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Structures and harmonic vibrational frequencies for excited states
of diatomic molecules with CCSD„R12… and CCSD„F12… models

Jun Yanga� and Christof Hättigb�

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150 D-44801 Bochum,
Germany

�Received 27 November 2008; accepted 12 February 2009; published online 23 March 2009�

The equation-of-motion coupled-cluster method for excited states with the singles-and-doubles
model �CCSD� has been implemented for ansatz 2 of the explicitly correlated CCSD�R12� and
CCSD�F12� methods as part of the program package Dalton. In this model, an orthonormal
complementary auxiliary basis set is used for the resolution-of-identity approximation in order to
calculate the three-electron integrals needed for CCSD�R12� and CCSD�F12�. The additional
CCSD�R12� or CCSD�F12� terms introduced within ansatz 2, which are not present in ansatz 1, are
derived and discussed with regard to the extra costs needed for their computation. As a first
application the basis set convergence of equilibrium bond lengths and harmonic vibrational
frequencies has been investigated for some singlet excited states of the diatomic molecules N2, CO,
BF, and BH. The calculated CCSD�F12� results show that the average absolute deviations of the
bond lengths and frequencies from the basis set limits are below 0.1 pm and 5 cm−1 as well as 0.05
pm and 1 cm−1 for the triple- and quadruple-� basis sets, respectively. These deviations are shown
to largely arise from the SCF basis set incompleteness errors. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3093947�

I. INTRODUCTION

It has been long-standing that correlated wave function
based quantum chemical calculations suffer from the slow
convergence of the correlation energy with the basis set. This
is particularly well known to conventional wave function
methods such as configuration interaction �CI�, nth-order
Møller–Plesset perturbation theory �MPn�, and coupled-
cluster �CC� theory. It has been recognized that this problem
is due to the deficient representation of the cusp condition in
the coalescent region of the electronic wave function when
Slater determinants are built on one-electron basis functions.
In the past decades, many efforts have been made to include
a correlation factor depending on the interelectronic distance
into the wave function1–3 to improve the description of the
short-range electron correlation. In particular the explicitly
correlated so-called R12 approach has been systematically
established for several standard wave function methods and
leads, e.g., to the hierarchy of MP2-R12,3 CCSD-R12, and
CCSD�T�-R12 �Refs. 4–6� for accurate ground state correla-
tion energies close to the basis set limit.7–9 Recently,
CCSD�R12� models with less computational costs were
introduced10,11 by treating the R12 cluster projection in anal-
ogy to the CC2 model.12 The CCSD�R12� ground state cor-
relation energies obtained with quadruple-� and triple-� basis
sets have been shown to be superior to standard CCSD re-
sults computed using quintuple-� basis sets.11 Very recently
CCSD�T�-F12a and CCSD�T�-F12b approaches employing
local orbitals and the diagonal fixed amplitude ansatz,13

which excludes all off-diagonal R12/F12 amplitudes and pa-

rametrizes the diagonal R12/F12 amplitudes due to the cusp
conditions,14,15 have been developed by Adler et al.16 The
correlation contributions to relative energies �e.g., reaction
energy, binding energy, interaction energy, etc.� given by
CCSD�T�-F12a and CCSD�T�-F12b also demonstrate the
same basis set convergence as the CCSD�T��F12� model but
with two orders of magnitude faster than standard CCSD�T�
quintuple-� calculations.16,17 This method is orbital invariant,
size consistent, and free of geminal basis set superposition
errors.18,19 Last but not least, noniterative perturbative ex-
plicitly correlated CCSD�2�R12 and CCSD�T�R12 approaches
which assume the extended Brillouin theorem for ansatz 2 to
remove the coupling term between conventional doubles and
R12 geminal functions in the zeroth-order Hamiltonian have
been introduced by Valeev.20,21 This perturbative method fol-
lows the formalism from Stanton and Gauss22 which ex-
plores the perturbation expansion of the similarity-
transformed Hamiltonian by Lödwin partitioning.
CCSD�2�R12 and CCSD�T�R12 give the geminal correction to
correlation energies requires only MP2-R12 and conven-
tional CCSD�2� or CCSD�T� computations. The other inter-
esting direction of explicitly correlated methods leads to the
automated generation of full CCSD-R12 implementation us-
ing tensor contractions by Shiozaki et al.,23,24 which serves
as benchmarks for rigorous assessment of CCSD�R12� and
CCSD�2�R12 approximations.

In the regard to the correlation factors, it has been fur-
ther shown that nonlinear correlation factors13,25 such as
e−�r12 or r12e

−�r12 �i.e., F12 methods� are even more efficient
alternatives to the original linear-r12 ansatz �i.e., R12 meth-
ods�. The formal R12 or F12 double excitations occur only in
the virtual space outside the finite basis sets in ansatz 1,26
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while in ansatz 2 �Ref. 27� the excitation space is also aug-
mented by mixed replacements both inside and outside the
orbital basis set. The strong orthogonality condition leads to
explicitly correlated geminal functions orthogonal to the
space spanned by the conventional double excitations. The
explicit implementation of the additional required three-
electron integrals, often encountered in the explicitly corre-
lated methods, is avoided by inserting the resolution of the
identity �RI� based on the complementary auxiliary basis set
�CABS� approximation.27 Other approximations involved in
explicitly correlated methods are the so-called standard ap-
proximations to evaluate the commutators with the Fock
operator.28

