
An Emergency Demand Response Mechanism

for Cloud Computing

Ruiting Zhou
Dept. of Computer Science

University of Calgary
rzho@ucalgary.ca

Zongpeng Li
Dept. of Computer Science

University of Calgary
zongpeng@ucalgary.ca

Chuan Wu
Dept. of Computer Science

The University of Hong Kong
cwu@cs.hku.hk

ABSTRACT
We study emergency demand response (EDR) mechanisms
from data centers’ perspective, where a cloud data center
participates in a mandatory EDR program while receiving
online computing job bids. We target a realistic EDR mech-
anism where: i) The cloud provider dynamically packs dif-
ferent types of resources on servers into requested VMs and
computes job schedules to meet users’ requirements; ii) The
power consumption of servers in the cloud is limited by the
grid through the EDR program; iii) The operating cost of
the cloud is considered in the calculation of social welfare,
measured by electricity cost. We propose an online auction
for dynamic cloud resource provisioning under the EDR pro-
gram, which runs in polynomial time, achieves truthfulness
and close-to-optimal social welfare for the cloud ecosystem.

Keywords
Cloud Computing; Demand Response; Mechanism Design;
Approximation Algorithms

1. INTRODUCTION
A key problem in a power network is the realtime bal-

ance of supply and demand. Demand response facilitates
the e�ciency, reliability, and sustainability of modern smart
grids by reducing and temporally shifting peak loads [22].
Data centers are ideal candidates for participation in such
demand response programs, as they demand a substantial
fraction of the total power supply, yet often with an elastic
nature [15]. In 2011, data centers consumed approximately
1.5% of electricity worldwide, and the ratio is predicted to
increase to 8% by 2020 [8]. Furthermore, computing jobs
in data centers are often elastic and hence can be sched-
uled flexibly across the temporal domain [15], amenable to
demand curtailing and temporal shifting.

A representative scenario for data centers to participate in
a demand response program is coordinated consumption re-
duction dictated by the grid in emergency demand response
(EDR). When stability of the grid is otherwise jeopardized,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 20XX ACM. ISBN X-XXXXX-XX-X/XX/XX. . . $15.00

DOI: 10.1145/1235

EDR coordinates the power usage of large electricity users
to prevent blackouts. Because of their huge yet flexible de-
mand, data centers now serve as a main force in EDR. For
example, on July 22, 2011, hundreds of data centers partici-
pated in EDR by shifting their workload to reduce the power
consumption, preventing a nation-wide blackout in the USA
and Canada [9]. A typical type of EDR program is manda-
tory EDR [11, 10]. Data centers sign a contract ahead with
the smart grid, and commit to reduce load or only consume
electricity up to a certain level when an EDR signal is dis-
patched. They receive monetary remuneration when their
actual power consumption is below the commitment level,
and face a heavy penalty otherwise.

We focus on EDR in cloud data centers which run jobs
from many users. Such a cloud data center faces a highly
non-trivial optimization problem in the event of EDR, in
which it strives to satisfy the power consumption reduction
dictated by the grid, make judicious online decisions on ac-
cepting/declining job bids submitted by cloud users, and
compute the most e�cient execution schedules for the ac-
cepted jobs to minimize operating cost. Operating cost of
the cloud comprises mainly of electricity cost, which in turn
is directly coupled with the processing power of the cloud
data center, i.e., how fast the cloud can serve the admitted
jobs. A cloud user’s job bid specifies (a) the number of each
type of Virtual Machines (VMs) required, which can be di-
rectly mapped to the amount of each type of cloud resources
(e.g., CPU, RAM, disk) required, (b) the length of the job,
in number of time slots required for job execution, (c) the
preferred deadline for job completion, as well as a penalty
function that describes the cost incurred by di↵erent degrees
of deadline violation, and (d) the amount of monetary re-
muneration the cloud user is willing to pay.

The goal of this work is to design an online auction for
execution at the cloud upon an EDR event, such that (i)
the auction runs in an online fashion, making job admission
and scheduling decisions immediately upon the arrival of a
bid, (ii) the auction mechanism is time e�cient and runs
in polynomial time, (iii) the auction is truthful, in that it
guarantees truthful bidding constitutes a dominant strategy
for each cloud user, and (iv) social welfare, including the
net utility of both the cloud and its users, is maximized. By
definition, the social welfare depends on which cloud jobs
are served as well as the cloud’s operating cost for serving
them, which comprises of primarily electricity cost.

In the design of the online auction, we first propose a
new framework, compact exponential convex programs, to
handle job scheduling constraints in the time domain. We

then develop a posted pricing auction framework towards the
truthful online auction design, which leverages the classic
primal-dual technique for approximation algorithm design.
We evaluate our online auctions through both theoretical
analysis and empirical studies driven by real-world traces.

