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Abstract

In this paper, we consider an insurance portfolio containing several types of policies which may
simultaneously face claims arising from the same catastrophe. A renewal counting process for
the number of events causing claims and multivariate claim severities which are dependent on the
occurrence time and/or the delay in reporting or payment are assumed. A unified model is proposed
to study the time-dependent loss quantities such as the discounted aggregate reported/unreported
claims and the number of the incurred but not reported (IBNR) claims. We then derive the joint
moments of (i) different types of discounted aggregate claims until time t; and (ii) different types of
discounted aggregate reported/unreported claims (including the total numbers of IBNR as special
case) until time t. Finally, some numerical examples involving covariances and correlations of the
aforementioned quantities are provided.

Keywords: Multiline insurance; Renewal process; Multivariate distribution; Discounted aggregate
claim costs; Reported/Unreported claims; IBNR claims; Joint moments; Covariance; Correlation.

1 Introduction

Aggregation of dependent risks in multiline insurance has attracted considerable attention in the ac-
tuarial industry. For example, different types of damages of property or casualty could be induced by
the same catastrophic event such as flooding or earthquake in non-life insurance, whereas the deaths of
a couple can be the result of a common accident in life insurance. Risk modeling in such cases requires
the construction of multivariate probability distributions (e.g. multivariate normal distribution by
Panjer (2002), multivariate Tweedie distribution by Furman and Landsman (2010), and multivariate
Pareto distribution by Chiragiev and Landsman (2007) and Asimit et al. (2010)) or copulas (e.g. Joe
(1997), Archimedean copula in Alink et al. (2005), Farlie-Gumbel-Morgenstern copula with mixed
Erlang marginals in Cossette et al. (2013)). Similar to the class of multivariate phase-type (MPH)
distributions, which has a number of nice properties and applications (e.g. Assaf et al. (1984), Kulka-
rni (1989), Cai and Li (2005a,b)), there are various useful results for the class of multivariate Erlang
mixtures (e.g. Lee and Lin (2012), Willmot and Woo (2015)).

However, modeling aggregate losses of multiline (re)insurance in the presence of dependencies not
only across policies or business lines but also on their incurral times is more complicated and challeng-
ing. It requires special attention to adequately reflect the association between stochastic assumption
on the number of events causing losses and multivariate assumption on the claim amounts. For one
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dimensional case, a wide variety of stochastic models have been considered. In particular, a mixed
Poisson process (e.g. Grandell (1997)) is often assumed to study loss models incorporating time de-
pendence such as IBNR and inflation models in the literature (e.g. Willmot (1989), Guo et al. (2013)),
since this more general process can accommodate various realistic phenomena such as incurred claim
seasonality, business growth, and heterogeneity of risk levels in the portfolio (e.g. see Willmot (1990)
for further discussion). Also, Landriault et al. (2014) recently considered a non-homogeneous birth
process for the claim counting process to study time-dependent aggregate claims incorporating inflation
and payment delays into the model.

In this paper, our method involves not only multivariate distributions but also stochastic approach
to incorporate the time-dependent claim sizes which are determined by the occurrence time of the event
causing claims (losses). We then derive an expression for the joint moment of discounted compound
renewal sum with time-dependent multivariate claims where there are possibly delays in reporting or
payment. Concerning the claim incurral process, we assume that the number of events causing claims
is a renewal process (i.e. arbitrary inter-occurrence time distribution) which contains the Poisson
process as a special case. In this process, several works related to the discounted aggregate claims
were done in the one dimensional case. For example, the expectation and higher moments of the
discounted aggregate claims were studied by Léveillé and Garrido (2001a,b) and Léveillé et al. (2010).
Furthermore, Woo and Cheung (2013) assumed certain dependent structure between the interclaim
time and its resulting claim severity in this renewal process. Also, the joint moment of the discounted
aggregate claim process with stochastic interest rate was obtained by Léveillé and Adékambi (2011). In
light of particular emphasis on the payment delays with stochastic interest rate, the first two moments
and the first joint moment of the aggregate discounted payments and expenses process for medical
malpractice insurance were provided by Léveillé and Hamel (2013).