Beyond the ground state, excited states have been treated
in the spirit of R12 corrections at the CC level. Fliegl et
al.29,30 extended CC2-R12 to compute excitation energies.
Neiss and Hättig31 implemented the CCSD�R12� response
theory to evaluate polarizabilities and hyperpolarizabilities
as yet in ansatz 1 only. The accelerated basis set convergence
of these �hyper�polarizabilities and total energies of excited
states have been observed to be similar to those of ground
state total energies. By noting the fact that in the finite basis
set ansatz 1 is less accurate than ansatz 2 due to a more
restrictive explicitly correlated excitation space, it is desir-
able to incorporate ansatz 2 for excited states to the
CCSD�R12� or CCSD�F12� method. Therefore in Sec. II of
the present work, we derived and implemented the CC Ja-
cobi matrix for CCSD�R12� and CCSD�F12� with ansatz 2
and report an implementation in the program package
DALTON.32

Apart from extensive basis set convergence studies for
correlation energies, a number of reports have appeared re-
cently which focused on ground state molecular geometries
and vibrational freqencies,33–36 going through hierarchies of
both one-electron basis sets and wave function correlation
levels. Such studies are important since there is no guarantee
that for molecular properties an identical convergence behav-
ior will be observed as for energies.36 However, nothing is
yet known to the corresponding performance for excited
states. Therefore we applied in the current report the new
implementation to obtain equilibrium bond lengths and har-
monic frequencies for a set of singlet excited states in N2,
CO, BF, and BH to assess the performance of CCSD�R12�
and CCSD�F12� for excited state calculations.

II. THEORY AND IMPLEMENTATION

A. CCSD„R12… and CCSD„F12… models

As usual in conventional CCSD,37 the explicitly corre-
lated CCSD-R12 or CCSD-F12 wave function is defined as

�CC� = eT̂�HF� , �1�

where the reference state is the Hartree–Fock �HF� wave
function and the cluster operator contains conventional

single �T̂1�, double �T̂2� and R12 or F12 double �T̂2�� replace-
ments,

T̂ = T̂1 + T̂2 + T̂2�. �2�

For a closed shell reference �HF�, the spin-free excitation
operators are

T̂1 = �
ai

ti
aEai, �3�

T̂2 =
1

2 �
aibj

tij
abEaiEbj , �4�

T̂2� =
1

2�
xiyj

cij
xy�

��

w��
xy E�iE�j , �5�

where the operators Eai and E�i give the conventional and
R12 single excitations. ti

a, tij
ab, and cij

xy are the singles,
doubles, and R12 doubles cluster amplitudes, respectively.
Throughout the paper �i , j ,k , l , . . .	 denotes a set of occupied
orbitals, �a ,b ,c ,d , . . .	 virtual orbitals, and �� ,� , . . .	 a com-
plete space complementary to the occupied orbitals in ansatz
2. With �x ,y , . . .	 we denote those molecular orbitals �MOs�
that enter the R12 geminal functions,

�xy�1,2� = ŵ12�x�1��y�2� . �6�

In principle, x ,y , . . . can be any MOs due to the correlation
projector enclosed in ŵ12. Usually, only occupied MOs are
used in Eq. �6� when calculating ground state energies and
only a few additional virtual MOs have been included to
accurately describe the excited electronic states of small
molecules.30 In Eq. �6�, ŵ12 is defined as the product of a

projection operator Q̂12 and a correlation factor f12 which
depends on the interelectronic distance r12,

ŵ12 = Q̂12f12. �7�

The geminal function �6� can be expanded as a linear com-
bination of orbital products in the complementary orbital
space,

�xy�1,2� = �
��

w��
xy ���1����2� , �8�

with the geminal-orbital overlap w��
xy integrals,

w��
xy = 
���1����2���xy�1,2��

= 
���1����2��ŵ12��x�1��y�2�� . �9�

The so-called R12 and F12 schemes refer to different corre-
lation factors f12 in Eqs. �10� and �11�, respectively,

f12 = r12, �10�

f12 = 1 − e−�r12. �11�

For ansatz 2, which is employed in the present study, Q̂12 is
given by

Q̂12 = �1 − Ô1��1 − Ô2� − V̂1V̂2, �12�

where Ôi and V̂i project functions for electron i onto, respec-
tively, the occupied and virtual spaces. In the basis set limit,

Q̂12 becomes zero and the R12 contributions to cluster am-

124101-2 J. Yang and C. Hättig J. Chem. Phys. 130, 124101 �2009�
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plitude equations disappear. The F12 correlation factor is
represented in our implementation in the DALTON program32

as a linear combination of six Gaussian functions. The only
change needed to switch from the R12 to the F12 approach is
a displacement of the correlation factor r12 by 1−e−�r12 in the
integrals which involve geminal functions �6�. Most of these
integrals can be precalculated, once and for all, before the
CC iterations and stored on file. For a more detailed discus-
sion of the implementation we refer to Refs. 11 and 38.

The singles, doubles, and R12 doubles projection mani-
folds can be spanned by

�ā

i
� =

1

2

HF�Eai

† , �13�

�ab

ij
� =

1

6

HF��2Eai

† Ebj
† + Eaj

† Ebi
† � , �14�

�xy

ij
� =

1

6�
��

�w†�xy
��
HF��2E�i

† E�j
† + E�j

† E�i
† �

= �
��

�w†�xy
�����

ij
� , �15�

where 
��
ij � is defined analogously to Eq. �14�.

