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We present one-shot compression protocols that optimally encode ensembles of N identically prepared
mixed states into OðlogNÞ qubits. In contrast to the case of pure-state ensembles, we find that the number
of encoding qubits drops down discontinuously as soon as a nonzero error is tolerated and the spectrum of
the states is known with sufficient precision. For qubit ensembles, this feature leads to a 25% saving of
memory space. Our compression protocols can be implemented efficiently on a quantum computer.
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Storing data into the smallest possible space is of crucial
importance in present-day digital technology, especially
when dealing with large amounts of information and with
limited memory space [1]. The need for saving space is
even more pressing in the quantum domain, where storing
data is an expensive task that requires sophisticated error
correction techniques [2–4].
For quantum data, Schumacher’s compression [5] and its

extensions [6–10] provide optimal ways to store informa-
tion in the asymptotic limit of many identical and inde-
pendent uses of the same source. However, in many
situations there may be correlations from one use of the
source to the next. In such situations, it is convenient to
regard N uses of the original source as a single use of a new
source, which emits messages of length N. This scenario is
an instance of one-shot quantum data compression [11]. An
important example of one-shot compression is when the
states emitted at N subsequent moments of time are
perfectly correlated, resulting in code words of the form
ρ⊗N
x for some density matrix ρx and some random param-
eter x. This situation arises when the original source is an
uncharacterized preparation device, which generates the
same quantum state at every use. For quantum bits (qubits),
Plesch and Bužek [12] observed that every ensemble of
identically prepared pure states can be stored without any
error into logðN þ 1Þ qubits, thus allowing for an expo-
nential saving of memory space. Recently, Rozema et al.
[13] brought this idea into the realm of experiment,
demonstrating a prototype of one-shot compression in a
photonic setup.
The possibility of implementing one-shot compression in

the lab opens new questions that require one to go beyond
the ideal case of pure states and no errors. First, due to the
presence of noise, real-life implementations typically
involve mixed states—think, e. g., of quantum information
processing with NMR [14], where the standard is to have
thermal states at a given temperature, or, more generally, of
mixed-state quantum computing [15–19]. For mixed states,
the basic principle of pure-state compression does not
work: in the qubit case, for example, projecting the

quantum state into the smallest subspace containing the
code words does not lead to any compression if the states
ρ⊗N
x are mixed, because in that case the smallest subspace is
the whole Hilbert space. As a result, it is natural to search
for compression protocols that work for mixed states and to
ask which protocols achieve the best compression perfor-
mance. An even more important question is how the
number of qubits needed to store data depends on the
errors in the decoding. Tolerating a nonzero error is natural
in real-life implementations, which typically suffer from
noise and imperfections.
In this Letter we answer the above questions, proposing

compression protocols for ensembles of identically pre-
pared mixed states. We first analyze the zero-error scenario,
showing that the storage of N mixed qubits with known
purity and unknown Bloch vector requires a quantum
memory of at least 2 logN qubits. The size of the required
memory is twice that of the required memory for pure
states, but it is still exponentially smaller that the initial data
size. The maximum compression is achieved by a protocol
that does not require knowledge of the purity. We then
investigate the more realistic case of protocols with an error
tolerance. When the purity is known with sufficient
precision, we find out that tolerating an error, no matter
how small, allows one to encode the initial data into only
3=2 logN qubits, plus a small correction independent of N.
Remarkably, the discontinuity in the error parameter takes
place as soon as the prior knowledge of the purity is more
precise than the knowledge that could be gained by
measuring the N input qubits. The existence of a disconti-
nuity is a striking deviation from the pure-state case, for
which we prove that there is no significant advantage in
introducing an error tolerance. Furthermore, we show that
our compression protocol can be implemented efficiently
and that the compression rate is optimal under the require-
ments that the encoding be rotationally covariant and the
decoding preserve the magnitude of the total angular
momentum. These assumptions are relevant in physical
situations where the mixed states are used as indicators of
spatial directions [20,21] and the decoding operations are
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limited by conservation laws [22–27]. All our results can be
generalized to quantum systems of arbitrary finite dimen-
sion, where we quantify how the presence of degeneracy in
the spectrum affects the compression rates.
Let us start from the qubit case, assuming N to be even

