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Abstract—Network Function Virtualization (NFV) is emerging
as a new paradigm for providing elastic network functions
through flexible virtual network function (VNF) instances ex-
ecuted on virtualized computing platforms exemplified by cloud
datacenters. In the new NFV market, well defined VNF instances
each realize an atomic function that can be chained to meet
user demands in practice. This work studies the dynamic market
mechanism design for the transaction of VNF service chains in the
NFV market, to help relinquish the full power of NFV. Combining
the techniques of primal-dual approximation algorithm design
with Myerson’s characterization of truthful mechanisms, we
design a VNF chain auction that runs efficiently in polynomial
time, guarantees truthfulness, and achieves near-optimal social
welfare in the NFV eco-system. Extensive simulation studies
verify the efficacy of our auction mechanism.

I. INTRODUCTION

Network Function Virtualization (NFV) is emerging as a
new network architecture that uses standard IT virtualization
techniques to consolidate many network equipment types onto
industry standard high volume servers [1]. In a traditional
network, each distinct function was typically implemented as
a specialized appliance based on proprietary hardware. Such
appliances invariably include a substantial amount of software,
but the software and hardware cannot be separated. NFV
replaces dedicated network devices with software running on
general-purpose CPUs or virtual machines. A network function
such as firewall, load-balancer, or router deployed in the NFV
environment is known as a virtual network function (VNF).
The mission of NFV includes rapid service innovation, im-
proved operational efficiencies, reduced power usage, standard
and open interfaces, greater flexibility and improved capital
efficiencies [2].

Prior to the NFV era, vendors sell a solution with integrated
hardware and software. Due to the separation of hardware
and software in NFV, interoperability becomes even more
important. Now the hardware and software may come from
different vendors, and the functions in the network have to
work in concert with one another. Towards this goal, recent
initiatives from major industry players start to define standards
for the NFV market. For instance, Huawei provides the Open
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Platform for NFV (OPNFV) aimed to ensure compatibility
between NFV solutions from different vendors, and allow
network service providers to choose from a variety of sup-
pliers. NFV makes it easy to aggregate network functions
into data centers or other centralized locations. However,
concentration of VNFs sometimes is not the most effective
and least expensive approach. For this target, a service provider
should be free to locate VNFs in all possible locations, from
data centers to network nodes to the customer premises. For
example, RAD recently introduced a dedicated customer-edge
Distributed NFV (D-NFV) solution [3].

A service provider in the NFV paradigm implements one or
more virtualized network functions (VNFs). A VNF by itself
does not necessarily provide a usable product or service to
NFV customers. To build more complex services, the key
notion of service chaining [4] is introduced, where multi-
ple VNFs are used in sequence to deliver a service. More
specifically, a set of VNFs is specified and data flow traverses
these VNFs in a prescriptive order. A service chain may be
unidirectional, bidirectional or hybrid. When all VNFs in a
service chain process traffic in the forward direction only, the
service chain is unidirectional. When all the VNFs process the
traffic from both directions, it is bidirectional. Otherwise, it is
hybrid. This work focuses on the unidirectional service chain
where flows are forwarded through the ordered VNF sequence
in one direction.

Depending on the property of a specific VNF, some types
of VNF can be configured once and shared by multiple service
chains (e.g., anti-virus functions), while other types of VNF
can only be used by one service chain (e.g., a firewall).
Furthermore, traffic analysis functions such as Deep Packet
Inspection (DPI) do not modify the packet; some VNFs con-
vert one packet format into another (e.g., video transcoding),
which will change the packet size; some security functions
such as a firewall drop incoming packets that violate security
principles. Consequently, it is necessary to define the data rate
for each hop in a service chain. Given the two salient features
of VNF service chains, it is challenging to find an efficient
solution to the VNF Orchestration problem and to compute
suitable prices in the NFV market.

Auction mechanisms represent a flexible and efficient ap-
proach to our resource allocation problem in NFV. Different
from simple allocation schemes based on fixed pricing, an
auction is economically efficient, automatically discovers the



market value of service chains, and assigns resources to users
who value them most [5]. Instead of using static provisioning,
the service provider dynamically assembles VNFs into a ser-
vice chain and deploys VNF service chains in the data center
according to users’ demand. Through competitive bidding,
it can achieve a higher social welfare than fixed pricing
approaches do. However, the social welfare maximization
problem under dynamic resource provisioning is NP-hard [6],
hence it is challenging to find an effective algorithm to such
optimization, even if truthful bids are given for free.

This work focuses on the NFV market for selling service
chains in the data center. The service provider acts as the
auctioneer and owns network resources in the data center.
It sells network services to the users (bidders) through an
auction. Each service chain contains a series of VNFs. Due to
CPU, memory and bandwidth limits in the data center, It can
only configure a finite number of VNF instances that can be
packed into service chains. While some VNFs can be shared
among several service chains, however, the degree of sharing
should be limited. To guarantee the performance of the VNF
instance, we should only allow a limited amount of flows
traverse a single VNF instance.

To design an economically efficient auction mechanism
solving the resource allocation problem while pursuing the
maximum social welfare, we formulate the social welfare
maximization problem as an integer linear program (ILP)
which is an NP-hard combinatorial optimization problem.
Thus, it is unlikely to find an exact algorithm to get the
solution in polynomial time. We instead resort to the design of
an efficient primal-dual approximate algorithm to compute in
polynomial time a close-to-optimal resource allocation solu-
tion. Our primal-dual algorithm is carefully designed, so that
it simultaneously achieves three goals. First, it is computation-
ally efficient, making the NFV auction amenable for practical
implementations. Second, it guarantees a small approximation
ratio as compared to the optimal solution, ensuring good social
welfare in the auction result. Third, our algorithm ensures
that a higher bid can only help with the winning probability
of an NFV user, satisfying the monotone allocation rule [7]
that is essential to the design of an accompanying payment
mechanism for together eliciting truthful bids.