Let us turn to the additional R12 contributions to the
CCSD cluster amplitude equations, which yield the CCSD-
R12 model:

�ai
�R12� = �ā

i
���̃,T̂2���HF� , �16�

�aibj
�R12� = �ab

ij
��F̂,T̂2�� + �̂T�HF� , �17�

�xiyj
�R12� = �xy

ij
��F̂,T̂2 + T̂2�� + �̂T�HF� . �18�

In the above, F̂ is the Fock operator, �̂ the electron fluctua-

tion potential, and �̃ and �̂T are defined as similarity trans-

formations with T̂1 and T̂,

�̃ = e−T̂1�̂eT̂1, �19�

�̂T = e−T̂�̂eT̂. �20�

Fliegl et al.10 introduced the CCSD�R12� model by keeping

only the lowest order in T̂2� and �̂T̂ in a way similar to the
CC2 doubles amplitudes, which yields

�aibj
�R12� = �ab

ij
��F̂,T̂2�� + ��̃ + ��̂,T̂2�,T̂2���HF� , �21�

�xiyj
�R12� = �xy

ij
��F̂,T̂2 + T̂2�� + �̃ + ��̃,T̂2��HF� . �22�

The R12 contributions to the singles equations are kept in the
original form of Eq. �16�, although the similarity transforma-

tion with T̂1 in �̃ in Eqs. �21� and �22� are not important for

ground state wave functions and correlation energies since
the singles are not directly coupled with the HF reference
determinant �HF� due to Brillouin theorem. They are, how-
ever, kept to obtain with CCSD�R12� and CCSD�F12�
coupled-cluster models which can be used in the framework
of CC response theory to calculate excitation energies and
higher-order properties for which the singles play a crucial
role.

B. CCSD„R12… and CCSD„F12… Jacobi transformations

The coupled-cluster response theory or equation-of-
motion coupled-cluster �EOM-CC� method has become a
commonly used approach for excited states.39–42 The devel-
opment of EOM-CC also includes the combination of cluster
and perturbation expansions.43–47 In the present work, we
extend EOM-CCSD due to R12 and F12 corrections for an-
satz 2.

The EOM-CC excitation energies are obtained as eigen-
values 	 of the Jacobi matrix

AR = 	SR , �23�

where R is the eigenvector. The elements of the Jacobi ma-
trix A and the overlap matrix S are defined as

A
i�j
=

��
i

�t�j

, �24�

S
i�j
= 

i��̂�j

�HF� , �25�

where t�j
is the cluster amplitude and �̂�j

denotes the corre-
sponding excitation operator. Due to the use of the bior-
thogonal basis for the singles and conventional doubles
space S has the following structure

S = 
1 0 0

0 1 0

0 0 S
2��2�
� , �26�

where only the block S
2��2�
is not a unit matrix since it

occurs between two R12 projection manifolds which involve
the nontrivial correlation factor ŵ12. The elements of S
2��2�
can be expressed as

Sxyij,x�y�i�j� = P̂ij
xy
ii�
 j j�Xxy,x�y�, �27�

where

Xxy,x�y� = 
�x�1��y�2��ŵ12
† ŵ12��x��1��y��2�� , �28�

with the particle permutation operator P̂ij
xy defined as

P̂ij
xy�ij

xy = �ij
xy + � ji

yx. �29�

Concerning the solution of the eigenvalue problem, Eq. �23�,
we note that the direct diagonalization of the Jacobi matrix A
is not possible because of the tremendously huge dimensions
of A. Instead an iterative modified Davidson scheme is used
which requires the implementation of the direct right con-
tractions AR and SR. The explicitly correlated contributions
to the result of AR are for CCSD�R12� and CCSD�F12� with
ansatz 2:

124101-3 CCSD�R12� and CCSD�F12� for excited states J. Chem. Phys. 130, 124101 �2009�
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�ai
�R12� = �ā

i
���̄,T̂2�� + ��̃,R̂2���HF� , �30�

�aibj
�R12� = �ab

ij
��F̂,R̂2��

+ ��̃ + ��̂,T̂2�,R̂2�� + ��̄ + ��̂,R̂2�,T̂2���HF� ,

�31�

�xiyj
R12 = �xy

ij
��F̂,R̂2 + R̂2�� + �̄ + ��̃,R̂2� + ��̄,T̂2��HF� ,

�32�

where �̄ is a fluctuation potential which is one index trans-

formed with the single excitation part of the trial vector R̂1

�̄ = �

1

� ��̃

�t
1

�R
1
= ��̃,R̂1� �33�

with �̃ defined in Eq. �19�. The vector SR takes the form

�SR�xyij = �
x�y�i�j�

Sxyij,x�y�i�j�Rij
x�y� = P̂ij

xy �
x�y�

Xxy,x�y�Rij
x�y�.

�34�

C. V̂ intermediates in the Jacobi transformations

In the CCSD�R12� or CCSD�F12� ground state energy

calculation, the construction of matrix elements for �̃ with
geminal functions, which are collected in an intermediate as

Ṽxy

� = 
�x�1��y�2��ŵ12

† e−T̂1
1

r12
��
�1����2�� �35�

is one of the most expensive steps in the iterative solution of
the cluster equations. Here 
 and � represent atomic orbitals

TABLE I. R12 specific contributions to the Jacobi matrix transformations for CCSD�R12�/ansatz 2. These
contributions are not present for CCSD�R12�/ansatz 1. We write the transformed result vectors as �aibj

�R12�

=�aibj
C� +�aibj

D� +�aibj
E� �doubles� and �xiyj

�R12�=�xiyj
B� +�xiyj

C� +�xiyj
D� +�xiyj

E� +�xiyj
F� �R12 doubles�. In the table, R̃pq

rs =2Rpq
rs

−Rpq
sr , t̃pq

rs =2tpq
rs − tpq

sr , Lpq
rs =2gpq

rs −gpq
sr , t�jk

p�b=�xyRjk
xyrxy

p�b, and t̄ jk
p�b=�xycjk

xyrxy
p�b, where gpq

rs and rpq
rs are defined, respec-

tively, in Eqs. �48� and �47�. In this table, p� denotes the orthogonal auxiliary orbitals.