The rest of the paper is structured as follows. In Sec. 2,
we review related work in demand response and cloud mar-
ket mechanisms. Sec. 3 outlines the problem model and
assumptions. Sec. 4 presents and analyzes an online cloud
auction under EDR. Sec. 5 presents performance evaluation,
and Sec. 6 concludes the paper.

2. RELATED WORK
The earliest cloud auctions do not consider the dynamic

provisioning of VMs based on user demand, and assume that
there are a signal type of VMs or the number and types of
VMs are fixed [14]. Subsequently, auction design for dy-
namic VM provisioning, in which the cloud provider assem-
bles VMs based on demand expressed in user bids, starts
to appear later. Zhang et al. [17] formulate the dynamic
resource provisioning problem in the cloud into a combi-
natorial optimization problem with a packing nature, and
propose a truthful randomized auction to solve it. Zhang et
al. [21] employ smoothed analysis and randomized reduction
techniques to design a randomized cloud resource auction.

A series of recent studies have focused on the online auc-
tion design for dynamic VM allocation in cloud computing.
Shi et al. present the first online combinatorial auction for
cloud computing [12]. Zhang et al. [20] consider a more
practical scenario where cloud users’ bids arrive randomly
over a long time span. Compared with existing studies, the
cloud users in our EDR auction bid for job execution rather
than VM occupation. This work is among the first in cloud-
side auction design that considers the scheduling of jobs un-
der EDR power usage reduction requirement, and proposes
an online auction framework to properly handle the schedul-
ing challenge.

The majority of the demand response literature studies
demand response from the smart grid’s perspective [22].
Along the direction of data center demand response, Zhang
et al. [19] study EDR in multi-tenant colocation data cen-
ters. Zhou et al. [23] consider the electricity trade between
smart grids and green data centers in demand response. This
work is from the data center’s perspective instead, and fo-
cuses on the admission and scheduling of cloud users’ jobs
to satisfy the power consumption constraint in EDR, while
striving to maximize social welfare of the cloud ecosystem.

3. SYSTEM MODEL
For mandatory EDR [11, 10], the data center signs a con-

tract with the smart grid a priori (e.g., one year ahead with
PJM [11]) and receives monetory rebates for committed load
reduction, whereas failure to cut load as required during
EDR incurs a heavy penalty. In the event of EDR, the grid
sends a signal to the data center at the beginning of the auc-
tion, specifying the amount of energy reduction required in
each time slot. The data center then calculates the amount
of available power in each slot, E

t

, 8t 2 [T], to schedule its
job execution.

The cloud data center hosts S servers, and o↵ers K types
of resources, as exemplified by CPU, RAM and disk storage,
which can be dynamically assembled into di↵erent types of

VMs. Let [X] denote the integer set {1, 2, . . . , X}. We assume
the amount of type-k resource available in server s 2 [S] is
c

ks

units. The cloud service provider acts as the auctioneer
to lease VMs to cloud users through an online auction.

There are I cloud users, each submitting one bid for exe-
cuting its job, during a large time span 1, 2, . . . , T . User bids
arrive randomly, each requesting a bundle of tailor-made
VMs for job execution, mapping to a required amount of
each type of resource. Let B

i

denote user i’s bid submitted
at time t

i

. It contains: i) r

k

i

, the amount of type-k resource
required. ii) w

i

, the number of time slots (not necessarily
consecutive) needed to complete the job by the tailor-made
VMs. iii) d

i

, the desired deadline for job completion. iv)
g

i

(⌧

i

), a penalty function defined over deadline violation, ⌧
i

:

g

i

(⌧

i

) =

⇢
g

c

i

(⌧

i

), if ⌧

i

2 [0, T � d

i

]

+1, otherwise

(1)

where d

i

+ ⌧

i

is the job completion time. Let b

i

denote user
i’s bidding price if its job is completed before the deadline d

i

,
and then b

i

� g

i

(⌧

i

) is the corresponding bidding price with
completion time d

i

+ ⌧

i

. g

c

i

(⌧

i

) is a nondecreasing function
with g

c

i

(0) = 0. User i’s bidding language can be expressed
as follows: B

i

= {t
i

, {rk
i

}
k2[K], wi

, d

i

, b

i

, g

i

(⌧

i

)}.
Upon the arrival of each bid, the cloud provider immedi-

ately computes the resource allocation and announces the
auction results: i) x

is

2 {0, 1}, where x

is

= 1 if user i’s job
is accepted and allocated on server s, and 0 otherwise. ii)
y

is

(t) 2 {0, 1} encodes the scheduling of user i’s job, where
y

is

(t) = 1 if user i’s job is scheduled to run on server s at
time t, and 0 otherwise. iii) p

i

, user i’s payment. Let g

0
i

(⌧

i

)

be user i’s true penalty function, and then v

i

� g

0
i

(⌧

i

) is the
true valuation of user i’s bid. User i’s utility with bidding
price b

i

� g

i

(⌧

i

) is u

i

(b

i

� g

i

(⌧

i

)) =

P
s2[S] vixis

� g

0
i

(⌧

i

) � p

i

.
Each user is assumed to be selfish and rational, with a natu-
ral aim to maximize its own utility. They may choose to lie
about the true valuation if doing so leads to a higher utility.
In our online auction design, social “happiness” is the target
of optimization; towards this goal, it is important to elect
truthful bids.