Truthfulness is a desirable property in auction mecha-
nism design. It is well-known that the Vickrey-Clarke-Groves
(VCG) mechanism can guarantee both truthfulness and social
welfare maximization, under the assumption that an optimal
algorithm is applied to the underlying social welfare max-
imization problem [8]. However, the VCG auction coupled
with an approximate algorithm loses its truthfulness guarantee.
Consequently, exploiting the monotone property of our primal-
dual algorithm, we resort to design an alternate payment
strategy base on Myerson’s celebrated characterization of
truthful auctions, making sure that bidding truthful valuations
for the service chains constitute a dominant strategy for each
NFV user. Our primal-dual approximation algorithm works in
concert with the tailored payment strategy, together making an
efficient truthful NFV auction mechanism.

In the rest of the paper, previous literature is discussed
in Sec. II. We formulate our system model in Sec. III. In
Sec. IV, we design an auction mechanism containing an
primal-dual algorithm to determine the resource provisioning
with a small approximation ratio, and a payment strategy to
guarantee truthfulness. We evaluate the performance of our
auction mechanism in Sec. V. Sec. VI concludes the paper.

II. RELATED WORK

A number of industry standards on NFV were proposed by
ETSI, IETF, as well as the industry sector (including Huawei
and Cisco), resulting in a series of recently published white
papers [1] [9] [10]. The document from IETF [4] defines a
reference architecture and a framework to enforce Service
Function Chaining (SFC) with minimum requirements on the
physical topology of the network. Our work aims at the market
design that facilities service chain transactions, and follows the
concepts and frameworks outlined in these white papers.

Bari et al. [11] present two solutions to the problem of
VNF orchestration. They formulate the problem as an ILP
and compute the optimal solution using CPLEX when the
network is small. When the network is large, a heuristic is used
to compute sub-optimal solutions. Gember et al. [12] design
and implement a network-aware orchestration layer to deploy
middleboxes in the cloud, known as Stratos. The orchestration
process is separated into three steps: first, deciding how many
VNF instances of each type are needed; second, considering
how to place these VNFs inside the cloud; finally, routing
the traffic through the service chains. In [13], it is shown
that properly placing VNFs in an NFV-enabled packet/optical
Data Center is effective to minimize optical/electical/optical
(O/E/O) conversion cost for VNF service chaining. A heuristic
algorithm is provided to solve the problem for VNF placement.
To our knowledge, our work is the first to address NFV
resource allocation through an efficient auction mechanism,
which strives to guarantee not only computational efficiency
and approximate social welfare maximization, but also truthful
bidding from NFV users.

Auctions have long been used as a mechanism for allocating
resources to competing users. Zamban et al. [14] design a
truthful auction based on an approximation algorithm for
cloud resource allocation, but without proving the performance
of the algorithm. Wang et al. [15] provide a truthful VM
auction based on a greedy allocation algorithm and a well-
designed payment method. However, the approximation ratio
is large and depends on the number of VMs. Zhang et al. [6]
focus on dynamic cloud resource provisioning, and design a
randomized auction for VM transactions in the cloud market.
The well-known VCG auction loses its truthful property when
applied with an approximation algorithm to compute resource
allocation [16]. Hence the VCG mechanism is unsuitable for
our NFV service chain auction where optimal allocation is
NP-hard. In [17], Gopinathan et al. design a payment scheme
which can guarantee the truthfulness for approximation al-
gorithm based on Myserson’s principle. While most cloud



auction mechanisms sell separate VMs, the auction designed in
this work sells correlated VMs in the form of service chains.

III. SYSTEM MODEL

We consider an auction approach to provisioning resources
in the NFV market. There are K types of resources, as ex-
emplified by CPU, memory and bandwidth. The total amount
of type k ∈ [K] resource in the data center is ck. The service
provider supplies V types of VNFs, v ∈ [V ] denotes a type v
VNF instance that consumes a pkv amount of type k resource
for each k, and has a processing capacity of Mv . I users
participate in the auction as bidders. Each user i ∈ [I] submits
a bid Bi. Each bid Bi requests a service chain, which can be
regarded as a directed path containing Vi types of VNFs and
Ei links, along with a bidding price bi. For the service chain
in Bi, (u, v) ∈ [Ei] is a link from VNF instance u to v. The
data rate on link (u, v) is di(u, v) and di(u, v) = 0 if (u, v) is
not in service chain i. Let a binary xi indicates whether user i
wins (xi = 1) or not (xi = 0). Let vi denote the true valuation
of user i for the requested service chain. If user i wins, the
payment for its bid is pi. The utility ui for user i is

ui(Bi,B−i) =

{
vi − pi if user i wins its service chain
0 otherwise

B−i is the set of all the bids except Bi. Our mechanism design
aims to guarantee the Truthfulness property:

Definition 1 (Truthfulness). An NFV auction is truthful if for
any user i, declaring the true valuation of the service chain in
Bi maximizes its utility, regardless of other users’s bids.

We will design a truthful auction that utilizes an approxima-
tion algorithm to compute the NFV resource allocation. Along
this direction, we will depend on Myerson’s characterization of
truthful mechanisms [17]. We know that bi is the bidding price
submitted by bidder i. Let b−i denote the other bidding prices
except bi. P (bi) is i’s winning probability when it submits bi.