Right hand side Jacobi matrix transformations �
=��A
�R�

�aibj
C� = − �1

2
+ P̂ij���p�kt�jk

p�bCp�kai
� + �p�kt̄jk

p�bC̃p�kai
� � Cp�kai

� = gkã
ĩp� − �dltli

adglk
p�d

C̃p�kai
� = �gkā

ĩp� + gkã
īp�� − �dlRli

adglk
p�d

�aibj
D� =

1

2
�p�k�2t�jk

bp� − t�jk
p�b�Dp�kai

� +
1

2
�p�k�2t̄ jk

bp� − t̄ jk
p�b�D̃p�kai

� Dp�kai
� = Lkã

p�ĩ + �dlt̃il
adLkl

p�d

D̃p�kai
� = �Lkā

p�ĩ + Lkã
p�ī� + �dlR̃il

adLkl
p�d

�aibj
E� = �p�t

�
ij
bp�Ep�a

�1 + �p�t̄i j
bp�Ẽp�a

�1 + �cRij
bcEac�

1 + �ctij
bcẼac�

1 Ep�a
�1 = �k�Lãk

p�k̃ − Lak
p�k� − �dlmt̃lm

daglm
dp�

Eac�
1 = − �p�lmt̄lm

p�aLlm
p�c

Ẽp�a
�1 = �k�Lāk

p�k̃ + Lãk
p�k̄� − �dlmR̃lm

daglm
dp�

Ẽac�
1 = − �p�lmt�lm

p�aLlm
p�c

�xiyj
B� = �cdtij

cdV̄xy
cd V̄xy

cd = �
�V̄xy

��
c

h ��d
h

V̄xy

� = − P̂xy


��mp�rxy
m̄p�gmp�


�

�xiyj
C� = − �1

2
+ P̂ij��p�brxy

p�b��cmRjm
cbCmip�c

�

+ �cmtjm
cbC̃mip�c

� � Cmip�c
� =gmp�

ĩc

C̃mip�c
� =gmp�

īc

�xiyj
D� =

1

2
�p�brxy

p�b��cmR̃jm
bcDmcp�i

� + �cmt̃jm
bcD̃mcp�i

� �
Dmcp�i

� =Lmp�
cĩ

D̃mcp�i
� =Lmp�

cī

�xiyj
E� = �p�brxy

p�b��cRji
bcEp�c

� + �ctji
bcẼp�c

� � Ep�c
� = �m�Lp�m

cm̃ − Lp�m
cm �

Ẽp�c
� = �mLp�m

cm̄

�xiyj
F� = V̄xy

ij V̄xy
ij = �
�V̄xy


��
i
h ��j

h

V̄xy

� = − P̂xy


��mp�rxy
m̄p�gmp�


�
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�AOs�. If O denotes the number of occupied orbitals �which
is assumed to be approximately equal to the number of MOs
x ,y used to construct the geminal functions� and N and N�
stand for the size of, respectively, the AO and auxiliary basis

sets, the costs for Ṽxy

� scale with O�O2N4+O3N2�N+N��� in

ansatz 2. Equation �35� can be rewritten as �see Fliegl et
al.29�:

Ṽxy

� = 
�x�1��y�2��f12Q̃12

† 1

r12
��
�1����2�� . �36�

In the CABS approach Q̃12
† becomes

Q̃12
† = 1 − Õ1P̂2� − Õ2P̂1� − P̂1P̂2, �37�

where P̂i� is a projector onto the manifold of complementary

orthogonal auxiliary basis functions and the T̂1-transformed

orbital projectors Õi are defined as

Õi = Ôi + T̂1�i� = �
m

��̃m�i��
�m�i�� , �38�

with

�̃m�i� = �m�i� + �
a

tm
a �a�i� . �39�

For the Jacobi transformations we define a V intermediate as

counterpart of Ṽ as

V̄xy

� = �

m
� �Ṽxy


�

�tm
a �Rm

a

= 
�x�1��y�2��f12Q̄12
† 1

r12
��
�1����2�� , �40�

with the projector Q̄12
† given by

Q̄12
† = �

m
� �Q̃12

†

�tm
a �Rm

a . �41�

In the CABS approach Q̄12
† becomes just

Q̄12
† = − R̂1�1�P̂2� − R̂1�2�P̂1�, �42�

where R̂1�i� can be in first quantization expressed as

R̂1�i� = �
m

��̄m�i��
�m�i�� , �43�

with

�̄m�i� = �
a

Rm
a �a�i� . �44�

According to Eqs. �35�–�44� Ṽxy

� and V̄xy


� can be evaluated
through the following integral contractions:

TABLE II. Bond lengths Re �pm� of diatomic molecules. Estimated basis set limits listed in the column headed with “�” have been obtained by extrapolation
from the d-aQZ and d-a5Z results as described in the text.

Molecule State

CCSD CCSD�R12� CCSD�F12�

d-aDZ d-aTZ d-aQZ d-a5Z � d-aTZ d-aQZ d-aTZ d-aQZ

N2 a� 1�u
− 126.7 125.4 125.1 125.0 124.9 125.2 124.9 125.1 124.9

125.3a 125.0a 125.0a

a 1�g 122.0 120.7 120.3 120.2 120.1 120.4 120.2 120.4 120.2
120.6a 120.3a 120.2a

w 1�u 126.2 124.9 124.5 124.4 124.4 124.6 124.4 124.6 124.4
124.7a 124.5a 124.4a

CO A 1� 124.5 123.1 122.5 122.4 122.3 122.7 122.3 122.6 122.3
122.8a 122.4a 122.4a

B 1�+ 112.7 111.6 111.2 111.1 111.0 111.3 110.0 111.2 111.0
111.4a 111.1a 111.0a

C 1�+ 112.6 111.5 111.0 110.9 110.8 111.2 110.9 111.1 110.9
111.2a 111.0a 110.9a

BF A 1� 135.1 131.1 130.5 130.3 130.2 130.7 130.3 130.6 130.3
130.7a 130.3a 130.2a