Definition (Truthful Auction): A cloud auction is truthful
if bidding true valuation is a dominant strategy for a cloud
user, always maximizing the user utility: for all b

i

� g

i

(⌧

i

) 6=
v

i

� g

0
i

(⌧

i

), u

i

(v

i

� g

0
i

(⌧

i

)) � u

i

(b

i

� g

i

(⌧

i

)).

It is natural to consider the operating cost when we aim
to maximize the social welfare. The operating cost mainly
comprises of power consumption of the servers, increasing
with the increment of the resource occupied on the server.
The power consumption of a server can typically be modelled
as:

P
k2[K] �k

u

k

[13], where u

k

is the utilization of type-k
resource, and �

k

represents the power consumption when
type-k resource is in full usage. The operating cost equals
the electricity charge paid by the data center to the utility
company.

Let e(t) be the actual power consumption in slot t, the
operating cost of the data center at t can be defined as:

f

t

(e(t)) =

⇢
h

t

e(t), if e(t) E

t

+1, otherwise

(2)

where h

t

is electricity price at time t, known by the data
center before the auction starts.

Definition (Social Welfare): The social welfare is the ag-
gregate of users’ utilities

P
i2[I](

P
s2[S] vixis

�g

0
i

(⌧

i

)�p

i

) plus

cloud provider’s utility
P

i2[I] pi�
P

t2[T] ft(e(t)). Since pay-
ments cancel themselves, the social welfare becomes

P
i2[I]

(

P
s2[S] vixis

� g

0
i

(⌧

i

))�
P

t2[T] ft(e(t)).

4. ONLINE AUCTION DESIGN

4.1 Social Welfare Maximization Problem
Under the assumption of truthful bidding, the social wel-

fare maximization problem can be formulated into the fol-
lowing convex program:

maximize

X

i2[I]

(

X

s2[S]

b

i

x

is

� g

i

(⌧

i

))�
X

t2[T]

f

t

(e(t)) (3)

subject to:

X

s2[S]

x

is

 1, 8i 2 [I], (3a)

y

is

(t)t d

i

+ ⌧

i

, 8t 2 [T], 8s 2 [S], 8i 2 [I] : t

i

 t, (3b)

w

i

x

is

X

t2[T]:t
i

t

y

is

(t), 8i 2 [I], 8s 2 [S], (3c)

X

i2[I]:t
i

t

r

k

i

y

is

(t) c

ks

, 8k 2 [K[, 8s 2 [S], 8t 2 [T], (3d)

X

s2[S]

X

k2[K]

�

ks

�
P

i2[I]:t
i

t

r

k

i

y

is

(t)

c

ks

�
 e(t), 8t 2 [T], (3e)

⌧

i

, e(t) � 0, x

is

, y

is

(t) 2 {0, 1},
8i 2 [I], 8s 2 [S],8t 2 [T]. (3f)

Note that the following constraint is redundant, and is not
explicitly included in the above convex problem: y

is

(t)
x

is

, 8i 2 [I], 8s 2 [S], 8t 2 [T]. Constraint (3a) indicates that
each user’s job is executed on at most one server. Constraint
(3b) ensures that a job is scheduled to run only after its ar-
rival time. Constraint (3c) guarantees that the number of
time slots allocated to an accepted bid is su�cient for com-
pleting the job. The capacity limit of each type of resource is
modelled in constraint (3d), and constraint (3e) records the
total power consumption in each time slot into e(t). Setting
f

t

(e(t)) = +1 when e(t) > E

t

ensures that the actual power
consumption is capped at the EDR-specified amount.
If we let g

i

(⌧

i

) = f

t

(e(t)) = 0, even in the o✏ine setting,
problem (3) without constraints (3b), (3b), (3c) and (3e) is
still an NP-hard combinatorial optimization problem, equiv-
alent to the classic knapsack problem. The challenge further
escalates when we involve the jobs’ soft deadlines and op-
erating cost. We shall resort to the primal-dual algorithm
design technique to address some of these challenges. How-
ever, the technique cannot be directly applied to (3) since it
involves unconventional constraints for modelling job dead-
lines. We first propose a new framework to handle these un-
conventional constraints. More specifically, we reformulate
the original problem (3) into a compact exponential convex
problem with a compact packing structure, at the price of
involving an exponential number of decision variables:

maximize

X

i2[I]