Theorem 1. An auction mechanism is truthful (in expectation)
if and only if

1) Pi(bi) is monotonically non-decreasing in bi, ∀i ∈ [I];
2) The payment of bidder i bidding bi is

pi = biPi(bi)−
∫ bi

0

Pi(b) db,∀i ∈ [I]

Under truthful bidding, the bidding price bi in user i’s bid Bi
equals the true valuation vi. The social welfare maximization
problem is to maximize the sum of service provider’s utility
(revenue),

∑
i∈[I] pixi, and all the bidders’ utilities,

∑
i∈[I](vi−

pi)xi =
∑
i∈[I](bi − pi)xi, i.e., to maximize

∑
i∈[I] bixi since

payments cancel themselves.
In the NFV system, we assume that each type of VNF

appears in a service chain at most once, and there is no
loop in the VNF chain. This is a reasonable simplification
that is in line with most practical application scenarios, and
helps present and analyze our NFV auction algorithm. Let
hi,v denote whether type v VNF is in Bi (hi,v = 1) or not
(hi,v = 0). We assume that the data rate di(u, v) for every

link that flows into VNF v does not exceed the processing
capacity of type v VNF Mv , meanwhile, the usage of any type
of resource for a single bid will not exceed the total resource
capacity, i.e., Rk = maxi∈[I]

∑
v∈[V ] p

k
vhi,v < ck.

Some VNF instances can be shared among multiple service
chains, for better VNF utilization. For example, an anti-virus
function can be configured once and used for each chain that
relies upon this functionality [18]. Other types of VNF can not
be shared. For instance, a firewall needs specific configurations
for every chain request. A binary qv indicates whether a VNF
instance v can be shared (qv = 1) or not (qv = 0)).

After receiving the requirements in all user bids, the service
provider can classify the total V types of VNF into subsets.
Let Va denote the total number of VNFs that are requested by
the users and can be shared among service chains, [Va] = [v ∈
V |qv = 1,

∑
i∈I hi,v 6= 0]; Let Vb denote the number of VNFs

that are requested by the users but can not be shared among
service chains, [Vb] = [v ∈ V |qv = 0,

∑
i∈I hi,v 6= 0].

Because a VNF instance v ∈ [Va] permits cross-chain shar-
ing, the service provider can configure it once and provision
to every chain that requires this VNF. A binary variable yv
indicates whether a type of VNF v ∈ [Va] is active in the
data center (yv = 1) or not (yv = 0). When allocating service
chains, we have to make sure the allocation respects resource
capacity constraints of the data center and processing capacity
constraints of VNF instances. The finite supply of each type
of resource translates into the following capacity constraint:∑

v∈[Va]

yvp
k
v +

∑
v∈[Vb]

∑
i∈[I]

pkvhi,vxi ≤ ck, ∀k ∈ [K] (1)

Each service chain i is a directed path. For every node v in
chain i, at most one node is connected to v. The notation
di(u, v) can be simplified to di,v , encoding the data rate
flowing into VNF v in service chain i. Given that a single
date rate will not exceed the processing capacity Mv , i.e.,
Dv = maxi∈[I]di,v < Mv, the total amount of traffic passing
through the shared VNF v should not exceed its processing
capacity. Thus, we have the following constraint:∑

i∈[I]

xidi,v ≤Mv, ∀v ∈ [Va] (2)

The variable yv can be derived from xi as follows:

yv =

{
1 if

∑
i∈[I] xihi,v > 0

0 if
∑
i∈[I] xihi,v = 0

(3)

We convert the above equation into a linear constraint:∑
i∈[I]

xihi,v ≤ Nyv, ∀v ∈ [Va] (4)

The value of N should be selected sufficiently large [19].
Given that

∑
i∈[I] xihi,v ≤

∑
i∈I hi,v ≤ I, it is safe to select

N = I. If
∑
i∈[I] xihi,v = 0 is at the optimum, then the

maximization of
∑
i∈[I] bixi together with constraint (1) will

force yv to zero.
The social welfare maximization problem is:

Maximize
∑
i∈[I]

bixi (5)



Subject To:∑
v∈[Va]

yvp
k
v +

∑
v∈[Vb]

∑
i∈[I]

pkvhi,vxi ≤ ck, ∀k ∈ [K], (5a)

∑
i∈[I]

xidi,v ≤Mv, ∀v ∈ [Va], (5b)

∑
i∈[I]

xihi,v ≤ Iyv, ∀v ∈ [Va], (5c)

xi, yv ∈ {0, 1},∀i ∈ [I], v ∈ [Va]. (5d)

Theorem 2. The social welfare maximization problem defined
in ILP (5) is NP-hard.

Proof. The classic combinatorial optimization problem below,
0-1 knapsack, is known to be NP-hard:

Maximize
n∑
i=1

vixi

Subject To:
n∑
i=1

wixi ≤W,xi ∈ {0, 1}

ILP (5) with only one of the constraints (5b) is a 0-1
knapsack problem. The knapsack problem is a special case
of ILP (5). Hence the social welfare maximization problem in
ILP (5) is NP-hard.