B 1�+ 123.7 121.2 120.7 120.6 120.5 121.0 120.6 120.9 120.6
120.9a 120.6a 120.5a

C 1�+ 125.2 122.5 122.0 121.9 121.8 122.3 121.9 122.2 121.9
122.1a 121.9a 121.8a

BH A 1� 124.4 122.4 122.2 122.1 122.1 122.3 122.2 122.3 122.1
122.3a 122.2a 122.1a

B 1�+ 123.4 121.8 121.6 121.6 121.5 121.7 121.6 121.7 121.6
121.7a 121.6a 121.5a

aCorrections from HF/d-a5Z PECs.
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Ṽxy

� = sxy


� − �
pq

rxy
pqgpq


� − P̂xy

��

mp�

rxy
m̃p�gmp�


� , �45�

V̄xy

� = − P̂xy


��
mp�

rxy
m̄p�gmp�


� , �46�

where p and p� are, respectively, orbital and complementary

auxiliary basis functions which satisfy 
p � p��=0. P̂xy

� is de-

fined in analogy to P̂ij
xy. The integrals used in the above equa-

tions are given by

rpq
rs = 
�p�q�f12��r�s� , �47�

gpq
rs = 
�p�q�

1

r12
��r�s� , �48�

spq
rs = 
�p�q�f12

1

r12
��r�s� . �49�

spq
rs becomes 
pr
qs when the linear r12 correlation factor is

used. In the present study we obtain V̄xy

� from Eq. �46� which

demonstrates a simplified structure compared to the deriva-
tion for CC2-R12 in Ref. 29 as we restrict here to the CABS
instead of the general ABS approach. Therefore the efforts of

implementing the integral contraction for V̄xy

� intermediate in

the right hand transformation are much reduced affording
only O�O3N2N�� floating point operations.

D. Working equations

The working equations for calculating excitation ener-
gies for conventional CC2 �Ref. 48� and CCSD,49 CC2-R12
�both ansatz 1 and 2� �Refs. 29 and 30� and CCSD�R12�/
ansatz 1 �Ref. 31� have been given in several reports. In this
study we focus on the additional R12 contributions in
CCSD�R12�/ansatz 2 which are not present in CCSD�R12�/
ansatz 1. The detailed expressions are listed in Table I. In
analogy to conventional CCSD in Ref. 49, we identify global
and local intermediates for CCSD�R12�/ansatz 2 in Table I to
achieve a significant reduction in operation counts. From
Table I, the global intermediates include Cp�kai, Dp�kai, Ep�a

�1 ,
Eac�

1, Cmip�c
� , Dmip�c

� , and Ep�c
�1 , which are constructed after con-

vergence of the CCSD�R12� cluster amplitudes. They are
stored on disk and read back when needed during the Jacobi
right hand transformation Eq. �23�. Local intermediates are
corresponding quantities capped with tildes in Table I, which

depend on R̂1 or R̂2 trial vectors and have to be recalculated
in each linear transformation. Therefore, the respective con-
tractions of both global and local intermediates with four-
index vectors require for each trial vector about twice as
much computational time as an iteration solely for the cluster
equations. In the following discussions we focus on the con-
tributions of local intermediates only.

Following the strategy described in Ref. 49, the C̃p�kai
�

and D̃p�kai
� local intermediates are evaluated in each iteration

TABLE III. Harmonic vibrational frequencies 	e �cm−1� of diatomic molecules. Estimated basis set limits listed in the column headed with � have been
obtained by extrapolation from the d-aQZ and d-a5Z results as described in the text.

Molecule State

CCSD CCSD�R12� CCSD�F12�

d-aDZ d-aTZ d-aQZ d-a5Z � d-aTZ d-aQZ d-aTZ d-aQZ

N2 a� 1�u
− 1709 1714 1725 1727 1730 1725 1729 1724 1729

1711a 1722a 1721a

a 1�g 1827 1830 1848 1851 1854 1846 1854 1847 1854
1836a 1851a 1852a

w 1�u 1726 1733 1744 1746 1749 1744 1748 1744 1748
1734a 1745a 1745a

CO A 1� 1510 1561 1581 1587 1592 1579 1589 1580 1589
1566a 1583a 1584a

B 1�+ 2184 2221 2244 2249 2253 2241 2252 2246 2253
2230a 2248a 2254a

C 1�+ 2219 2259 2281 2285 2289 2277 2289 2282 2289
2267a 2284a 2289a

BF A 1� 1127 1258 1271 1275 1279 1271 1278 1275 1278
1260a 1273a 1277a

B 1�+ 1580 1704 1715 1718 1720 1714 1720 1717 1720
1708a 1717a 1720a

C 1�+ 1487 1620 1632 1635 1637 1630 1637 1633 1637
1625a 1635a 1638a

BH A 1� 2229 2303 2321 2323 2326 2312 2324 2314 2324
2309a 2318a 2320a

B 1�+ 2360 2390 2398 2399 2400 2397 2400 2398 2400
2395a 2403a 2403a

aCorrections from HF/d-a5Z PECs.
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with the first index 
 or 
� initially in the AO basis and
stored on disk and transformed later to the CABS basis p�,

C̃p�kai
� = �


+
�

C
p�D̃
kai� , �50�

D̃p�kai
� = �


+
�

C
p�D̃
kai� . �51�

Above, C̃
kai� and D̃
kai� include the additional R2-dependent

contributions of −�dlRli
adglk


d and �dlR̃li
adLkl


d for CCSD�R12�/
ansatz 2 while in the conventional CCSD linear transforma-
tion only R1-dependent contributions exist.