In the following section, the model assumptions and the expression for the joint moment of the k
types of discounted aggregate claims until time t are provided. As a result, this proposed model can be
applied to study some interesting insurance quantities involving the joint moments of the discounted
aggregate claims, discounted reported/unreported aggregate claims as well as the number of IBNR
claims under the effects of inflation in claim severities in Section 3. Consequently, for the Poisson and
Erlang(2) claim incurral processes, covariance and correlation coefficient for two types of discounted
aggregate claims, discounted aggregate reported/unreported claims and also total number of IBNR
claims until various fixed times, are computed in Section 4. In particular, Izawa’s bivariate gamma
distribution (Izawa (1953)) for the joint distribution of two types of claim severities, is assumed. Finally,
Section 5 presents some concluding remarks.

2 The model

The model assumptions and the main symbols used are as follows. To begin, the counting process of
events causing losses/claims, denoted by {Nt}t≥0, is a renewal process corresponding to a sequence of
positive continuous independent and identically distributed (iid) random variables (rvs) {Ti}∞i=1. Here
Ti is the occurrence time of the i-th event (assuming T0 = 0), and τi = Ti − Ti−1 is the interarrival
time with common probability density function (pdf) k(t), cumulative distribution function (cdf)
K(t) = 1−K(t) and Laplace transform (LT) k̃(s) =

∫∞
0 e−stk(t)dt. It is assumed that the i-th event

which causes loss occurs at Ti and contains k types of claims (e.g. flood can concurrently damage several
properties such as house and car). The j-type claim severity caused by the i-th event is denoted as
Xi,j where {Xi,j}∞i=1 is a sequence of iid rvs with common cdf Pj(y). A generic random vector of k
types of claims is denoted by X= (X1, X2,. . ., Xk), and it has joint cdf PX(x1, x2,. . ., xk) = Pr{X1 ≤
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x1, . . . , Xk ≤ xk} and joint moment generating function (mgf)

MX(s) = E[esX
⊤
] = E[e

∑k
j=1 sjXj ],

where s = (s1, s2, . . . , sk) and X⊤ is the transpose of X. In addition, for each type of claim caused
by the i-th event, there is delay in reporting or payment to be settled. This time lag for the j-type
claim from i-th event is denoted by Li,j , where {Li,j}∞i=1 is a sequence of iid rvs with common cdf
Wj(x) = 1 − W j(x), LT w̃j(s) =

∫∞
0 e−sxdWj(x), and {Li,j}kj=1 for fixed i are independent. In

other words, the time lag distribution is supposed to be different based on the type of claim. As
Xi = (Xi,1, Xi,2, . . . , Xi,k) represents the (baseline) claim sizes for k types of claims from the i-th
event, their costs are determined by some function ft,Ti,Li,j (·) implying possible dependence on the
end of observation interval t, the occurrence time Ti, and the time lag Li,j . Here we assume that
{Xi}∞i=1, {Li,j}∞i=1 and {Ti}∞i=1 are mutually independent iid sequences. The force of interest at time s

is denoted as δs, and the time-0 present value of $1 payable at time t is denoted as D(t) = e−
∫ t
0 δsds.

For the sake of simplicity we assume a constant force of interest δ, i.e. D(t) = e−δt for t ≥ 0 for the
rest of paper.

For the j-type claim, let us now define the discounted total claim costs until time t with reporting
or payment delays as

Zj(t) =

Nt∑
i=1

D(Ti + Li,j)ft,Ti,Li,j (Xi,j), j = 1, 2, . . . , k.

