the storage nodes are all parity nodes gener-
ated by original data nodes of level h. They are ph−1,i =
D∑

j=1

dD(i−1)+j+dD(i−1)−j(D−1)+Dh{1−u[D(i−1)−j(D−1)]}, i =

1, 2, 3, ..., Dh−1 , where u(t) = 1, when t > 0, and u(t) = 0,
when t ≤ 0. At other levels less than h − 1, we can simi-

larly get the parity nodes ph−l,i =
D∑

j=1

ph−l+1, D(i−1)+j , i =

1, 2, 3, ..., Dh−l, l = 2, 3, ..., h.
Theorem 3: The necessary and sufficient condition for four-

failure tolerance FH HTSC(D,h) constructed as in Proposition
4 is h = 3, D ≥ 3, or h ≥ 4, D ≥ 2.

Proof: For the construction in Proposition 4, to make sure
each data node can connect with two different parity nodes and
any two data nodes share no more than one common parity node,
we need to meet the condition C2

Dh−1 ≥ Dh, that is, we have
Dh−1−2D−1 ≥ 0. If h ≤ 2, Dh−1−2D−1 ≤ D−2D−1 =
−D− 1 < 0. Similarly, Dh−1− 2D− 1 = D2− 2D− 1 when
h = 3, soD2−2D−1 = (D − 1)2−2 ≥ 0=(D − 1)2−2 ≥ 0
when D ≥ 3. Then if h ≥ 4, we can get Dh−1 − 2D − 1 ≥
DD2 − 2D − 1 ≥ 2D2 − 2D − 1 = (D − 1)2 +D2 − 2 ≥ 0,
when D ≥ 2.

For the proof that h = 3, when D ≥ 3, or h ≥ 4, when
D ≥ 2 is a sufficient condition for the four-failure tolerance
system, we can refer to the proof of Theorem 5. 2

The repair cost of four-failure tolerant FH HTSC storage sys-
tem when any one failure happens in the system are stated in
Theorem 4.

Theorem 4: For four-failure tolerant FH HTSC(D,h) stor-
age system constructed as in Proposition 4, any parity node re-
pair cost is D, and the repair cost for any data node is 2D.

Proof: In an FH HTSC(D,h) storage system, repair cost
for each parity node is the same as the HTSC(D,h) storage sys-
tem, that is, D. Repair cost for any data node depends on the
number of links each parity node at level h− 1 has, connecting
to different data nodes.

When a four-failure tolerance FH HTSC(D,h) storage sys-
tem constructed as in Proposition 4 meeting the condition in
Theorem 3, there will be 2Dh links from data nodes to all the
Dh−1 parity nodes at level h−1. Accordingly, each parity node
owns 2Dh

Dh−1 = 2D links to the data nodes. So, the repair cost for
each data node is 2D. 2
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Fig. 5. General four-node failure-tolerant FH HTSC(D,h) Code.

Theorem 5: An FH HTSC(D,h) storage system constructed
as in Proposition 4 and meeting the condition of Theorem 3 can
tolerate any four-node failures simultaneously.
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Proof: We construct the equations as below,

M=


1 1 ... 1 0 0 ... 0 ...... 1 0 ... 0
1 0 ... 0 1 1 ... 1 ...... 0 1 ... 0
...

... ...
...

...
... ...

... ......
...

... ...
...

0 0 ... 0 0 0 ... 0 ...... 1 1 ... 1



d =



d11
d12

...
d1D
d21
d22

...
d2D

...
dDh−11

dDh−12
...

dDh−1D



P=



P1

P2

...
PD

...
PDh−1



Then we have
Md = P

whereM is aDh−1×Dh matrix, d isDh×1 and P isDh−1×1.
As in Proposition 4, each data node connected with two different
parity nodes and any two data nodes cannot share more than one
common parity node, and hence in matrix M , each column has
exactly two ones and each column vector must be independent
of each other.

We first consider four failures all occurring on data nodes.
When any Dh−1 data nodes fail at the same time, we can

rewrite these failed storage nodes in the first Dh−1 rows in vec-
tor d, and also adjust the relevant column vectors in M to the
first Dh−1 columns, then we can rewrite the equation as below.