Ẽp�a
�1 is obtained as by-product of the C̃p�kai and D̃p�kai

intermediates by accumulating the traces of the R1- and
R2-dependent contributions,

Ẽp�a
�1 =

3

2�
k

C̃p�kak −
1

2�
k

D̃p�kak, �52�

where C̃p�kai and D̃p�kai are similarly defined as C̃p�kai
� and

D̃p�kai
� except that the prefactors of the R2-dependent parts

differ by 1
2 . The contribution from Ẽp�a

�1 can be absorbed into

C̃p�kai
� and D̃p�kai

� intermediates by the simple modification

C̃p�kai
� ← C̃p�kai

� − 1
2
kiẼp�a

�1 , �53�

D̃p�kai
� ← D̃p�kai

� + 1
2
kiẼp�a

�1 . �54�

The Ẽbc�
1 local intermediate is conveniently obtained

similar to the H-term in the conventional CCSD linear
transformation49 due to their similar structures,

Ẽbc�
1 = − �

lm


+
� ��
xy

�2Rlm
xy − Rml

xy�rxy

b�glm


c . �55�

with the contravariant back transformed AO index 
 on rxy

b.

The main difference is that one hole virtual index c on the
integral glm


c replaces the original occupied i.

The C̃mip�c
� and D̃mip�c

� local intermediates need the pre-

calculation of integrals gm

īc and Lm


īc with two occupied, one

virtual and one AO index. The local AO intermediate Ẽ
c� is

obtained as the trace of Lm

īc ,

Ẽ
c� = �
m

Lm

m̄c . �56�

gm

īc , Lm


īc , and Ẽ
c� are all precalculated and stored on files in
loops over 
 and 
�. The AO-to-MO transformations of 


and 
� are carried out later, which leads to gmp�
īc , Lmp�

īc , and

Ẽp�c
� . Employing the same strategy as in Eqs. �53� and �54�,

we incorporate Ẽp�c
� in the diagonals of C̃mip�c

� and D̃mip�c
� ,

C̃mmp�c
� ← C̃mmp�c

� − 1
2 Ẽp�c

� , �57�
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FIG. 1. The MAEs of calculated CCSD�R12� and CCSD�F12� bond lengths �top� and harmonic frequencies �bottom� for N2 compared to the estimated basis
set limits.
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D̃mmp�c
� ← D̃mmp�c

� + 1
2 Ẽp�c

� . �58�

Thus, the contributions to R12 doubles projections are ob-
tained as

�xiyj
C�+D�+E� = �

p�b

rxy
p�b�ij

p�b, �59�

where the new quantity �ij
p�b consists of both the contribu-

tions from C̃mip�c
� and D̃mip�c

� ,

�ij
p�b = �

cm
�1

2
t̃ jm
bcD̃mip�c

� �1

2
+ P̂ij�tjm

cbC̃mip�c
� � . �60�

In the above, the modified amplitude t̃ jm
bc is defined in Table I.

The most expensive step arising from the R12 contribu-
tions in the linear transformation with the Jacobian matrix is

found to be the evaluation of V̄xy

�, which requires about

N2N�O3 operations. However, we need to stress that the cal-

culation of V̄xy

� is evidently cheaper than that of Ṽxy


� in the
ground state calculation in the CABS approach. Besides, the

calculation of the C̃p�kai
� and D̃p�kai

� intermediates is time con-
suming. Their R2-dependent parts are quite demanding, scal-
ing with O�N�V2O3�. We often encounter the evaluation of
two-electron integrals with two occupied, one virtual and one
complementary orbital index. These processes need a few
times of N3N�+N2N�O2+NN�VO2 operations, which occurs

to the R1-dependent parts of C̃p�kai
� and D̃p�kai

� . Generally, the
computational costs of the linear transformation for

CCSD�R12�/ansatz 2 are approximately two to three times
that of the conventional CCSD scheme, if the size of the
auxiliary basis set is similar to that of the orbital basis set. In
particular, we observe that a CCSD�R12� calculation using
the Dunning basis set with the cardinal number of X is al-
ways faster than a conventional CCSD calculation with X
+1. Thus as will be seen, in Secs. III and IV, the CCSD�R12�
calculations provide accurate results at significantly lower
costs than standard CCSD implementations.

III. APPLICATIONS

A. Computational details

The linear transformations for CCSD�R12� and
CCSD�F12� for ansatz 2 have been implemented in the
coupled-cluster code of the DALTON program package.32 We
have selected four diatomic molecules N2, CO, BF, and BH
for a first application of these models to calculate equilib-
rium geometries and harmonic vibrational frequencies for
singlet excited states. All calculations have been carried out
with frozen-core approximations for the 1s orbitals at the
atoms B, C, N, and O. The Dunning cc-pVXZ basis set
family,50 doubly augmented with diffusions �d-aXZ in abbre-
vation� due to the presence of several �+ states with Rydberg
characters, has been applied with X=D, T, Q, and 5 for con-
ventional CCSD. The CCSD�R12� and CCSD�F12� calcula-
tions have been performed with d-aTZ and d-aQZ orbital
basis. As auxiliary basis sets, we took the cc-pVTZ-RI
basis51 which uses uncontracted 8s6p5d3f1g functions for
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FIG. 2. The MAEs of calculated CCSD�R12� and CCSD�F12� bond lengths �top� and harmonic frequencies �bottom� for CO compared to the estimated basis
set limits.
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N, C, B, and F and 4s3p2d1f functions for H. The exponents
of F12 exponential geminal functions are 1.8, 1.2, 1.3, and
0.9 for N2, CO, BF, and BH, respectively, which were opti-
mized to obtain the minima of the ground state correlation
energies for the molecules.