Then the multivariate discounted total claim costs until time t is

Z(t) = (Z1(t), Z2(t), . . . , Zk(t)), t ≥ 0,

and its mgf is defined as

MZ(t)(s) = E[esZ
⊤(t)], t ≥ 0,

where Z⊤(t) is the transpose of Z(t). Then the mixed n = (n1, n2, . . . , nk)-th moment about zero (or
called n-th joint moment) for (Z1(t), Z2(t), . . . , Zk(t)) is

E
[ k∏
j=1

Z
nj

j (t)
]
. (1)

We note that its special case when k = 1 is widely studied in the literature. As nj ’s for j = 1, 2, . . . , k,
are possibly different, it is flexible to calculate the joint moment of different types of claims in any order.
Also, it is possible to define joint cumulants where its generating function is defined by logMZ(t)(s).
We can obtain (1) from the n-th derivative of MZ(t)(s) at s = 0, i.e.

M
(n)
Z(t)(0) =

( k∏
i=1

∂ni

∂sni
i

)
MZ(t)(s)

∣∣∣∣
s=0

, ni = 1, 2, . . . ,

where 0 = (0, 0, . . . , 0) is a 1× k row vector. Note that from Z(t), several interesting quantities can be
recovered with appropriate choices of f(·) (and D(·)). Here are some examples as follows.

(i) If ft,Ti,Li,j (Xi,j) = Xi,j , then Z(t) is k types of discounted aggregate claims process where there
is delay in payment or settlement of the claims. See Léveillé and Hamel (2013) for k = 1.

Further, assume Li,j = 0 (i.e. D(Ti+Li,j) = D(Ti)), then Z(t) is k types of discounted aggregate
claim amounts until time t. See Section 3.1. In particular, numerous studies of this quantity for
k = 1 have been done under different claim counting processes.
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(ii) If ft,Ti,Li,j (Xi,j) = Xi,j I(Li,j ≤ t − Ti), then Z(t) is k types of discounted total reported claims
until time t. See Section 3.2.

(iii) If ft,Ti,Li,j (Xi,j) = Xi,jI(Li,j > t − Ti), then Z(t) is k types of discounted total IBNR (Incurred
But Not Reported) claims until time t. See Section 3.3.

If we further assume δs ≡ 0 and Xi,j ≡ 1, so that ft,Ti,Li,j (Xi,j) = I(Li,j > t− Ti) then Z(t) is k
types of total number of IBNR claims until time t. See Section 3.3.

For later use, let Mft,T,L(X)(s) be the joint mgf of ft,T,L(X) defined by

Mft,T,L(X)(s) = E[e
∑k

j=1 sjft,T,Lj
(Xj)].

Here the convolution operator “∗” is defined as G ∗H(t) =
∫ t
0 G(t − y)dH(y) for functions G and H.

Then G∗i denotes the i-th convolution of G with itself such that G∗0(x) = I(x ≥ 0), G∗1(x) ≡ G(x), and
G∗i(x) = G∗(i−1) ∗G(x) for i = 2, 3, . . .. In addition, we introduce the renewal function m(t) = E[Nt]
satisfying (e.g. Theorem 8.1.1 of Tijms (2003))

m(t) = K(t) +

∫ t

0
K(t− y)dm(y) =

∞∑
i=1

K∗i(t), t ≥ 0, (2)

which plays an important role in the evaluation of (1). Moreover, we adopt the useful results from
Lemma 4.1 and Lemma 4.2 of Léveillé and Garrido (2001a) as follows. Let us introduce a (possibly)
defective distribution Hδ(t) =

∫ t
0 e

−δydK(y) and H∗i
δ (t) =

∫ t
0 e

−δydK∗i(y). Then from (2) we have∑∞
i=1H

∗i
δ (t) =

∫ t
0 e

−δydm(y). As t → ∞, it follows

∞∑
i=1

H∗i
δ (∞) =

∫ ∞

0
e−δydm(y) =

k̃(δ)

1− k̃(δ)
. (3)