X

l2⇣

i

b

il

x

il

�
X

t2[T]

f

t

(e(t)) (4)

subject to:

X

l2⇣

i

x

il

 1, 8i 2 [I], (4a)

X

i2[I]

X

l:t2T (l),s2S(l)

r

k

i

x

il

 c

ks

, 8k 2 [K], 8s 2[S], 8t 2 [T], (4b)

X

s2[S]

X

k2[K]

�

ks

�
P

i2[I]

P
l:t2T (l),s2S(l) r

k

i

x

il

c

ks

�
 e(t), 8t 2 [T],

(4c)

e(t) 0, x

il

2 {0, 1}, 8t 2 [T], 8i 2 [I], 8l 2 ⇣

i

. (4d)

Here ⇣

i

is the set of feasible time schedules for user i’s job.
A feasible time schedule is the vector
l = ({x

is

}8s2[S], {yis(t)}8s2[S],t2[T], ⌧i) that satisfies constraints
(3a), (3b) and (3c). x

il

is the binary decision variable where
x

il

= 1 if user i’s job is accepted and executed according to
schedule l 2 ⇣

i

, and 0 otherwise. b

il

is the value based on
schedule l, which equals b

i

� g

i

(⌧

i

) where ⌧

i

is the duration
of deadline violation according to l. T (l) and S(l) represent
the set of time slots and the server when and where user
i’s job is executed in schedule l, respectively. Constraints
(4b) and (4c) are equivalent to (3d) and (3e). Constraint
(4a) guarantees that a job can only be accepted according
to one schedule. A feasible solution to (3) corresponds to a
feasible solution in (4) and vice versa, and hence the optimal
objective values of both problems are equal.

We relax x

il

2 {0, 1} to x

il

� 0 and introduce dual variables
u

i

,p
ks

(t) and m(t) to (4a), (4b) and (4c). The Fenchel dual
[4, 5] of the relaxed problem (4) is:

minimize

X

i2[i]

u

i

+

X

k2[K]

X

s2[S]

X

t2[T]

c

ks

p

ks

(t)+

X

t2[T]

f

⇤
t

(m(t)) (5)

s.t:

u

i

� b

il

�
X

k2[K]

X

t2T (l)

X

s2S(l)

r

k

i

(p

ks

(t) +m(t)

�

ks

c

ks

),

8i 2 [I], 8l 2 ⇣

i

, (5a)

p

ks

(t), u

i

,m(t) � 0, 8i 2 [I],8k 2 [K], 8s 2 [S], 8t 2 [T]. (5b)

Where f

⇤
t

(m(t)) is the convex conjugate [16] of the cost
function f

t

(·), defined as:

f

⇤
t

(m(t)) = sup

e(t)�0
{m(t)e(t)� f

t

(e(t))}.

Proposition 1. The explicit expression of f⇤
t

(m(t)) is:

f

⇤
t

(m(t)) =

⇢
0, m(t) h

t

(m(t)� h

t

)E

t

, m(t) > h

t

(6)

All the missing proofs can be found in our technical
report [2].

4.2 Online Auction Design
A key problem in the online auction design is to decide

whether to accept user i’s job and how to schedule its job to
maximize its utility, while the power consumption in each
slot is limited by the EDR program. If the cloud provider
accepts user i’s job on server s with schedule l, then x

is

= 1,
⌧

i

is assigned according to the completion time, y

is

(t) is
updated and e(t) is increased for slots in T (l). To solve
the original convex problem (3), we seek the help of the
compact exponential convex problem (4) and its dual (5).
We observe that for each primal variable x

il

, there is a dual
constraint (5a) associated to it. Complementary slackness in
the primal-dual technique indicates that x

il

is updated based
on its dual constraint. x

il

remains zero unless its associated
dual constraint becomes tight. Because dual variable u

i

is
nonnegative, we let u

i

be the maximum of 0 and the right
hand side (RHS) of constraint (5a), that is,

u

i

= max(0,max

l2⇣

i

{b
il

�
X

k2[K]

X

t2T (l)

X

s2S(l)

r

k

i

(p

ks

(t)+m(t)

�

ks

c

ks

)}}.

(7)

Accordingly, the winner is determined based on u

i

: the
cloud provider accepts user i’s job if u

i

> 0, and serves it
according to the schedule that maximizes the RHS of (5a).
The cloud provider rejects user i’s job if u

i

 0.
The rational can be explain as follows. If we interpret

p

ks

(t) as the unit capital price of type-k resource on server
s at time t and m(t) as the unit electricity price at time
t, then

P
k2[K]

P
t2T (l)

P
s2S(l) r

k

i

(p

ks

(t) + m(t)

�

ks

c

ks

) is the
total cost of user i’s job if it is accepted and scheduled by l.
Furthermore, the RHS of (5a) is user i’s utility with schedule
l. If we interpret u

i

as user i’s utility, the assignment of u
i

in (7) guarantees that user i’s job is always served with the
schedule that e↵ectively maximizes its utility based on the
current price, which leads to social welfare maximization
and truthfulness.