We consider the LP relaxation of ILP (5) by relaxing (5d)
to

0 ≤ xi ≤ 1, yv ≥ 0, ∀i ∈ [I], v ∈ [Va]. (5d’)

Then we introduce dual variable vectors λ, β, γ and φ to
constraints (5a), (5b), (5c) and (5d’) respectively. The dual of
ILP (5) can be formulated as the following:

Minimize
∑
k∈[K]

ckλk +
∑
v∈[Va]

Mvβv +
∑
i∈[I]

φi (6)

Subject To:

φi +
∑
k∈[K]

∑
v∈[Vb]

λkp
k
vhi,v +

∑
v∈[Va]

βvdi,v

+
∑
v∈[Va]

γvhi,v ≥ bi, ∀i ∈ [I], (6a)

∑
k∈[K]

λkp
k
v ≥ Iγv, ∀v ∈ [Va], (6b)

λk ≥ 0, βv ≥ 0, γv ≥ 0, φi ≥ 0,∀k ∈ [K],∀v ∈ [Va], ∀i ∈ [I],
(6c)

IV. A PRIMAL - DUAL APPROXIMATION ALGORITHM

Based on the assumption that the bids we know are truthful,
we first design a polynomial time approximation algorithm
based on the primal-dual framework [7] for the social welfare
maximization problem in ILP (5). The algorithm can output
a feasible solution and guarantee a small approximation ratio.
Then we design a payment strategy to work in concert with the
approximation algorithm, for making sure that bids submitted
by the users are truthful in practice.

TABLE I: Summary of Notations

I # of service users K # of resource types
Bi user i’s bid ui utility of user i
bi bidding price of bid i vi true valuation of user i
Ei # of edges in service chain i
Vi # of VNF types in service chain i
Va # of requested VNF types which can be shared
Vb # of requested VNF types which can not be shared
ck the total amount of type k resource
pkv VNF v’s requirement of type k resource
Mv processing capacity of VNF v
Rk the max user requirement for type k resource
Dv the max data rate which flows in VNF v
di(u, v) user i’s demand of data rate flowing from u to v
di,v user i’s demand of data rate flowing into v
pi payment of user i if winning the bid
hi,v hi,v equals 1 when VNF v in bid i, otherwise 0
qv qv equals 1 when VNF v can be shared, otherwise 0
xi xi equals 1 when bid i wins, otherwise 0
yv yv equals 1 if type v VNF is active, otherwise 0

A. The Primal-Dual Approximation Algorithm for Social Wel-
fare Maximization

Our primal-dual algorithm, as shown in Algorithm 1, itera-
tively selects the current best bid which has the largest value
per unit resource, from the set of users who haven’t obtained
any VNF chain. The currently selected user µ is appended to
the set Λ, which contains users who win their corresponding
bids. The types of shared VNF requested in the bid µ are
known, thus the value of yv can be determined along with the
update of xµ. Because a shared VNF can be configured once
and used by several service chains, in every iteration after the
corresponding yv is updated to 1, the VNF v will be added to
the set ∆ that contains shared VNFs already configured. Then
VNF v will not be configured again. Meanwhile, the algorithm
updates the dual variable vectors λ, β and φ in every iteration
and assigns γ = 0 from beginning to the end.

Lines 2-4 in Algorithm 1 initialize primal variables x and y
and dual variables λ, β, φ and γ. In the while loop in lines
5-21, variables x, y, λ, β and φ are updated iteratively. The
while loop has three stop conditions. The condition Λ 6= [I]
ensures that the loop is executed at most I times. If the while
terminates because Λ 6= [I] is false, every user i can receive
its service chain. The second condition

∑
k∈[K] c

kλk < Keρ−1

and the third condition
∑
v∈[Va] Mvβv < Vae

B−1 guarantee the
feasibility of constraints (5a) and (5b) respectively.

Line 6 selects the current best bid with the largest value of
unit resource bi∑

k∈[K]

∑
v∈[V ]

λkp
k
vhi,v+

∑
v∈[Va]

βvdi,v
. Line 7 updates

the primal variable x and the set Λ. p is the value of the
primal objective function. Line 8 sets dual variable φµ to bµ,
so that

∑
µ φµ = p in all iterations. Lines 9-12 update the

dual variable λ with exponential cost to reflect the changes of
resource utilization. The for loop in lines 13-17 repeatedly
check the elements in set [Va]\∆ and updates the variable yv
as well as the set ∆. Lines 18-20 are similar to lines 10-12,
using exponential cost to update the dual variable β.



Algorithm 1 A Primal-Dual Approximation Algorithm for ILP
(5)
Input: (bi, p

k
v , hi,v, di,v, Rk, Dv)

Output: solution (x, y) for ILP (5), (λ, β, γ, φ) for LP (6)
1: // Initialization
2: ρ = mink∈[K]

ck

Rk
;B = minv∈[Va]

Mv

Dv
;

3: ∀i ∈ [I],∀v ∈ [Va],∀k ∈ [K] : xi = 0; yv = 0;φi =
0; γv = 0;λk = 1

ck
;βv = 1

Mv
;

4: p = 0; Λ = ∅; ∆ = ∅; [V ′] = [Vb]
⋃

[Va];
5: while Λ 6= [I] AND

∑
k∈[K]

ckλk < Keρ−1 AND∑
v∈[Va]

Mvβv < Vae
B−1 do

6: µ = arg maxi∈I\Λ{ bi∑
k∈[K]

∑
v∈[V ]

λkp
k
vhi,v+

∑
v∈[Va]

βvdi,v
};

7: xµ = 1; Λ = Λ
⋃
{µ}; p = p+ bµ;

8: φµ = bµ;
9: [V ′] = [V ′]\∆;

10: for all k ∈ [K] do

11: λk = λk(eρ−1)
(

∑
v∈[V ′]

hµ,vp
k
v)/(c

k−Rk)
;

12: end for
13: for all v ∈ [Va]\∆ do
14: if hµ,v = 1 then
15: yv = 1; ∆ = ∆

⋃
{v};

16: end if
17: end for
18: for all v ∈ [Va] do
19: βv = βv(e

B−1)dµ,v/(Mv−Dv);
20: end for
21: end while

B. Solution feasibility for the approximation algorithm

Next we make sure that Algorithm 1 outputs a feasible
solution to both the primal ILP (5) and the dual LP (6).

Theorem 3. The output of Algorithm 1 includes a feasible
solution to ILP (5).