for the sake of concreteness. We denote by E∶H⊗N → Henc

(D∶Henc → H⊗NÞ the encoding (decoding) channel, where
H is the Hilbert space of a single qubit and Henc is the
Hilbert space of the encoding system. For an ensemble of
identically prepared qubit states fρ⊗N

x ; pxg the average
error of the compression protocol is

eN ¼
X
x

px
∥ρ⊗N

x −D∘Eðρ⊗N
x Þ∥

2
; ð1Þ

∥A∥ denoting the trace norm. We consider ensembles
where all the states ρx have the same purity, which
is assumed to be perfectly known (this assumption
will be lifted later). Let us write ρx as ρn ¼ pjnihnjþ
ð1 − pÞj − nih−nj, where jni denotes the two-dimensional
pure state with Bloch vector n ¼ ðnx; ny; nzÞ and p ≥ 1=2
is the maximum eigenvalue. We focus on mixed states
ðp ≠ 1Þ, excluding the trivial case p ¼ 1=2, in which the
ensemble consists of just one state. For p∉f1; 1=2g, we call
the ensemble fρ⊗N

n ; png complete if the probability dis-
tribution pn is dense in the unit sphere. The typical example
is an ensemble of mixed states with known purity and
completely unknown Bloch vector. For every complete
ensemble we demonstrate a sharp contrast between two
types of compression: (i) zero-error compression, wherein
the decoded state is equal to the initial state, and
(ii) approximate compression, wherein small errors are
tolerated. In the zero-error case we have the following.
Theorem 1: The minimum number of logical qubits

needed to compress a complete N-qubit ensemble is
⌈2 logðN þ 2Þ − 2⌉. Every compression protocol that has
zero error on a complete ensemble must have zero error on
every ensemble of identically prepared mixed states and on
every ensemble of permutationally invariant N-qubit states.
Intuitively, the reason for the exponential reduction of

the number of qubits is that the states in the ensemble are
invariant under permutations and, therefore, they do not
carry all the information that could be encoded into N
qubits. This observation was anticipated by Blume-Kohout
et al. in the context of state discrimination and tomography
[28]. The key point of Theorem 1 is the optimality proof,
which establishes that if a mixed-state ensemble is com-
plete, then compressing it is as hard as compressing any
arbitrary ensemble of permutationally invariant states [29].
In preparation of our analysis of approximate compres-

sion, it is instructive to look into an optimal protocol
achieving zero-error compression. The starting point is the
Schur-Weyl duality [30], stating that there exists a basis in
which the N-fold tensor action of the group GLð2Þ and the
natural action of the permutation group SN are both block

diagonal. In this basis, the Hilbert space of the N qubits can
be decomposed as

H⊗N ≃ ⊕
N=2

j¼0
ðRj ⊗ MjÞ; ð2Þ

where j is the quantum number of the total angular
momentum,Rj is a representation space, in which the group
GLð2Þ acts irreducibly, and Mj is a multiplicity space, in
which the group acts trivially. Now, since the state ρ⊗N

n is
invariant under permutations of the N qubits, one has

ρ⊗N
n ¼ ⊕

N=2

j¼0
qj;N

�
ρn;j ⊗

Imj

mj

�
; ð3Þ

where qj;N is a suitable probability distribution in j, ρn;j is a
quantum state onRj, Imj

is the identity onMj, andmj is the
dimension of Mj. From Eq. (3) it is obvious that all
information about the input state lies in the representation
spaces. Hence, ρ⊗N

n can be encoded faithfully into the state
Eðρ⊗N

n Þ ¼ ⊕
j
qj;Nρn;j. Such state has an exponentially

smaller support, contained in the spaceHN ≔ ⊕
N=2

j¼0
Rj, whose

dimension is dimHN ¼ ðN=2þ 1Þ2. Hence, the initial state
can be encoded into ⌈ log dimHN⌉ qubits—the amount
declared in Theorem 1. A perfect decoding is achieved by
the channel