Algorithm 1 A Primal-dual Online Auction A

online

Input: bidding language {B
i

}, {c
ks

}, {�
k

}, {E
t

}, {h
t

}
1: Define cost function f

t

(e(t)) according to (2);
2: Define function p

ks

(z

ks

(t)) according to (8);
3: Initialize x

is

= 0, y

is

(t) = 0, z

ks

(t) = 0, ⌧

i

= 0, x

il

= 0, u

i

=

0, p

ks

(t) = 0,m(t) = h

t

, e(t) = 0, 8i 2 [I], l 2 ⇣

i

, k 2 [K], s 2
[S], t 2 [T];

4: Upon the arrival of the ith user
5:

�
x

is

, {y
is

(t)}, p
i

, {p
ks

(t)}, {z
ks

(t)}, {e(t)}
�

=

A

core

�
B

i

, {c
ks

}, {E
t

}, {p
ks

(t)}, {z
ks

(t)}, {m(t)}, {e(t)}
�
;

6: if 9s 2 [S], x
is

= 1 then
7: Accept user i’s bid and allocate resources to server s

according to y

is

(t); Charge p

i

from user i;
8: else
9: Reject user i.
10: end if

Although there are an exponential number of dual con-
straints involved in the computation of u

i

, most of them can
be filtered by a dual oracle based on dynamic programming.
This is realized through the selection of schedules. We fix
a polynomial number of schedules by the dual oracle (lines
1-15 in Alg. 2), and let u

i

be the maximum of zero and the
RHS of (5a) with these schedules. For each server s 2 [S],
we construct a set of best schedules. We fix the job comple-
tion time to be t

c

(t

c

2 [t

i

+w

i

�1, T), then the best schedule
is the one with the minimum price among all schedules of
the same completion time. The output of the dual oracle is
such S sets of best schedules. The construction of the best
schedules can be accomplished through dynamic program-
ming method. The base case is the schedule l0 with slots in
[t

i

, t

i

+ w

i

� 1]. We push the completion time one slot for-
ward each time. We calculate the price c(t) for user i’s job
running at time t, i.e., c(t) =

P
k2[K] r

k

i

(p

ks

(t) + m(t)

�

ks

c

ks

).
If the completion time passes the deadline d

i

, the price
will be increased by the corresponding penalty, i.e., c(t) =P

k2[K] r
k

i

(p

ks

(t) + m(t)

�

ks

c

ks

) + g

i

(t � d

i

). In the process of
replacing the completion time, we only need to compare the
price of the old competition time and w

i

� 1 slots preceding
the old competition time.

We next discuss the design of the two prices: unit capital
price p

ks

(t) and unit electricity price m(t). Recall that h

t

is the unit electricity price at time t charged by the power
grid; thus we let m(t) = h

t

based on the interpretation of
dual variable m(t). For the design of p

ks

(t), we introduce
a new variable z

ks

(t), representing the amount of allocated
type-k resource on server s at time t. Let U

k

and L

k

be the

maximum and minimum values per unit of type-k resource
per unit of time, respectively. U

k

and L

k

represent how
users evaluate a unit of type-k resource, considering both
the capital cost and electricity cost. Hence, we assume that
L

k

> h

t

, 8t 2 [T], without loss of generality. We propose
a price function such that the total unit price p

ks

(t) + m(t)

equals L

k

at the beginning and reaches U

k

ultimately. Be-
cause m(t) = h(t), we let p

ks

(t) start at L

k

�h

t

and exponen-
tially increase with the growth of the current usage z

ks

(t).
p

ks

(t) equals U

k

�h

t

when z

ks

(t) exceeds its capacity c

ks

. In
this case, the cloud provider will not accept any more jobs.
To sum up, p

ks

(t) and m(t) are defined as follows:

p

ks

(t)(z

ks

(t)) = (L

k

� h

t

)(

U

k

� h

t

L

k

� h

t

)

z

ks

(t)
c

ks

(8)

m(t) = h

t

, 8t 2 [T] (9)

where U

k

 max

i2[I]
b

i

w

i

r

k

i

and L

k

� min

i2[I]
b

i

�g

i

(T�d

i

)P
k2[K] wi

r

k

i

with truthful bidding.

Algorithm 2 A Scheduling Algorithm A

core

.