Proof. In Algorithm 1, primal variables x and y are initialized
to 0, and will be updated to 1 only; hence constraint (5d) will
not be violated. After xi is set to 1, the corresponding yv is
set to 1 and removed from the original set [Va]. Once yv is set
to 1, it will never become 0 again, satisfying constraint (5c).

We next check the feasibility of constraint (5a). Assume that
the lth iteration is the first time that constraint (5a) is violated
while the other constraints are satisfied. Thus, at iteration l−1,

λl−1
k =

1

ck
(eρ−1)

(
∑

v∈∆l−1
pkv+

∑
v∈[Vb]

∑
i∈Λl−1

pkvhi,v)/(ck−Rk)

,

and we have
∑
v∈∆l−1 p

k
v +

∑
v∈[Vb]

∑
i∈Λl−1 p

k
vhi,v ≤ ck.

While in iteration l,

∑
v∈[V ′]l−1

hµl,vp
k
v +

∑
v∈∆l−1

pkv +
∑
v∈[Vb]

∑
i∈Λl−1

pkvhi,v ≥ ck.

Because ck > Rk ≥
∑
v∈[V ′]l−1 hµl,vp

k
v ,∑

v∈∆l−1

pkv +
∑
v∈[Vb]

∑
i∈Λl−1

pkvhi,v ≥ ck −
∑

v∈[V ′]l−1

hµl,vp
k
v

≥ ck −Rk.

Thus, (
∑
v∈∆l−1 p

k
v +

∑
v∈[Vb]

∑
i∈Λl−1 p

k
vhi,v)/(ck −Rk) ≥ 1.

This leads to
∑
k∈[K] c

kλl−1
k ≥ Keρ−1, satisfying the second

while loop stop condition. The while loop will terminate
before iteration l starts, and constraint (5a) will not be violated.

The proof of feasibility of constraint (5b) is similar to that
of (5a). We assume that round t is the first round to violate
constraint (5b). Therefore,

∑
i∈Λt−1

di,v ≤ Mv, while, dµt,v +∑
i∈Λt−1

di,v ≥Mv. In round t,
∑

i∈Λt−1

di,v ≥Mv − dµt,v ≥Mv −

Dv. It will result in∑
v∈[Va]

Mvβ
t−1
v =

∑
v∈[Va]

Mv
1

Mv
(eB−1)

∑
i∈Λt−1

di,v/(Mv−Dv)

≥ VaeB−1.

By the third stop condition of the while loop, this implies
that the previous iteration t−1 will be the last iteration of the
algorithm. To conclude, the primal-dual algorithm provides us
with a feasible output to ILP (5).

Though the primal solution is always feasible for every
iteration, we can not guarantee the dual solution is also
feasible. We need to apply the method of dual fitting to scale
the dual by a suitable factor to ensure its feasibility [20].

Theorem 4. Let (λ, β, γ, φ) be the vector of current dual
variables which is infeasible for the dual LP (6) at the
beginning of iteration τ , then the vector (εfµτ (λτ−1, βτ−1)λ,
fµτ (λτ−1, βτ−1)β, γ, φ) is a feasible fractional solution to the
dual LP (6). fµτ (λτ−1, βτ−1) = bµτ /(

∑
k∈[K]

∑
v∈[V ]

λτ−1
k pkvhµτ ,v +∑

v∈[Va]

βτ−1
v dµτ ,v), ε = maxi∈[I]

∑
k∈[K]

∑
v∈[V ] p

k
vhi,v∑

k∈[K]
∑
v∈[Vb]

pkvhi,v
.

Proof. We first check the feasibility for constraint (6b). With
γv = 0, dual constraint (6b) becomes

∑
k∈[K] λkp

k
v ≥ 0, ∀v ∈

[Va] which is always feasible because λk ≥ 0, ∀k ∈ [K].
∀i ∈ Λ, φi is assigned to bi. It is clear that constraint

(6a) is always satisfied. Then consider the remaining i ∈
[I]\Λ, let fi(λ, β) = bi∑

k∈[K]

∑
v∈[V ]

λkp
k
vhi,v+

∑
v∈[Va]

βvdi,v
. Because

fµτ (λτ−1, βτ−1) is selected from line 6, we have

fµτ (λτ−1, βτ−1) ≥ fi(λ, β), ∀i ∈ [I]\Λ.

By the definition of ε, we can get ε
∑
k∈[K]

∑
v∈[Vb]

λkp
k
vhi,v ≥∑

k∈[K]

∑
v∈[V ] λkp

k
vhi,v . Because γv = 0,∀v ∈ [Va] and we

have φi = 0,∀i ∈ [I]\Λ, we have,

φi + εfµτ (λτ−1, βτ−1)
∑
k∈[K]

∑
v∈[Vb]

λkp
k
vhi,v

+ fµτ (λτ−1, βτ−1)
∑
v∈[Va]

βvdi,v +
∑
v∈[Va]

γvhi,v

≥ fµτ (λτ−1, βτ−1)(
∑
k∈[K]

∑
v∈[V ]

λkp
k
vhi,v +

∑
v∈[Va]

βvdi,v)

≥ fi(λ, β)(
∑
k∈[K]

∑
v∈[V ]

λkp
k
vhi,v +

∑
v∈[Va]

βvdi,v) = bi

(7)



Consequently, the fitted solution (εfµτ (λτ−1, βτ−1)λ,
fµτ (λτ−1, βτ−1)β, γ, φ) is feasible to the dual LP (6).

After proving the correctness of Algorithm 1, we next
analyze its computation complexity, and show that Algorithm
1 can compute a feasible solution in polynomial time.