DðρÞ ≔ ⊕
j

�
PjρPj ⊗

Imj

mj

�
; ð4Þ

where Pj is the projector on the representation space Rj.
Considering that qubits are a costly resource, it is worth

pointing out a slight modification of the above protocol,
which uses approximately logN qubits and logN classical
bits. The modified protocol consists in (i) measuring the
value of j, thus projecting N qubits into the state
ρn;j ⊗ Imj

=mj, (ii) discarding the multiplicity part,
(iii) encoding the state ρn;j into ⌈ logðN þ 1Þ⌉ qubits,
and (iv) transmitting the encoded state to the receiver,
along with a classical message specifying the value of j.
Knowing the value of j, the receiver can append an
additional system in the state Imj

=mj and embed the state
ρn;j ⊗ Imj

=mj into the right subspace.
Let us consider now the more realistic case of approxi-

mate compression. Here, the number of encoding qubits
drops down discontinuously.
Theorem 2: For every allowed error rate ϵ > 0 and for

every complete qubit ensemble, there exists a number
N0 > 0 such that for any N ≥ N0 the ensemble can be
encoded into 3=2 logN þ log½4ð2p − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2=ϵÞp � qubits
with error smaller than ϵ.
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The idea is to work out the explicit form of the
probability distribution qj;N in Eq. (3), given by

qj;N ¼ 2jþ 1

2j0

�
B

�
N þ 1; p;

N
2
þ jþ 1

�

−B
�
N þ 1; p;

N
2
− j

��
; ð5Þ

where Bðn; p; kÞ is the binomial distribution with n trials
and with probability p, and j0 ¼ ðp − 1=2ÞðN þ 1Þ. For
large N, the distribution qj;N is approximately the product
of a linear function with the normal distribution of variance
ðN þ 1Þpð1 − pÞ centered around j0. In order to compress,
we get rid of the tails: for every ϵ > 0, we select a set
Sϵ ≔ fj0 − ⌊

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2=ϵÞNp

⌋;…; j0 þ ⌊
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2=ϵÞNp

⌋g and
we compress the state ρ⊗N

n into the encoding space
Henc ¼ ⊕

j∈Sϵ

Rj, by applying the quantum channel

EðρÞ ≔ ⊕
j∈Sϵ

TrMj
½ΠjρΠj� þ

X
j∉Sϵ

Tr½Πjρ�ρ0; ð6Þ

where Πj is the projector on Rj ⊗ Mj, TrMj
is the partial

trace over Mj, and ρ0 is a fixed state with support inside
Henc. The encoding space has dimension

dimHenc ¼
X
j∈Sϵ

ð2jþ 1Þ ≤ ð2j0 þ 1Þ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
N ln

2

ϵ

r
þ 1

�
;

growing as N3=2. The initial state can be recovered, up to
error ϵ, by a suitable decoding channel [29].
Theorem 2 guarantees that N identical copies of a mixed

state with known purity can be stored (up to an error ϵ) into
3=2 logN qubits, plus an overhead that is doubly loga-
rithmic in 1=ϵ. This result is good news for future
implementations, because the overhead grows slowly with
the required accuracy. For example, when p ¼ 0.6, N ¼ 20
identically prepared qubits with Bloch vectors pointing in
arbitrary directions can be compressed into 8 qubits with an
error smaller than 1%. In addition to the fully quantum
version of the protocol, one can construct a hybrid version
where the initial state is stored partly into qubits and partly
into classical bits, as discussed in the zero-error case. In the
hybrid version, the discontinuity between zero-error and
approximate compression pertains to the number of
classical bits needed to communicate the value of j, which
decreases from logN to 1=2 logN as soon as a nonzero
error is tolerated.
Our result highlights a radical difference between mixed