Input: B

i

, {c
ks

}, {E
t

}, {p
ks

(t)}, {z
ks

(t)}, {m(t)}, {e(t)}
Output: x

is

, {y
is

(t)}, p
i

, {p
ks

(t)}, {z
ks

(t)}, {e(t)}
1: for all s 2 [S] do
2: Add slot t 2 [t

i

, T] to set T if z
ks

(t)+r

k

i

 c

ks

, 8k 2 [K]

and
P

k2[K] �ks

r

k

i

/c

ks

+ e(t) E

t

;
3: Let schedule l0 include the first w

i

slots
(t1, t2, . . . , tw

i

) in T ; Define j = 1;
4: while w

i

+ j |T | do
5: l

j

= l

j�1;
6: Let t

c

is the (w

i

+ j)th slot in T ;
7: c(t) =

P
k2[K] r

k

i

(p

ks

(t) + m(t)

�

ks

c

ks

), 8t 2
{t1, t2, . . . , tw

i

, t

c

};
8: If t

c

> d

i

, c(t

c

) = c(t

c

) + g

i

(t

c

� d

i

);
9: t

m

= argmax
t2{t1,...,t

w

i

�1} c(t);
10: If c(t

w

i

) < c(t

m

), for schedule l

j

, replace the slot
t

m

with t

w

i

; Save t

c

into t

w

i

;
11: P

j

=

P
t2T (l

j

) c(t); j = j + 1;

12: end while
13: s

⇤
= argmin

j

{P
j

};P⇤
s

= P
s

⇤
; l

⇤
s

= l

s

⇤
;

14: end for
15: ŝ = argmin

s

{P⇤
s

}; ˆP = P⇤
ŝ

,

ˆ

l = l

⇤
ŝ

;

16: if b

i

� ˆP > 0 then
17: x

iŝ

= 1; y

iŝ

(t) = 1, 8t 2 T (

ˆ

l); x

il̂

= 1;

18: u

i

= b

i

� ˆP; p

i

=

P
k2[K]

P
t2T (l̂) r

k

i

(p

ks

(t) +m(t)

�

ks

c

ks

);

19: z

kŝ

(t) = z

kŝ

(t) + r

k

i

, 8k 2 [K], t 2 T (

ˆ

l); e(t) = e(t) +P
k2[K] r

k

i

�

kŝ

/c

kŝ

, 8t 2 T (

ˆ

l);

20: p

kŝ

(t) = p

kŝ

(z

kŝ

(t)), 8k 2 [K], t 2 T (

ˆ

l);

21: end if
22: Return x

is

, {y
is

(t)}, p
i

, {p
ks

(t)}, {z
ks

(t)}, {e(t)}

The online auction A

online

is shown in Alg. 1 with schedul-
ing algorithm A

core

in Alg. 2 running for each user. A
online

first defines the cost function and price function in lines 1-2.
Line 3 initializes all primal and dual variables. Upon the ar-
rival of the ith user, the scheduling algorithm A

core

selects
the best schedule l̂ that maximizes user i’s utility through
the dual oracle (lines 1-15). If user i can obtain positive
utility, primal variables x

is

, y
is

and x

il

are updated accord-
ingly (line 17). Then line 18 calculates the utility and the
payment. Line 19 increases the usage of K resources on the
specified server and records the current power consumption
level. Finally, unit resource price is updated in line 20.

4.3 Theoretical Analysis

Theorem 1. A

online

terminates in polynomial time, and
returns a feasible solution for problem (3), (4) and (5).

Theorem 2. The online auction A

online

is a truthful auc-
tion.

We proceed to analyze the competitiveness of A
online

in
social welfare, measured by the competitive ratio. The com-
petitive ratio is the upper-bound ratio of the social welfare
achieved by the optimal solution of convex problem (3) to
the social welfare achieved by A

online

.

Theorem 3. The online auction A

online

in Alg. 1 is ↵-
competitive in social welfare with ↵ = max

k2[K]{ln
U

k

�h

max

L

k

�h

max

},
where h

max

= max

t2[T] ht

.

5. PERFORMANCE EVALUATION
Simulation setup. We evaluate the performance of our on-
line auction through large-scale simulation studies based on
Google Cluster Data [1], which contains information about
jobs running on Google compute cells, including start time,
execution duration and normalized job demand (CPU and
RAM). We translate each job into a bid, requesting two
types of resources at demands extracted from the traces.
We assume each time slot is 5 minutes long [1] and each job
consumes [1, 12] slots, arriving sequentially in 18 hours with
T = 220. Each job’s deadline is randomly generated between
its arrival time and the system end time. We set the bid-
ding price of each job by multiplying the overall resource
demands by unit prices randomly picked within the range
[L

k

, U

k

]. The default values are L

k

= 5 and U

k

= 50 for
A

online

. The capacity of type-k resource in server s, c
ks

, is
set to 1 as the resource demand is in normalized units.