(
Ma Mb

)( da
db

)
= P

The Dh−1 failed storage nodes are all in da and the relevant
coefficients in M for the failed storage nodes are adjusted to
Ma. So Ma is Dh−1 × Dh−1, Mb is Dh−1 × Dh−1(D − 1),
da is Dh−1 × 1 and db is Dh−1(D − 1)× 1 . If Ma is full rank
and its rank equals Dh−1, then the inverse of Ma exists, we call
it Ma

−1. Consequently we have da = M−1a (P −Mbdb). This
equation has unique solution and we can repair all the Dh−1

failed storage nodes with it.
But in fact, although in the original M , each column has ex-

actly two ones, the row rank of Ma is not necessarily equal to
Dh−1. We know that, if we can repair n failed data nodes, there
must be at least n corresponding parity nodes that can help. That
is, n failed data nodes correspond to n columns in the matrix
M , and only when the row rank of the n columns is equal to or
greater than n, can we repair the n failed nodes. Since C2

3 = 3,
when n ≤ 4, the row rank of the n columns must be equal to
or greater than n, which ensures that we can repair the n failed
data nodes. But when n > 4, the row rank of the n columns

may be less than n, and we cannot guarantee the repair of all the
n failed nodes.

Next, we consider the case in which some of the four failed
nodes are parity nodes. Since in the FH HTSC(D,h) and
HTSC(D,h) structure, parity nodes can be repaired not only
by data nodes but also by other parity nodes, it is easy to check
that under this condition, we can also repair all the four failed
nodes no matter they are parity nodes or data nodes. 2

For the structure in Proposition 4, we just connect each data
node with two different parity nodes at level h − 1. We can
further consider the failure tolerance capability and repair cost
if we connect each data node with more than two parity data
nodes.

Theorem 6: In a general FH HTSC(D,h) storage system,
if we connect each data node at level h with n different parity
nodes and any two data nodes have at least one different parity
node to connect with them respectively, then the system can tol-
erate any n+ 2 node failures simultaneously and the repair cost
for each data node is nD and the repair cost for each parity node
is D.

Proof: Similar to the proof of Theorem 5, we can construct
the corresponding matrix equation Md = P . The difference is
that each column of M has n ones instead of two ones. Simi-
larly, when Cn

N = N, we can get N = n + 1 (n = 1 here is
an invalid solution and we ignore it). Therefore, the system can
tolerate any n+ 2 data node failures simultaneously. Similar to
the proof of Theorem 5, we can easily get that the system can
tolerate any n+ 2 node failures simultaneously.

For each data node, since there are n links to parity nodes at
level h− 1, there will be nDh links between data nodes at level
h and parity nodes at level h − 1. That is, for each parity node
at level h − 1, there will be nDh

Dh−1 = nD links to data node at
level h. Accordingly the repair cost for each data node at level
h is nD. 2

Of course, not all FH HTSC(D,h) storage systems is capable
of tolerating any n + 2 node failures. Some conditions similar
to Theorem 3 must be met. Here in Theorem 6, we just give the
expression of potential higher failure tolerance capability.

III. MODEL TO MEASURE ACCESS LATENCY

When using HTSC(D,h) or FH HTSC(D,h) to store files,
we usually combine different files into a fixed size M , say 1
to 3 GB and divide them into K parts to be stored in K data
storage nodes. In practice, we can decide the fixed size M ac-
cording to the capacity of each storage node and the parameters
of HTSC(D,h) or FH HTSC(D,h). It is obvious that the size
of M is extremely big for most users, and most of the time,
users only desire part of the file stored in one of the K nodes,
say, the systematic part in uncoded form. This is a big difference
from much of previous work since they usually assume that each
read request desires all the data in a codeword, namely, all the
data in the K nodes. However, this hardly captures the reality.
As an example, in WAS, only when a file reaches a certain size
(e.g., 3GB), will it be a candidate for erasure coding [4]. While
clearly, 3GB is exceedingly big for most users and they only de-
sire part of them most of the time. This is consistent with the
design of HTSC(D,h). Accordingly, in this paper, we focus on
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read requests from users who only desire part of the data stored
in one of the K data nodes.