Theorem 5. The computational complexity of Algorithm 1 is
polynomial time.

Proof. The while loop in Algorithm 1 has at most I itera-
tions. In the loop body, line 6 is executed at most 2I times.
The for loop in lines 10-12 executes K times in each while
loop iteration. Meanwhile, the for loops in lines 13-17 and
lines 18-20 can both be finished in at most Va iteration steps.
Thus, the complexity of Algorithm 1 is O(I2).

Theorem 6. Algorithm 1 computes an α-approximate solution
to ILP (5), where α = max{ ϕε

ln(Ke
ρ−1+Va
K+Va

)
, ϕε

ln(K+VaeB−1

K+Va
)
}+ 1.

Proof. Let $ denote the terminating iteration of Algorithm
1. Let w1(τ) =

∑
i∈[I] φ

τ
i , w2(τ) =

∑
k∈[K] c

kλτk , w3(τ) =∑
v∈[Va] Mvβ

τ
v at iteration τ . w∗ denotes the optimal dual

solution to LP (6). We have

w2(τ) =
∑
k∈[K]

ckλτk

=
∑
k∈[K]

ckλτ−1
k (eρ−1)

(
∑

v∈[V ′]
hµτ ,vp

k
v)/(ck−Rk)

=
∑
k∈[K]

ckλτ−1
k (1 +

δ
ck

Rk
− 1

)(
∑
v∈[V ′] hµτ ,vp

k
v)/Rk

≤
∑
k∈[K]

ckλτ−1
k (1 +

δ
ck

Rk
− 1

((
∑

v∈[V ′]
hµτ ,vp

k
v)/Rk))

=
∑
k∈[K]

ckλτ−1
k +

∑
k∈[K]

δck

ck −Rk
(
∑

v∈[V ′]
hµτ ,vp

k
v)λτ−1

k

≤ w2(τ − 1) + σ
∑
k∈[K]

∑
v∈[V ′]

hµτ ,vp
k
vλ

τ−1
k

≤ w2(τ − 1) + σ
∑
k∈[K]

∑
v∈[V ]

hµτ ,vp
k
vλ

τ−1
k

(8)
Because (1 + a)x ≤ 1 + ax when 0 ≤ x ≤ 1, we obtain the

first inequality. While δ = ( c
k

Rk
− 1)((eρ−1)

1
ck
Rk
−1 − 1), σ =

maxk∈[K]
δck

ck−Rk
and ρ = mink∈[K]

ck

Rk
, we can get

σ = maxk∈[K]
δck

ck −Rk
= maxk∈[K]

ck

Rk
((eρ−1)

1
ck
Rk
−1 − 1)

= ρ(e− 1)

The derivation steps for w3(τ) are similar to those of

w2(τ). We define A = (Mv
Dv
− 1)((eB−1)

1
Mv
Dv
−1 − 1) and

θ = maxv∈[Va]
AMv

Mv−Dv = maxv∈[Va]
Mv
Dv

((eB−1)

1
Mv
Dv
−1 − 1).

Because B = minv∈[Va]
Mv
Dv

and AMv
Mv−Dv is non-increasing with

Mv
Dv

> 1, we have θ = B(e− 1).

w3(τ) =
∑
v∈[Va]

Mvβ
τ
v

=
∑
v∈[Va]

Mvβ
τ−1
v (eB−1)dµτ ,v/(Mv−Dv)

=
∑
v∈[Va]

Mvβ
τ−1
v (1 +

A
Mv
Dv
− 1

)dµτ ,v/Dv

≤
∑
v∈[Va]

Mvβ
τ−1
v (1 +

A
Mv
Dv
− 1

(dµτ ,v/Dv))

=
∑
v∈[Va]

Mvβ
τ−1
v +

∑
v∈[Va]

AMv

Mv −Dv
dµτ ,vβ

τ−1
v

≤ w3(τ − 1) + θ
∑
v∈[Va]

dµτ ,vβ
τ−1
v

(9)

With the definition of fµτ (λτ−1, βτ−1), we can obtain,∑
k∈[K]

∑
v∈[V ]

hµτ ,vp
k
vλ

τ−1
k +

∑
v∈[Va]

βτ−1
v dµτ ,v =

bµτ

fµτ (λτ−1, βτ−1)

(10)
In Algorithm 1, pτ represents the solution of primal ILP (5)
in round τ , then we can have pτ − pτ−1 = bµτ . We define
ϕ = max{σ, θ}. According to Eqn. (8), Eqn. (9) as well as
Eqn. (10), we have,

w2(τ) + w3(τ) ≤ w2(τ − 1) + w3(τ − 1)

+ σ
∑
k∈[K]

∑
v∈[V ]

hµτ ,vp
k
vλ

τ−1
k + θ

∑
v∈[Va]

dµτ ,vβ
τ−1
v

≤ w2(τ − 1) + w3(τ − 1)

+ ϕ(
∑
k∈[K]

∑
v∈[V ]

hµτ ,vp
k
vλ

τ−1
k +

∑
v∈[Va]

dµτ ,vβ
τ−1
v )

= w2(τ − 1) + w3(τ − 1) + ϕ
bµτ

fµτ (λτ−1, βτ−1)

= w2(τ − 1) + w3(τ − 1) + ϕ
pτ − pτ−1

fµτ (λτ−1, βτ−1)
(11)

To analyze the approximation ratio of Algorithm 1, we should
separately consider it in different cases as the algorithm may
terminate upon different stop conditions. When Λ == [I], all
users win their bids. The output is optimal, so the approxima-
tion ratio is 1.