and pure states: for mixed states, every finite error tolerance
ϵ > 0 allows one to reduce the size of the compression
space from the original 2 logN qubits to 3=2 logN qubits.
Such a discontinuity does not take place for pure states: for
pure states with completely unknown Bloch vector, every

compression protocol with tolerance ϵ requires at least
ð1 − 2ϵÞ logN qubits [29].
It is worth commenting on the importance of knowing

the purity. Our approximate protocol requires the purity to
be perfectly known, so that one can encode only the
subspaces where the quantum number j is in a strip around
the most likely value. If the purity is only partially known,
the protocol can be adapted by broadening the size of the
strip, i.e., by changing the set Sϵ. Specifically, suppose that
the eigenvalues of ρn are known up to an error
Δp ¼ OðN−γÞ, with γ ≥ 1=2. In this case, the number of
encoding qubits can be reduced to 3=2 logN þ gðϵ; γÞ
where g is a function depending on ϵ and γ, but not on
N. Hence, the discontinuity between zero-error and
approximate compression persists. However, the situation
is different if the eigenvalues are known with less precision:
if the error in the specification of the eigenvalues scales as
N−γ with γ < 1=2, then the number of encoding qubits
becomes ð2 − γÞ logN. Quite intriguingly, the separation
between the two regimes takes place exactly when the
knowledge of the eigenvalues becomes more precise than
the knowledge that could be extracted through spectrum
estimation [31]. Note that our protocol can be combined for
free with spectrum estimation, which only requires meas-
uring the value of j. However, the a posteriori knowledge
of the measurement outcome cannot replace the a priori
knowledge of the spectrum: indeed, finding the outcome j
leads to estimating the maximum eigenvalue as p̂ ¼ 1=2þ
j=ðN þ 1Þ [31] and then to encoding the state ρn;j into
⌈ logð2jþ 1Þ⌉ qubits. In order to decode, the receiver needs
a classical message communicating the value of j, which
requires ⌈ logðN=2þ 1Þ⌉ bits in the one-shot scenario. This
leads to the same resource scaling as in the zero-error case,
i.e., approximately logN qubits to send the encoded state
and logN bits to communicate j.
The protocol of Theorem 2 is optimal within the

physically relevant class of protocols constrained by
covariance under rotations and by the preservation of the
magnitude of the angular momentum. More precisely, we
have the following [29].
Theorem 3: Every compression protocol that encodes a

complete N-qubit ensemble into ð3=2 − δÞ logN qubits
with covariant encoding and a decoding that preserves the
magnitude of the total angular momentum will necessarily
have error e ≥ 1=2 in the asymptotic limit.
Let us now discuss the complexity of the compression

protocol. To operate on the input state we use the Schur
transform [12,32,33], which transforms the initial N qubits
together with OðlogNÞ ancillary qubits into three registers:
(i) the index register, where the value of j is stored into the
state of logðN=2þ 1Þ qubits, (ii) the representation register,
which uses logðN þ 1Þ qubits to encode the representation
spaces, and (iii) the multiplicity register, where the multi-
plicity spaces are encoded into OðNÞ qubits (see Fig. 1).
Since the implementation of the Schur transform in a
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quantum circuit is approximate, we focus on approximate
compression, so that the Schur transform error can be
absorbed into the compression error. Let us analyze first the
encoding. The first step is the approximate Schur trans-
form, whose complexity is polyðN; log 1=ϵ0Þ, ϵ0 being the
approximation error [32,33]. We set ϵ0 to be vanishing
exponentially in N, resulting in a complexity polyðNÞ for
the implementation of the Schur transform. After the Schur
transform has been performed, the encoding circuit embeds
the index register into an exponentially larger register of
N=2þ 1 qubits, transforming the state jji into the state
where the jth qubit is set to j1i and the rest of the qubits are
set to j0i [12]. We refer to this transformation as position
embedding and denote it by VD, where D is the dimension
of the register that is being embedded (in this case
D ¼ N=2þ 1). The point of position embedding is to
physically encode the value of j in a form that makes it easy
to check whether or not j belongs to the set Sϵ. In fact, such
a check can be equivalently implemented on a classical
computer. After this step, the circuit discards the qubits in
positions outside the set Sϵ and transforms the remaining
qubits into log jSϵj qubits by applying V−1