All R12 and F12 calculations have employed the
CABS+ approach by Valeev,27 which essentially means that
the RI is done in the union of the orbital and the auxiliary
basis sets. Standard approximation B �Ref. 26� was used
throughout for the matrix elements of the geminal functions
over the Fock operator. In the present calculations, we have
only included occupied orbitals to construct the R12 and F12
geminal functions.

Numerical potential energy curves �PECs� have been ob-
tained by computing several grid points with a bond length
increment of 0.01 a.u. The PECs were fitted by sixth-order
polynomial functions to ten points around the minima. We
only report the equilibrium bond lengths within 0.1 pm.
However, more digits were actually required for sufficient
accuracies of the computed harmonic frequencies. The force
constants have been calculated as the second derivatives at
the minima of the PECs according to a simple three-point
formula,

k =
E+
 + E−
 − 2E0


2 , �61�

where E0 is the total energy at the equilibrium bond length r0

and E+
 and E−
 are the total energies interpolated at r0+

and r0−
 �
=0.5 pm�. The obtained norms of molecular

gradients were below 0.0001 a.u. and lead to numerical un-
certainties of harmonic frequencies of about 1 cm−1. For the
comparison with CCSD�R12� and CCSD�F12� the CCSD ba-
sis set limit PECs were estimated by adding the HF/d-a5Z
energies to the basis set limits of correlation energies ob-
tained by extrapolating the CCSD/d-aQZ and CCSD/d-a5Z
results using52

E� �
X3EX − Y3EY

X3 − Y3 , �62�

where X, Y stand for the cardinal numbers of basis sets
d-aXZ and d-aYZ, and E�, EX, and EY are the correlation
energies at the infinite, d-aXZ, and d-aYZ basis sets, respec-
tively. The basis set limits of the bond lengths and harmonic
frequencies were then estimated from the minima and second
derivatives of the extrapolated PECs. In order to have an
independent test of the so estimated basis set limits we also
carried out CCSD calculations in the a6Z basis sets. For most
states the a6Z results agree well with both the d-a5Z num-
bers and the estimated basis set limits and show that these
numbers are well converged. However, for the states with
larger Rydberg contributions �e.g., BF C 1�+�, the a6Z re-
sults are not accurately enough converged to serve as bench-
marks for the d-a5Z results and the extrapolated basis set
limits. Therefore we did not include them in Tables II and III.
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FIG. 3. The MAEs of calculated CCSD�R12� and CCSD�F12� bond lengths �top� and harmonic frequencies �bottom� for BF compared to the estimated basis
set limits.
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B. Equilibrium structures

The optimized bond lengths of some singlet excited
states using frozen-core CCSD, CCSD�R12�, and
CCSD�F12� are tabulated in Table II. The mean absolute
errors �MAEs� relative to the estimated basis set limits are
plotted in the upper parts of Figs. 1–4. The slow convergence
of bond lengths obtained with standard CCSD method is
expected. With the triple-� basis the MAEs for N2, CO, BF,
and BH molecules are about 0.53, 0.70, 0.77, and 0.30 pm,
respectively. The bond lengths of most of these states still
deviate from the basis set limits by 0.1 pm even with the
quintuple-� basis. For all investigated states the CCSD�R12�
and CCSD�F12� results with the quadruple-� basis are inter-
mediate between the standard CCSD results in the d-a5Z
basis and the extrapolated basis set limits.

From Table II, we notice that with the triple-� basis sets
the improvements obtained with the CCSD�R12� and
CCSD�F12� calculations seem to be less satisfactory. How-
ever, it needs to be pointed out that it is not the R12 or F12
method that should be blamed. With this basis set the largest
remaining error in the explicitly correlated calculations arise
not from the treatment of dynamic electron correlation, but
from the uncorrelated mean field contributions to the total
energies. This becomes obvious when the triple-� results are
approximately corrected for this error by adding to the en-
ergy differences between HF response calculations in d-a5Z
and d-aTZ basis sets. The so corrected CCSD�R12� and
CCSD�F12� results �cf. the second row for each state in

Table II� agree for all states within 0.1 pm with the CCSD/
d-a5Z benchmark. However, the standard CCSD results with
this correction in the triple-� basis set deviate for most states
still by 0.2–0.4 pm from this benchmark.

The MAEs of the CCSD, CCSD�R12�, and CCSD�F12�
in the different basis sets and the triple-� results corrected for
HF errors are shown in Figs. 1–4. It can be immediately seen
that the improvements of the correlation treatment in the
CCSD�R12� and CCSD�F12� methods and of the HF correc-
tion for the triple-� results are significant when we compare
with the basis set limits. The CCSD�R12� and particularly
CCSD�F12� results in the triple-� basis corrected for the HF
error have an accuracy which in the standard CCSD calcula-
tion is first reached with quintuple-� basis sets. With
quadruple-� basis sets the CCSD�R12� and CCSD�F12� re-
sults are �even without HF corrections� comparably accurate
or even surpass the standard CCSD/d-a5Z calculations.

We also observe that, although the exponential correla-
tion factor of the F12 method has been widely applied to
achieve faster basis set convergence of correlation energies
than the linear factor of the R12 method, for the bond lengths
of the excited states reported here such an advantage appears
minor by only 0.1 pm for triple-� basis sets and is almost
undiscernible for quadruple-� ones.

C. Harmonic frequencies

The CCSD, CCSD�R12�, and CCSD�F12� results for
harmonic frequencies are presented in Table III. The MAEs
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FIG. 4. The MAEs of calculated CCSD�R12� and CCSD�F12� bond lengths �top� and harmonic frequencies �bottom� for BH compared to the estimated basis
set limits.
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are plotted at the lower parts in Figs. 1–4. Again, the con-
ventional CCSD frequencies of most states are not converged
to the basis set limits by a few wavenumbers even with the
quintuple-� basis. As a comparison, it is clear that in Table
III with the quadruple-� basis the CCSD�R12� and
CCSD�F12� results indeed make significant improvements
and bring all frequencies very close to the basis set limits
which cannot be achieved by the conventional CCSD
method with the same basis sets.