Next, we shall derive the joint moment of Z(t) using its mgf. To begin, let Ft = σ{Ns; 0 ≤ s ≤ t}
be the smallest sigma field generated by Ns for 0 ≤ s ≤ t. Then by the double expectation formula,
one finds

MZ(t)(s) = E[E[esZ
⊤(t)|Ft]], t ≥ 0, (4)

and the inner conditional expectation can be written as

E[esZ
⊤(t)|Ft] =

Nt∏
i=1

E

[
e
∑k

j=1 sj e
−δ(Ti+Li,j)ft,Ti,Li,j

(Xi,j)
∣∣∣Ti

]
. (5)

3 Applications

In this section, with various choices of the forms of ft,Ti,Li,j (Xi,j) and Li,j we derive the n-th joint
moments of Z(t) by using the preceding model.

3.1 k types of discounted aggregate claims

Setting Li,j = 0 and ft,Ti,Li,j (Xi,j) = Xi,j , one finds (5) as

E[esZ
⊤(t)|Ft] =

Nt∏
i=1

E[e
∑k

j=1 sj e
−δTiXi,j |Ti],
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and thus, from (4)

MZ(t)(s) = E

[ Nt∏
i=1

MX(e−δTis)

]
.

Now conditioning on the occurrence time of the first claim τ1, for τ1 = y ≤ t implying Nt ≥ 1, it
follows that

E

[ Nt∏
i=1

MX(e−δTis)
∣∣∣τ1 = y

]
= MX(e−δys)E

[ Nt∏
i=2

MX(e−δye−δ(τ2+···+τi)s)
∣∣∣τ1 = y

]

= MX(e−δys)E

[Nt−y∏
i=1

MX(e−δye−δTis)

]
= MX(e−δys)MZ(t−y)(e

−δys).

Thus, combining with the case of τ1 > t (i.e. Nt = 0) results in

MZ(t)(s) =

∫ ∞

t
dK(y) +

∫ t

0
MX(e−δys)MZ(t−y)(e

−δys)dK(y). (6)

Differentiating both sides n = (n1, n2, . . . , nk) times with respect to s = (s1, s2, . . . , sk) followed by
inserting s = 0 yields the n-th joint moment of Z(t). Let us begin with the case of n = 1 = (1, 1, . . . , 1)
(i.e. ni = 1 for all i = 1, 2, . . . , k). Define Ω = {1, 2, . . . , k} and A is the set of all subsets of Ω. Using
the notation e.g ∂3f/

∏
i∈{1,2,3} ∂si for ∂3f/∂s1∂s2∂s3, the first derivative of the product of MX and

MZ(t) is

∂kMX(s)MZ(t)(s)

∂s1∂s2 · · · ∂sk
=

∑
B∈A

∂k−|B|MX(s)∏
i∈B{ ∂si

·
∂|B|MZ(t)(s)∏

i∈B ∂si
,

where B{ is the complement of set B and |B| denotes the number of elements in set B (e.g. Proposition
5 of Hardy (2006)), and thus one finds

∂kMX(e−δys)MZ(t)(e
−δys)

∂s1∂s2 · · · ∂sk

∣∣∣∣
s=0

= e−kδy
∑
B∈A

µB{
∂|B|MZ(t)(s)∏

i∈B ∂si

∣∣∣∣
s=0

, (7)

where for set Υ,

µΥ = E
[∏
i∈Υ

Xi

]
(8)

(e.g. µ{1,3} = E[X1X3]). By separating the term when B = Ω is the universal set, the expression on
the right-hand side of (7) can be rewritten as

e−kδyM
(1)
Z(t)(0) + e−kδy

∑
B∈A\Ω

µB{
∂|B|MZ(t)(s)∏

i∈B ∂si

∣∣∣∣
s=0

. (9)

Then the first derivative of (6) evaluated at 0 with the help of (9) is a renewal equation given by