As described in [11], other than write requests, there are three
kind of requests for any storage node, namely, read requests,
degraded reads and repair requests. Since degraded reads re-
sult from read requests on other storage nodes, we can merge
degraded reads and read requests into general read requests.

In a storage system, suppose read requests arrival rate for any
storage node is λ′1. A fraction x of read requests are direct
reads and 1 − x of them are degraded reads. Any one stor-
age node is connected to n nodes and p is the probability of
that storage node joining the reconstruction of the n nodes. We
can get the general read requests arrival rate for that node as
λ1 = xλ′1 + (1 − x)npλ′1 [11]. Choose the original repair re-
quests arrival rate λ′2 of one code as unit value. Combining n
and p, we can get the repair requests arrival rate λ2 of each code
to be compared [11]. µ1 and µ2 are the service rates of general
read requests and repair requests, respectively.

We model the general read and repair requests as a head-of-
the-line (HOL) priority queueing [33] system. Since we try our
best to guarantee no data loss in distributed storage systems, re-
pair requests should enjoy higher priority than general read re-
quests. Therefore, repair requests invariably queue in front of
read requests. But in their respective groups, requests follow the
rule of first-come-first-served.

Theorem 7: Access latency of four-node failure-tolerant
FH HTSC(D,h) equals the access latency of HTSC(2D,h),
where h = 3, D ≥ 3, or h ≥ 4, D ≥ 2.

Proof: From [11], for the same h, FH HTSC(D,h) and
HTSC(2D,h) share the same repair cost 2D and parameter h
is uncorrelated with repair cost. For an arbitrary storage node
in HTSC(2D,h), the number of nodes connected to it is 2D
and in FH HTSC(D,h), the number of nodes connected to
such a node is 4D. The general read requests arrival rate of
HTSC(2D,h) is λ1 HTSC(2D,h) = xλ′1+(1−x)2Dλ′1 2D−1

2D =
xλ′1+(1−x)(2D−1)λ′1 and λ1 FH HTSC(D,h) = xλ′1+(1−
x)4Dλ′1(

4D−2
4D

1
2 +

2
4D0) = xλ′1 + (1− x)(2D− 1)λ′1. That is,

λ1 HTSC(2D,h) = λ1 FH HTSC(D,h).
It is obvious that the practical repair requests arrival rate

for any storage node is in proportion to the number of nodes
it is connected to. Choose HTSC(2D,h)’s original repair re-
quests arrival rate λ′2 as unit value and we adjust the repair
requests arrival rate of FH HTSC(D,h) as 2λ′2 according to
the number of nodes each node is connected to. For a data
node in HTSC(2D,h), it will potentially help repair 2D − 1
out of 2D nodes connected to it because one parity node will
be repaired just by parity nodes. We adjust repair requests
arrival rate of HTSC(2D,h) to 2D−1

2D λ′2. For one data node
in FH HTSC(D,h), it is connected with 4D − 2 other data
nodes but may potentially repair them with probability 0.5,
and the other two parity nodes will just be repaired by par-
ity nodes. Hence we adjust the repair requests arrival rate as
( 4D−24D ·0.5+ 2

4D ·0)·2λ
′
2 = 2D−1

2D λ′2. That is, λ2 HTSC(2D,h) =
λ2 FH HTSC(D,h).

Since FH HTSC(D,h) and HTSC(2D,h) are both flat XOR-
based erasure codes and possess the same coding complexity,
they enjoy the same service rate. Therefore, they have the same
access latency.

h = 3, D ≥ 3, or h ≥ 4, D ≥ 2 is a sufficient and necessary
condition for the four-failure tolerance of FH HTSC(D,h), as
demonstrated in Theorem 3. 2

IV. COMPARISON RESULTS AND ANALYSIS

In this section, we model the read requests to each storage
node as single-server M/M/1 queues, and part of them are
transferred to other nodes as degraded read requests. There are
also repair requests with highest priority in the system. Accord-
ingly, with different parameters, we can get the access latency of
different codes for users’ read requests. Note that we focus on
reducing access latency of read requests, and we also consider
degraded reads and repair requests since they have great impact
on the latency performance of read requests.
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Fig. 6. Access latency comparison between HTSC(D,h) and
FH HTSC(D,h).