For the power consumption of a server, parameter �

ks

is
set within [20, 60] for CPU and within [0.2, 2] or RAM [13,
7]. We assume that the data center is powered by BC Hydro
with an electricity charge of ¢4.86 per kWh [18, 6]. The
value of h

t

is generated by adding randomness to it. The
available power at each time slot E

t

is set to within the range
of [20, 100] kW based on a report of data center server power
usage and required demand response power reduction [3].
Performance of A

online

. The optimal social welfare of the
convex problem (3) is computed by CVX with the Gurobi
Optimizer. Fig. 1 shows the ratio of the optimal social wel-
fare over the social welfare achieved by A

online

under di↵er-
ent numbers of users and servers. We observe that A

online

always performs well with a lower ratio (< 1.5), which is
noticeably better than the theoretically proven competitive
ratio. The ratio decreases as the number of servers increases,
and fluctuates when the number of users grows. A

online

al-
locates a user’s job on the cheapest server to maximize its
utility. Therefore, the algorithm has a larger solution space
to explore when the number of servers is large, leading to
a better ratio. The number of users does not influence the
ratio, as confirmed by the analysis in Theorem 3. Recall
that U

k

and L

k

are the maximum and minimum unit price
of type-k resource respectively, defined in the price function
(8). Fig. 2 illustrates that A

online

still achieves a good ra-
tio when we vary the value of U

k

/L

k

and use the estimated
values of U

k

as the input of A
online

. We notice that the ra-
tio becomes larger with the increment of U

k

/L

k

, while both

underestimation and overestimation have minor impact on
the performance, as compared to that achieved by the real
U

k

(labelled by 100%). Theorem 3 reveals that U

k

/L

k

de-
termines the ratio, which is consistent with the downward
trend in Fig. 2. Moreover, underestimation is slightly better
than overestimation, due to the reason that overestimation
leads to a higher price, filtering out jobs that are supposed
to be accepted.

We next investigate the social welfare and the cloud ser-
vice provider’s revenue achieved by A

online

. Fig. 3 com-
pares the social welfare achieved by A

online

to the optimal
social welfare under di↵erent lengths of job execution time
(w

i

). A

online

always achieves close-to-optimal performance
regardless of the value of w

i

. When w

i

 18, the social
welfare increases when the user requests more slots for its
job, which is reasonable because the social welfare is mostly
contributed by the bidding price, and the user will raise its
bidding price when its job needs a long execution time. The
gap between the social welfare returned by A

online

and the
optimal social welfare becomes larger with the increment of
w

i

, as long execution time brings more computation di�-
culties for A

online

to approach the optimal solution. An-
other interesting observation is that the social welfare drops
sharply when w

i

> 20. This is because the competition for
resources in each time slot is fiercer with a larger w

i

, and
then the number of winners would decrease when the number
of users is fixed, leading to a smaller overall social welfare.

The 3D figure in Fig. 4 shows that a large social wel-
fare comes with a large number of users and a high value
of U

k

/L

k

. The underlying reason is A
online

can select more
high value bids when there is a large set of users partici-
pating in the auction. Furthermore, the bidding price rises
when the value of U

k

/L

k

increases, and hence a higher social
welfare is achieved by high value bids. In Fig. 5, we plot the
revenue of the cloud service provider under di↵erent num-
bers of users and servers. The change of the number of
servers does not have major influence on the revenue. The
cloud service provider is able to gain higher profit with a
larger set of users, as more jobs with high bidding prices
would be accepted to contribute to the revenue.

The performance of A
online

in terms of winner satisfac-
tion, as measured by the percentage of winning users, is
demonstrated in Fig. 6. We observe that a larger percent-
age of jobs are successfully allocated when the number of
participating users is small and U

k

/L

k

is large. The rea-
son can be explained as follows: The number of winners is
almost fixed and limited by the resource capacity and the
available power. The users face sti↵ competition when a
large number of users submits bids to the cloud. Further-
more, the winner is determined by the current price of the
resource which rises from L

k

to U

k

. When L

k

is close to
U

k

, the di↵erence between the bidding prices is small. As a
result, more bids with similar bidding prices are rejected as
the price is increased during each round.

6. CONCLUSION
We studied data center EDR where (i) the power grid

dictates an upper-bound in power consumption in each time
slot during the EDR period, and (ii) cloud jobs with soft
deadlines arrive in an online fashion. We adapt the classic
primal-dual framework for e�cient approximation algorithm
design, and employ a posted-pricing framework for truthful
online mechanism design, to derive a truthful online auc-

20 30 40 50 60 70
0

0.5

1

1.5

Number of Users

S=2

S=4

S=6

P
e

rf
o

rm
a

n
c

e
 R

a
ti

o

Figure 1: Performance of A
online

un-
der di↵erent numbers of users and
servers.