The R12/F12 results for frequencies with the triple-� ba-
sis seem again to be less satisfactory and have only the quali-
ties of CCSD quadruple-� for most excited states. The slow
basis set convergence of some excited states is mainly due to
the fact that the applied orbital basis sets in this study were
tailored to ground states and thus do not contain sufficiently
diffuse functions and cause the low quality of the HF refer-
ence states. We have therefore followed the same route used
for the correction of the bond lengths to approximately up-
grade CCSD�R12� and CCSD�F12� harmonic frequencies in
the d-aTZ orbital basis with HF/d-a5Z corrections. The cor-
rected frequencies are given in the second row for each ex-
cited state in Table III. The MAEs are given with black bars
in Figs. 1–4. The HF/d-a5Z corrections to the R12/F12 re-
sults obtained with the triple-� basis have pronounced ef-
fects. For example, the CCSD�F12� frequencies of all �+

states with the triple-� basis even approach the basis set lim-
its within the accuracy of the present calculations. The fre-
quencies of N2 a 1�g and w 1�u states are brought to
quintuple-� qualities. The more difficult cases are the A 1�
states of BH, CO, and BF which have the qualities with
CCSD�F12�/d-aTZ calculations close to quadruple-�,
quintuple-�, and �, respectively. We want also to mention the
irregular changes of frequencies due to the corrections for
a� 1�u

− of N2. For this state the basis set errors at the HF level
have the opposite sign of the errors in the correlation contri-
bution so that they partially cancel each other. If the HF basis
set corrections are added this error cancellation is lost.

For the harmonic frequencies no evident advantage of
the exponential over the linear correlation factor for all ex-
cited states when quadruple-� basis sets are applied. But
when using the smaller triple-� basis sets, CCSD�F12� be-
comes more advantageous than CCSD�R12� by about 3 and
5 cm−1 only for Rydberg-like �+ states of BF and CO, re-
spectively.

IV. CONCLUSIONS AND OUTLOOKS

In this paper, the explicitly correlated methods
CCSD�R12� and CCSD�F12� for ansatz 2 have been ex-
tended to describe excited states. The equations of the
coupled-cluster Jacobi right hand linear transformations
adapted to these models have been derived and implemented
in the program DALTON. This has allowed the first application
of CCSD�R12� and CCSD�F12� methods for ansatz 2 to
equilibrium bond lengths and harmonic frequencies of sin-
glet excited states.

The implemented CCSD�R12� and CCSD�F12� methods
for ansatz 2 are more expensive than those for ansatz 1 due
to the efforts for the additional contributions to the linearly

transformed vectors. The most expensive step is the compu-
tation of the R1-transformed V intermediates which scales
with N2N�O3 in the CABS approach. We have observed that
for N2 the computational time of the CCSD�R12� method for
one iteration for vertical excitation energies is much shorter
by a factor of 3 with variations of the excitation energies by
only about 1 meV when using aQZ as auxiliary basis sets
than a6Z. Thus, it is important to develop optimized auxil-
iary basis sets with reduced dimensions in order to avoid
unnecessary computational costs.

The basis set convergence of equilibrium bond lengths
and harmonic frequencies of some singlet excited states of
N2, CO, BF, and BH diatomic molecules have been com-
pared for CCSD�R12� and CCSD�F12� calculations using
doubly augmented d-aTZ and d-aQZ basis sets to CCSD/d-
aXZ �X=D, T, Q, and 5� results. We have also found that the
convergence of these properties is not as fast as might be
anticipated with the triple-� basis set. The reason for this is,
however, no longer the slow convergence of the correlation
contribution given by CCSD�R12� and CCSD�F12�, but now
the remaining basis set errors of the HF contribution with the
triple-� basis set. A simple and pragmatically useful scheme
which replaces the HF contribution from the d-aTZ total en-
ergy of the excited state by the d-a5Z one has been able to
upgrade most of the CCSD�R12�/d-aTZ and CCSD�F12�/d-
aTZ results to CCSD/d-a5Z quality. We have also found that
for the equilibrium bond lengths and harmonic frequencies
the exponential correlation factor of CCSD�F12� only
slightly improves the convergence for the triple-� basis upon
the linear r12 factor of CCSD�R12�. When a larger
quadruple-� basis set was used the differences between
CCSD�R12� and CCSD�F12� methods have been found to be
below 0.1 pm and 1 cm−1. However with smaller basis sets
the improvements will be more significant particularly to
some Rydberg-like excited states.

The implementation of excitation energies as we have
done in this work is an important intermediate step toward
accurate calculations of optical polarizabilities and hyperpo-
larizabilities within the CCSD�R12� and CCSD�F12� meth-
ods for ansatz 2. These quantities require the implementation
of intermediates which depend on higher derivatives with
respect to cluster amplitudes. In this direction, the linear
transformation is the first step and proceeding work will fo-
cus on higher-order properties.

Another important issue is to include single excitations
into the CABS basis which provides a perturbative correc-
tion for the basis set error in the HF reference. This has been
shown to almost entirely remove the HF basis set errors if an
MP2 singles energy correction �E=2�i�ti

�f i
� is added.16 On

the correlation side, moreover, a further simplification of our
implementation is possible so as to enhance the cost effi-
ciency as we have observed that some contributions to the
transformed vectors �
 are minor but computationally expen-
sive. Also the costs for the evaluation of additional two-
electron integrals can be reduced by using the density-fitting
technique,53 so that the explicitly correlated coupled-cluster
response models can become cost-efficient alternatives for
larger molecules.
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