First, we compare the access latency of HTSC(D,h) and
FH HTSC(D,h) as illustrated in Fig. 6. We set µ1 = 2,
µ2 = 2 and x = 0.9 for all the codes and set the orig-
inal repair requests arrival rate of HTSC(2, h), λ′2 = 0.1, as
unit value. As in [11], we can work out the relative values
of other codes. Fig. 6 indicates that when D is smaller, ac-
cess latencies of both HTSC(D,h) and FH HTSC(D,h) are
lower. In addition, the access latencies of FH HTSC(2, h) and
HTSC(4, h), FH HTSC(3, h) and HTSC(6, h), FH HTSC(4, h)
and HTSC(8, h) are, respectively, the same, which validates the
results in Theorem 7.

Then, we compare the access latencies of HTSC and
FH HTSC codes with different erasure codes. Combined with
other performance metrics, we will display the advantages of
HTSC and FH HTSC codes over other codes. Many erasure
codes have been proposed for distributed storage systems and
we choose some representative ones to compare. Till now, to
the best of our knowledge, only RS, LRC and LRCs (LRC and
LRCs are different codes) are widely applied such as by Face-
book, Google, Microsoft and so on. RS can greatly reduce stor-
age overhead and improve failure tolerance while suffering from
relatively high repair cost. Compared with RS, LRC and LRCs
can reduce repair cost while LRCs suffers relatively high com-
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putation cost. To put it simply, we believe RS, LRC and LRCs
are representative codes since they have representative proper-
ties and they are all widely applied.

Theoretically, each code has an infinite number of parameter
sets and it is impossible to compare each set of parameters be-
tween different codes. Besides, the fact that different sets of pa-
rameters for each code just achieve different tradeoffs of differ-
ent performance metrics also suggest it is meaningless to com-
pare all of them. So, we choose the sets of parameters that are
used in practice by different companies for each code to com-
pare with HTSC and FH HTSC codes. Their wide applications
in those big companies definitely show that those sets of pa-
rameters can achieve good or at least acceptable performance of
different metrics and this will make sure that our comparisons
are meaningful.

Hence in this section, we will compare the performance
of LRC(12,2,2) (used in WAS [4]), RS(6,3) (used in GFS II
[34], [35]), RS(10,4) (used in HDFS-RAID in Facebook [36])
and LRCs(10,6,5) (used in HDFS-Xorbas [5]) with that of
HTSC and FH HTSC for different metrics. Moreover, to make
the results more meaningful, we divide the comparison results
into three parts such that in each part, the repair cost of HTSC
and FH HTSC is the same or almost the same as the widely used
codes.
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Fig. 7. Access latency comparison of different erasure codes with repair cost
equal to 6.

For Fig. 7, 8 and 9, we set µ1 = 2, µ2 = 2 and x = 0.9 for
all the codes. The access latency ranks in all tables are included
to facilitate comparisons. Since the real latency value is related
with the value of the read requests arrival rate, all latency values
are shown in Fig. 7, 8 and 9.

Fig. 7 compares the access latency of LRC(12,2,2), RS(6,3),
HTSC(6,3) and FH HTSC(3,3) and we set the λ′2 = 0.1 of
HTSC(6,3) as unit value. Table 1 compares the five performance
metrics of all those codes. From Fig. 7 and Table 1, we can see
that, under the same repair cost, HTSC(5,3) has the best access
latency, storage overhead and computation cost, while suffering
from a low failure tolerance capability; FH HTSC(3,3) is supe-
rior to RS(6,3) in each performance metric and also outperforms
LRC(12,2,2) in all performance metrics except for storage over-

head.

Since obviously the number of elements in Galois Field of
LRC(12,2,2), RS(6,3) is more than that of HTSC(6,3) and
FH HTSC(3,3), so LRC(12,2,2), RS(6,3) have higher compu-
tation cost. Moreover, the global parity nodes of LRC(12,2,2)
need to connect 12 data nodes rather than 6 data nodes in
RS(6,3). Overall, it is obvious that LRC(12,2,2) suffers
from higher computation cost compared with RS(6,3). Since
HTSC(6,3) and FH HTSC(3,3) have the same Galois Field and
the same number of data nodes in a local codeword, they have
the same computation cost. Similarly, we can get the computa-
tion cost ranks in the other two tables.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

Read Requests Arrival Rate λ
1

‘

A
cc

es
s 

L
at

en
cy

 o
f 

G
en

er
al

 R
ea

d
 R

eq
u

es
ts

RS(10,4)

HTSC(10,3), FH_HTSC(5,3)

Fig. 8. Access latency comparison of different erasure codes with repair cost
equal to 10.