Next assume the algorithm stops due to
∑
k∈[K] c

kλk ≥
Keρ−1 or

∑
v∈[Va] Mvβv ≥ Vae

B−1. If at an iteration t before
the terminate iteration $, w1(t−1) ≥ w∗

α
, it means we already

have an α-approximate solution at round t as w1(t) is non-
decreasing. Now we need to consider the case that until the
terminating round $, w1(t − 1) < w∗

α
is always satisfied to

continue upper-bounding the value of w2(τ) + w3(τ).
Theorem 4 indicates that (εfµτ (λτ−1, βτ−1)λ,

fµτ (λτ−1, βτ−1)β, γ, φ) is a feasible solution to the dual LP
(6) at round τ . By weak duality, every feasible dual solution
is an upper bound of the optimal solution w∗, therefore,

w∗ ≤ w1(τ − 1) + εfµτ (λτ−1, βτ−1)w2(τ − 1)

+ fµτ (λτ−1, βτ−1)w3(τ − 1)



By the definition of ε, we know it is a constant number no
less than 1. Furthermore, ∀τ ≤ $, w1(τ − 1) < w∗

α
. Thus,

1

fµτ (λτ−1, βτ−1)
≤ εw2(τ − 1) + w3(τ − 1)

w∗ − w1(τ − 1)

≤ ε(w2(τ − 1) + w3(τ − 1))

w∗ − w1(τ − 1)
≤ ε α

α− 1

w2(τ − 1) + w3(τ − 1)

w∗
(12)

Recall the Eqn. (11) together with the upper bound for
1

fµτ (λτ−1,βτ−1)
in Eqn. (12), we can bound w2($) + w3($):

w2($) + w3($) ≤ w2($ − 1) + w3($ − 1)

+
ϕεα

(α− 1)w∗
(p$ − p$−1)(w2($ − 1) + w3($ − 1))

= (w2($ − 1) + w3($ − 1))(1 +
ϕεα

(α− 1)w∗
(p$ − p$−1))

≤ (w2($ − 1) + w3($ − 1)) exp(
ϕεα

(α− 1)w∗
(p$ − p$−1))

≤ (w2(0) + w3(0)) exp(
ϕεα

(α− 1)w∗
p$)

(13)
The second inequality in Eqn. (13) is due to (1+x) ≤ ex, ∀x ≥

0. The initial values w2(0) and w3(0) are K and Va respec-
tively. When the algorithm terminates upon stop condition∑
k∈[K] c

kλk ≥ Keρ−1, it indicates that w2($) ≥ Keρ−1. And
we know w3(τ) is non-decreasing, thus, w3($) ≥ w3(0) = Va.
We have,

Keρ−1 + Va ≤ (K + Va) exp(
ϕεα

(α− 1)w∗
p$) (14)

By weak LP duality, we know that OPT
∗

p$
≤ w∗

p$
, where OPT ∗

represents the optimal objective value for ILP (5). From Eqn.
(14), we can obtain the inequality,

w∗

p$
≤ α

α− 1

ϕε

ln(Ke
ρ−1+Va
K+Va

)
= α

Then we can get the approximation ratio when the algorithm
terminates at the stopping condition

∑
k∈[K] c

kλk ≥ Keρ−1

α =
ϕε

ln(Ke
ρ−1+Va
K+Va

)
+ 1 (15)

Similarly, when the algorithm terminates at the stopping
condition

∑
v∈[Va] Mvβv ≥ VaeB−1, with w3($) ≥ VaeB−1 and

w2($) ≥ K, we can get

K + Vae
B−1 ≤ (K + Va) exp(

ϕεα

(α− 1)w∗
p$)

Under this condition, the approximation ratio is

α =
ϕε

ln(K+VaeB−1

K+Va
)

+ 1 (16)

Finally, by summarizing all three cases discussed
above, the approximation ratio of Algorithm 1 is
α = max{ ϕε

ln(Ke
ρ−1+Va
K+Va

)
, ϕε

ln(K+VaeB−1

K+Va
)
}+ 1

C. A truthful payment strategy for the social welfare maxi-
mization problem

Algorithm 1 provides us a feasible resource allocation
solution in polynomial time. Next we need to ensure that
our mechanism is able to offer rational payments for every

winning bidder, which can guarantee truthfulness. By the
second condition of Theorem 1, we need to find a threshold
bidding price b∗i as our mechanism is deterministic and Pi(bi)
is binary: Pi(bi) is 0 if bi < b∗i , and is 1 otherwise. Given the
threshold bidding price b∗i , the payment rule is:

pi = biPi(bi)−
∫ bi

b∗i

Pi(b) db = b∗i , ∀i ∈ [I]

We can compute the threshold bidding price b∗i using the
following Algorithm 2. For each winning bidder, its payment
pi returned from Algorithm 2 is upper-bounded by its bidding
price bi.

Algorithm 2 Payment strategy
1: // Initialization
2: ∀i ∈ [I], pi = 0;
3: for all i ∈ [I] do
4: if xi == 1 then
5: m = 0;n = bi;
6: while (n−m) > ε do
7: Run Algorithm 1 with (m+n

2 , b−i) as bids;
8: if bidder i wins then
9: n = m+n

2 ;
10: else
11: m = m+n

2 ;
12: end if
13: end while
14: pi = m+n

2 ;
15: else
16: pi = 0;
17: end if
18: end for

Theorem 7. Algorithm 1 (allocation method) together with
Algorithm 2 (payment strategy) constitute a truthful auction.

Proof. Leveraging Theorem 1, we first inspect whether our
mechanism can satisfy the first condition, i.e., Pi(bi) is mono-
tonically non-decreasing in bi, ∀i ∈ [I]. Assume bidder i wins
at a time with bidding price bi while other bidders’ bidding
price b−i and the amount of resources remain intact. Now
bidder i still wins when it increases its bidding price bi, since
the allocation rule in Algorithm 1 is greedy. If the bidding
price is lower than bi, bidder i may lose because other bids
may be chosen before bi. Therefore the winning probability
Pi(bi) is non-decreasing.