8 10 12 14 16 18 20
0

0.5

1

1.5

U
k
/L

k

50%

100%

150%P
e

rf
o

rm
a

n
c

e
 R

a
ti

o

Figure 2: Performance of A
online

un-
der di↵erent U

k

/L

k

and estimated
U

k

.

12 14 16 18 20 22
0

500

1000

1500

2000

w
i

S
o

ci
a

l W
e

lfa
re

A

Optimal

online

Figure 3: Social welfare of A
online

un-
der di↵erent values of w

i

.

0

5

10

15

20

0

50

100

0

5000

10000

15000

U
k
/L

k
Number of Users

S
o

c
ia

l
W

e
lf
a

re

Figure 4: Social welfare of A

online

under di↵erent numbers of users
and U

k

/L

k

.

2 4 6 8 10
0

200

400

600

800

1000

1200

1400

Number of Servers

P
ro

v
id

e
r

R
e

v
e

n
u

e

I=40

I=60

I=80

I=100

I=120

Figure 5: Cloud service provider’s
revenue of A

online

with di↵erent num-
bers of servers and users.

20 40 60 80 100 120 140
30

40

50

60

70

80

90

100

Number of Users

P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

U
k
/L

k
=10

U
k
/L

k
=15

U
k
/L

k
=20

Figure 6: Percentage of winners
of A

online

with di↵erent numbers of
users and U

k

/L

k

.

tion that runs e�ciently and approaches optimal social wel-
fare. We describe a compact exponential optimization tech-
nique, which works in concert with a dual oracle to handle
the job completion time constraints imposed by their soft
deadlines. Our method may shed light on other mechanism
design problems where the optimization problem contains
non-conventional constraints, such as delay-constrained op-
timization in cyber physical systems.

7. REFERENCES
[1] Google Cluster Data. https://goo.gl/kNfqAQ.
[2] Technical report. https://goo.gl/YYucol.
[3] Toolkit: Calculate datacenter server power usage.

http://goo.gl/iB9hZv.
[4] S. Boyd and L. Vandenberghe. Convex optimization.

Cambridge university press, 2004.
[5] N. R. Devanur. Fisher markets and convex programs.

JACM, 2010.
[6] B. Hydro. Power smart. https://goo.gl/sKLhGG.
[7] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A.

Bhattacharya. Virtual machine power metering and
provisioning. In Proc. of ACM SoCC, 2010.

[8] Z. Liu, I. Liu, S. Low, and A. Wierman. Pricing data
center demand response. In Proc. ACM
SIGMETRICS, 2014.

[9] A. Misra. Responding Before Electric Emergencies.
http://goo.gl/eNyquJ.

[10] PJM. Retail Electricity Consumer Opportunities for
Demand Response in PJM’s Wholesale Markets.
https://goo.gl/q1lebf.

[11] PJM. Emergency Demand Response Performance
Report 2013/2014. April 2014.

[12] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau. An online
auction framework for dynamic resource provisioning
in cloud computing. In Proc. of ACM SIGMETRICS,
2014.

[13] W. Tian and Y. Zhao. Optimized Cloud Resource
Management and Scheduling: Theories and Practices.
Elsevier Science, 2014.

[14] Q. Wang, K. Ren, and X. Meng. When cloud meets
ebay: Towards e↵ective pricing for cloud computing.
In Proc. of IEEE INFOCOM, 2012.

[15] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad.
Opportunities and challenges for data center demand
response. In Proc. of IEEE IGCC, 2014.

[16] Wikipedia. Convex conjugate.
http://en.wikipedia.org/wiki/Convex conjugate.

[17] L. Zhang, Z. Li, and C. Wu. Dynamic resource
provisioning in cloud computing: A randomized
auction approach. In Proc. of IEEE INFOCOM, 2014.

[18] L. Zhang, Z. Li, C. Wu, and S. Ren. Online electricity
cost saving algorithms for co-location data centers. In
Proc. of ACM SIGMETRICS, 2015.

[19] L. Zhang, S. Ren, C. Wu, and Z. Li. A truthful
incentive mechanism for emergency demand response
in colocation data centers. In Proc. of IEEE
INFOCOM, 2015.

[20] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau. Online
auctions in IaaS clouds: welfare and profit
maximization with server costs. In Proc. of ACM
SIGMETRICS, 2015.

[21] X. Zhang, C. Wu, Z. Li, and F. Lau. A truthful
(1-")-optimal mechanism for on-demand cloud
resource provisioning. In Proc. of IEEE INFOCOM,
2015.

[22] R. Zhou, Z. Li, C. Wu, and M. Chen. Demand
response in smart grids: A randomized auction
approach. IEEE Journal on Selected Areas in
Communications, 33(12):2540–2553, 2015.

[23] Z. Zhou, F. Liu, and Z. Li. Pricing bilateral electricity
trade between smart grids and hybrid green
datacenters. In Proc. ACM SIGMETRICS, 2015.