M
(1)
Z(t)(0) = a1(t) +M

(1)
Z(·)(0) ∗Hkδ(t), t ≥ 0, (10)

with Hkδ(t) =
∫ t
0 e

−kδydK(y) and non-homogeneous term

a1(t) =
∑

B∈A\Ω

µB{

∫ t

0
e−kδy ∂

|B|MZ(t−y)(s)∏
i∈B ∂si

∣∣∣∣
s=0

dK(y) =
∑

B∈A\Ω

µB{
∂|B|MZ(·)(s)∏

i∈B ∂si

∣∣∣∣
s=0

∗Hkδ(t). (11)
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It is known that the solution of (10) is given by

M
(1)
Z(t)(0) = a1 ∗

∞∑
i=0

H∗i
kδ(t), t ≥ 0, (12)

whereH∗i
kδ(t) =

∫ t
0 e

−kδydK∗i(y) (see Lemma 4.1 of Léveillé and Garrido (2001a) when k = 1). Applying
the result given by Léveillé and Garrido (2001a) with the use of the renewal function m(t) = E[Nt] =∑∞

i=1K
∗i(t), (12) can be expressed as

E
[ k∏
j=1

Zj(t)
]
= M

(1)
Z(t)(0) = a1(t) +

∫ t

0
e−kδya1(t− y)dm(y), t ≥ 0,

where a1(t) is given in (11). Equivalently,

E
[ k∏
j=1

Zj(t)
]
=

∑
B∈A\Ω

µB{

∫ t

0
e−kδyE

[ ∏
j∈B

Zj(t− y)
]
dm(y). (13)

In particular, for univariate case (i.e. k = 1), a1(t) in (11) simply becomes µ1Hδ(t). Consequently,
from (12) or (13) we have

E[Z1(t)] = E[X1]

∞∑
i=1

H∗i
δ (t) = E[X1]

∫ t

0
e−δydm(y), t ≥ 0,

which is consistent with Theorem 4.1 of Léveillé and Garrido (2001a).
Similarly, for a general ni ≥ 0, using the result in Proposition 6 of Hardy (2006), the n-th derivative

of the product of MX and MZ(t) is given by

∂
∑k

i=1 niMX(s)MZ(t)(s)

∂sn1
1 ∂sn2

2 · · · ∂snk
k

=

n1∑
l1=0

n2∑
l2=0

· · ·
nk∑

lk=0

(
n1

l1

)(
n2

l2

)
· · ·

(
nk

lk

)
∂
∑k

j=1(nj−lj)MX(s)∏k
j=1 ∂s

nj−lj
j

·
∂
∑k

j=1 ljMZ(t)(s)∏k
j=1 ∂s

lj
j

.

Hence the n-th partial derivative of MX(e−δys)MZ(t)(e
−δys) with substitution of s = 0 followed by

isolating the final term in k summations (i.e. when lj = nj for all j = 1, 2, . . . , k) can be found as

e−δy
∑k

i=1 niM
(n)
Z(t)(0) + e−δy

∑k
i=1 ni

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
∂
∑k

j=1(nj−lj)MX(s)∏k
j=1 ∂s

nj−lj
j

·
∂
∑k

j=1 ljMZ(t)(s)∏k
j=1 ∂s

lj
j

∣∣∣∣
s=0

, (14)

where
G = {(l1, l2, . . . , lk)| 0 ≤ li ≤ ni, for i = 1, 2, . . . , k} \ (n1, n2, . . . , nk). (15)

This leads to the following theorem.