As discussed above, we have verified that the winning
probability Pi(bi) is non-decreasing with the bidding price
bi. Next we need to demonstrate our payment strategy obeys
the second condition in Theorem 1. The payment pi which is
calculated by Algorithm 2 is satisfied |pi− b∗i | ≤ ε where ε is
a small positive real number given as margin of error. Thus,
the threshold bidding price b∗i can be found by Algorithm 2
which satisfies the second condition in Theorem 1.

D. Auction Framework for NFV Social Welfare Maximization
Algorithm 3 shows the overall auction framework for our

NFV market. The first part of Algorithm 3 is to apply the



primal-dual approximate algorithm to compute the resource
allocation solution to determine the winning bids. After that,
payments of all the winning bidders are determined by the
payment strategy in Algorithm 2.

Algorithm 3 Auction Framework

Input: (~b, pkv , hi,v, di,v, Rk, Dv)
Output: allocation solution (~x, ~y) for ILP (5) and payment ~p

1: Compute allocation solution (~x, ~y) = Algorithm 1 (~b, pkv ,
hi,v , di,v , Rk, Dv);

2: Compute payment ~p = Algorithm 2 (~x, ~b)
3: return ~x and ~p

V. PERFORMANCE EVALUATION

In the simulation studies, we study an NFV service chain
market, in which five types of VNF instances can be shared
among different users, and other types of VNFs can not be
shared — one instance serves one user exclusively. Each
VNF instance requires three types of resources: CPU, memory
and bandwidth. We generate the bids and the corresponding
bidding prices following random distributions.

A. Performance of the approximation algorithm

First, our theoretical analysis proved an approximation ratio
for Algorithm 1 with α. Fig. 1 plots the theoretical approxi-
mation ratio α with ε = 1.5, ϕ = ρ(e − 1), and the algorithm
stops when

∑
k∈[K] c

kλk ≥ Keρ−1. We can find that with the
increasing of ρ, the ratio is always between 3 and 4. Then we
execute the Algorithm 1 separately with the number of bidders
ranging from 10 to 100. As shown in Fig. 2, the theoretical
approximation ratio proven in Theorem. 6 is much larger than
the real approximation ratio calculated with the algorithm
iteration. The algorithm achieves a satisfying performance
with a small approximation ratio between 1 and 2 in practice.
Furthermore, we can find that the approximation ratio is
relatively stable when the number of bidders increases. The
increase in bidder population does not make the approximation
ratio worse. Fig. 3 compares the optimal and approximate
social welfare. The gap between the two is small with the
ratio close to 1, which indicates the algorithm can compute an
allocation solution close to the optimal one in practice.

B. Static allocation vs Dynamic allocation

We next compare the resource allocation performance be-
tween static allocation and dynamic allocation. For static
resource allocation, we assume the service provider offers
10 types of service chains packed with some fixed types
of VNFs. Every user specifies one from the 10 fixed types
of service chains along with a bidding price in its bid. In
Fig. 4, user satisfaction is the ratio of the number of winning
users to the total number of users. Decreasing trends can
be observed in user satisfaction for both dynamic and static
resource allocation, with more bidders participating. For a
given number of bidders, the user satisfaction for dynamic
resource provisioning is higher than that of the static method.

Furthermore, for the Social welfare shown in Fig. 5, dynamic
allocation also outperforms static allocation.

C. Payment strategy

In Fig. 6, the solid red (top) line represents the optimal
solution to the social welfare maximization problem, the solid
black (middle) line is the social welfare calculated by the
primal-dual approximation algorithm, while the dashed blue
(bottom) line is the payment computed by Algorithm 2, the
payment strategy. We can see that the trend in social welfare
is increasing with a growing bidder population. This is due
to the fact that there are more choices for bid selection,
which helps achieve higher social welfare. Algorithm 2 is a
payment strategy to compute the threshold bidding price b∗i as
the payment for each winning bidder. The threshold bidding
price b∗i should always be smaller than the bidding price bi
submitted by the bidder. This is verified by the fact that the
payment (bottom) line is always below the black (middle) line
that represents the corresponding social welfare.

D. Level of overall resource supply

We examine the performance of algorithm 1 when the
amount of resource provided by the service provider varies.
The histogram in Fig. 7 is the social welfares when the users
can choose from different types of VNFs. We separately show
the social welfare with the conditions Vb = 5, Vb = 10 as well
as Vb = 15. It can be seen that the social welfare decreases
when the number of VNF increases. During the simulation, the
bidding prices as well as the total amount of resources remain
the same, however the requirement for each user increases,
thus the ratio of winning users decreases. Consequently the
social welfare decreases. In Fig. 8, the approximation ratio
decreases (becomes better) with the increase of the total
amount of resource. It results from more relaxed restriction of
constraint (5a), which makes it easier for our approximation
algorithm to approach the optimal solution.

VI. CONCLUSION

NFV is emerging as a new paradigm for providing flexible,
elastic and cost effective network functions based on software
algorithms executed upon common computing platforms. As a
key concept in NFV, a service chain is the unit of transaction
in the NFV market that connects atomic network functions to
provide composite services. This work is the first to design
an efficient auction mechanism for the dynamic provisioning
and pricing of NFV service chains in a datacenter. The NFV
auction we design is computationally efficient, truthful, and
achieves near-optimal social welfare. As an interesting future
direction, one may study the design of a double auction for
NFV markets with multiple VNF suppliers.
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