jSϵj. Now, the
complexity of position embedding is upper bounded by
DðlogDÞ2 [12]. Since j ranges from 0 to N=2, the total
complexity of the position embedding and of its inverse
scales as NðlogNÞ2. From the above reasoning, it is clear
that the bottleneck of the encoding is the implementation of
the Schur transform, which leads to an overall complexity
of polyðNÞ for the encoding circuit. The situation is similar
for the decoding, which also uses position embedding to
perform operations depending on j (see Fig. 2). The only
new parts are the initialization of N=2þ 1 − jSϵj qubits in
the index register and the preparation of maximally mixed
states of rank mj in the multiplicity register, which can be
approximately generated with exponential precision in
OðN2Þ operations [29]. Summing over the values of j in
Sϵ, we then obtain a number of operations upper bounded
by OðN2ÞjSϵj ¼ OðN5=2Þ. From the above count it is clear

that the overall complexity is polynomial in N. In addition
to the computational complexity, it is worth discussing the
size of the ancillary systems needed in our compression
protocol. Since the multiplicity register is discarded, the
Schur transform in our protocol needs only an ancilla of
OðlogNÞ qubits [28]. The position embeddings require
ancillas of sizeOðNÞ, but, as mentioned earlier, they can be
implemented on a classical computer. Hence, the total
number of qubits that need to be kept coherent throughout
our protocol scales only as OðlogNÞ.
Our compression protocol, presented for qubits, can be

generalized to quantum systems of arbitrary dimension d.
In this case, an ensemble of N identically prepared rank-r
states with known spectrum can be compressed with error
less than ϵ into approximately ð2dr − r2 − 1Þ=2 logN
qubits. In addition, one can take advantage of the presence
of degeneracies and further reduce the number of qubits:
every time the same eigenvalue appears in the spectrum, the
number of qubits is reduced by at least 1=2 logN (see [29]
for the exact value). Again, the protocol can be imple-
mented efficiently and is optimal under suitable symmetry
assumptions [29].
In this Letter we showed how to efficiently store

ensembles of identically prepared quantum systems into
an exponentially smaller memory space. For mixed states
we discovered that, whenever a nonzero error is allowed,

FIG. 1. A quantum circuit for encoding. The Schur transform
turns the initial N qubits together with K ¼ OðlogNÞ ancillary
qubits into three registers: the index register J , the representation
register R, and the multiplicity register M. The multiplicity
register is discarded. The index register is encoded into N=2þ 1
qubits by the position embedding VN=2þ1. The qubits in positions
outside Sϵ are discarded and the remaining qubits are reencoded
into ⌈ log jSϵj⌉ qubits.

FIG. 2. A quantum circuit for decoding. The first operation is
the position embedding V jSϵj, which produces jSϵj output qubits.
The jth of these qubits controls the generation of a maximally
mixed state of rank mj (achieved by the controlled operation Gj,
represented explicitly in the blue inset formj ¼ 4). The third step
is the initialization of L ¼ N=2þ 1 − jSϵj qubits which are put in
positions corresponding to values of j outside Sϵ. After a total of
N=2þ 1 qubits are in place, the inverse of the position embed-
ding is performed, followed by the inverse of the Schur transform.
The output of the circuit is a state on N qubits and K ¼ OðlogNÞ
ancillas, which are finally discarded.
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the size of the memory is cut down in a discontinuous way,
provided that the spectrum of the state is known with
sufficient precision. Intriguingly, the dropoff in the memory
size takes place as soon as the prior information about the
eigenvalues is more than the information that could be
extracted by a measurement on the input copies. Our
approximate compression protocols can be implemented
efficiently on a quantum computer.
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