Theorem 1 For ni = 0, 1, 2, . . . , and
∑k

i=1 ni ̸= 0, the n-th joint moment of k types of discounted
aggregate claims until t satisfies the renewal equation as

E
[ k∏
j=1

Z
nj

j (t)
]
= M

(n)
Z(t)(0) = an(t) +M

(n)
Z(·)(0) ∗Hηδ(t), t ≥ 0, (16)
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where
∑k

i=1 ni = η. Equivalently, one has

E
[ k∏
j=1

Z
nj

j (t)
]
= an(t) +

∫ t

0
e−ηδyan(t− y)dm(y), t ≥ 0, (17)

where

an(t) =
∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ k∏
j=1

X
nj−lj
j

] ∫ t

0
e−ηδyE

[ k∏
j=1

Z
lj
j (t− y)

]
dK(y), (18)

with G given in (15). Also, with (18), (17) can be expressed as

E
[ k∏
j=1

Z
nj

j (t)
]
=

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ k∏
j=1

X
nj−lj
j

] ∫ t

0
e−ηδyE

[ k∏
j=1

Z
lj
j (t− y)

]
dm(y). (19)

Proof: The proof is similar to the case of ni = 1 for all i = 1, 2, . . . , k derived previously. From (6),
differentiating both sides n = (n1, n2, . . . , nk) times with respect to s = (s1, s2, . . . , sk) results in( k∏

i=1

∂ni

∂sni
i

)
MZ(t)(s) =

∫ t

0

∂
∑k

i=1 niMX(e−δys)MZ(t−y)(e
−δys)∏k

i=1 ∂s
ni
i

dK(y),

and setting s = 0 with the help of (14) yields

M
(n)
Z(t)(0) =

∫ t

0
e−ηδyM

(n)
Z(t−y)(0)dK(y) +

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)

×
∫ t

0
e−ηδy ∂

∑k
j=1(nj−lj)MX(s)∏k

j=1 ∂s
nj−lj
j

·
∂
∑k

j=1 ljMZ(t−y)(s)∏k
j=1 ∂s

lj
j

∣∣∣∣
s=0

dK(y).

But M
(n)
Z(t)(0) = E

[∏k
j=1 Z

nj

j (t)
]
and M

(n)
X(t)(0) = E

[∏k
j=1X

nj

j (t)
]
, so the above equation becomes

E
[ k∏
j=1

Z
nj

j (t)
]
=

∫ t

0
E
[ k∏
j=1

Z
nj

j (t− y)
]
dHηδ(y) +

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ k∏
j=1

X
nj−lj
j

]

×
∫ t

0
E
[ k∏
j=1

Z
lj
j (t− y)

]
dHηδ(y),

where
∑k

i=1 ni = η and Hδ(t) =
∫ t
0 e

−δydK(y). Hence, the result in (16) with (18) follows.
Alternatively, similar to (12), using the solution of the renewal equation (16), it can be expressed

as

E
[ k∏
j=1

Z
nj

j (t)
]
= an ∗

∞∑
i=0

H∗i
ηδ(t), t ≥ 0,

where H∗i
kδ(t) =

∫ t
0 e

−kδydK∗i(y). Therefore, using the solution of renewal function m(t) =
∑∞

i=1K
∗i(t)

leads to (17). �

Note that when k = 1, Theorem 1 reduces to the result in Theorem 2.1 of Léveillé and Garrido (2001b)
or Proposition 2.1 of Woo and Cheung (2013) for the time-independent claim case.
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Example 1 (k = 2 and n1 = n2 = 2) The joint second moment of two types of discounted aggregate
claims until time t is given as follows. In this case, (15) is G = {(l1, l2)| li = 0, 1, 2, for i = 1, 2} \ (2, 2).
Then from (19), one finds

E[Z2
1 (t)Z

2
2 (t)] = E[X2

1X
2
2 ]

∫ t

0
e−4δydm(y) + 2E[X2

1X2]

∫ t

0
e−4δyE[Z2(t− y)] dm(y)

+ E[X2
1 ]

∫ t

0
e−4δyE[Z2

2 (t− y)] dm(y) + 2E[X1X
2
2 ]

∫ t

0
e−4δyE[Z1(t− y)] dm(y)

+ 4E[X1X2]