Fig. 8 compares the access latency of RS(10,4), HTSC(10,3)
and FH HTSC(5,3) and we set λ′2 = 0.1 of HTSC(10,3) as unit
value. Table 2 compares the five performance metrics of all
those codes. From Fig. 8 and Table 2, similarly, under the same
repair cost, HTSC(10,3) has the best access latency, storage
overhead and computation cost performance, while suffering
from a low failure tolerance capability; FH HTSC(5,3) has the
same failure tolerance capability while outperforming RS(10,4)
in all other performance metrics.

Fig. 9 compares the access latency of LRCs(10,6,5),
HTSC(5,2) and FH HTSC(2,4) and we set λ′2 = 0.1 of
FH HTSC(2,4) as unit value. Table 3 compares the five per-
formance metrics of all those codes. From Fig. 9 and Table
3, we can see that, with the same repair cost, HTSC(5,2) is su-
perior to LRCs(10,6,5) in access latency, storage overhead and
computation cost, while suffering from a lower failure tolerance
capability. FH HTSC(2,4) outperforms LRCs(10,6,5) in all per-
formance metrics except for storage overhead. The main reason
for the higher storage overhead of FH HTSC(2,4) is that its re-
pair cost is a little lower than the other two codes. From Table
1 we can find that when the repair cost of FH HTSC is 6, it can
realize much lower storage overhead.
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Table 1. Performance Comparison of different erasure codes with repair cost equal to 6

Code\Metrics Repair Cost Access Latency Rank Storage Overhead Failure Tolerance Computation Cost Rank
LRC(12,2,2) 6 3rd 1.33 Any 3 3rd

RS(6,3) 6 2nd 1.5 Any 3 2nd
HTSC(6,3) 6 1st 1.2 Any 1 1st

FH HTSC(3,3) 6 1st 1.48 Any 4 1st

Table 2. Performance Comparison of different erasure codes with repair cost equal to 10

Code\Metrics Repair Cost Access Latency Rank Storage Overhead Failure Tolerance Computation Cost Rank
RS(10,4) 10 2nd 1.4 Any 4 2nd

HTSC(10,3) 10 1st 1.11 Any 1 1st
FH HTSC(5,3) 10 1st 1.25 Any 4 1st

Table 3. Performance Comparison of different erasure codes with repair cost almost equal to 5

Code\Metrics Repair Cost Access Latency Rank Storage Overhead Failure Tolerance Computation Cost Rank
LRC(10,6,5) 5 2nd 1.6 Any 4 2nd
HTSC(5,2) 5 1st 1.24 Any 1 1st

FH HTSC(2,4) 4 1st 1.94 Any 4 1st
Note: Since the special structure of FH HTSC, its repair cost can only be even number.
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Fig. 9. Access latency comparison of different erasure codes with repair cost
equal to 5.

V. CONCLUSION AND FUTURE WORK

In this paper, we design flat XOR-based erasure codes
HTSC(D,h) and FH HTSC(D,h) to reduce access latency
while maintaining outstanding performance for other metrics in
distributed storage systems. We compare them with other repre-
sentative codes and find that other than reducing access latency,
under the same repair cost, they also realize superior perfor-
mance on other metrics, such as computation cost and storage
overhead. In particular, FH HTSC is a superior choice for ap-
plications requiring high data reliability and low access latency
at the same time.

There are still some open questions. For instance, along with
most of the previous work, models in this paper are based on
the independent failure model and assume that storage nodes
are located at different sites. As [35], [37] mentioned, in fact, it
is hard to avoid dependent failures in practical applications and

such dependencies may impact system reliability and availabil-
ity. In the future, we will study the influence of storage node
placement and also analyze our HTSC and FH HTSC codes un-
der the circumstances of dependent failures.
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