∫ t

0
e−4δyE[Z1(t− y)Z2(t− y)] dm(y) + 2E[X1]

∫ t

0
e−4δyE[Z1(t− y)Z2

2 (t− y)] dm(y)

+ E[X2
2 ]

∫ t

0
e−4δyE[Z2

1 (t− y)] dm(y) + 2E[X2]

∫ t

0
e−4δyE[Z2

1 (t− y)Z2(t− y)] dm(y),

and E[Z1(t)Z2(t)] can be evaluated from (13) when k = 2 as

E[Z1(t)Z2(t)] =

∫ t

0
e−2δy{E[X1X2] + E[X1]E[Z2(t− y)] + E[X2]E[Z1(t− y)]} dm(y).

Also, E[Z2
1 (t)Z2(t)] can be obtained by setting n1 = 2 and n2 = 1 in (19). That is,

E[Z2
1 (t)Z2(t)] =

∫ t

0
e−3δy{E[X2

1X2] + E[X2
1 ]E[Z2(t− y)] + 2E[X1X2]E[Z1(t− y)]

+ 2E[X1]E[Z1(t− y)Z2(t− y)] + E[X2]E[Z2
1 (t− y)]} dm(y).

Similarly, E[Z1(t)Z
2
2 (t)] is evaluated with n1 = 1 and n2 = 2 in (19). We remark that all integrals

involved in the evaluation of E[Z2
1 (t)Z

2
2 (t)] as given above are in terms of E[Zi(t)] and E[Z2

i (t)] which
are well-studied in the literature (e.g. Léveillé and Garrido (2001a,b)). Especially, if Nt is assumed
to be the (mixed) Poisson or Erlang(2) renewal process, it can be calculated via straightforward (but
tedious) integration. �

When t → ∞ and δ > 0, from (19) with the help of (3), the asymptotic joint moment of k types of
discounted aggregate claims is recursively obtained as

E
[ k∏
j=1

Z
nj

j (∞)
]
=

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ k∏
j=1

X
nj−lj
j

]
E
[ k∏
j=1

Z
lj
j (∞)

] k̃(ηδ)

1− k̃(ηδ)
. (20)

Clearly, when k = 1, (20) agrees with the one obtained by Léveillé and Garrido (2001b, Corollary 2.1).

3.2 k types of discounted aggregate reported claims

Let us consider that there is a reporting delay until the insurer observes claims (or it can be regarded as
the case where there is a delay for claim to be settled). Thus, we assume Li,j > 0 and ft,Ti,Li,j (Xi,j) =
Xi,jI(Li,j ≤ t− Ti) for t ≥ 0. Conditioning on Li,j = vj for j = 1, 2, . . . , k leads the inner expectation
of (5) as

E

[
e
∑k

j=1 sje
−δ(Ti+Li,j)ft,Ti,Li,j

(Xi,j)
∣∣∣Ti

]
=

∫ ∞

0
· · ·

∫ ∞

0
E
[
e
∑k

j=1 sje
−δ(Ti+Li,j)Xi,jI(Li,j≤t−Ti)

∣∣Li,1 = v1, . . . , Li,k = vk, Ti

]
dW1(v1) · · · dWk(vk).

(21)
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Let us define

Mt,X(s) =

∫ ∞

0
· · ·

∫ ∞

0
E
[
e
∑k

j=1 sje
−δLi,jXi,jI(Li,j≤t)

∣∣Li,1 = v1, . . . , Li,k = vk
]
dW1(v1) · · · dWk(vk). (22)

Then from (4) and (5), using (21) and (22) we obtain

MZ(t)(s) = E

[ Nt∏
i=1

Mt−Ti,X(e−δTis)

]
.

Again conditioning on τ1 = y < t yields

E

[ Nt∏
i=1

Mt−Ti,X(e−δTis)
∣∣∣τ1 = y

]

= Mt−y,X(e−δys)E

[ Nt∏
i=2

Mt−y−(τ2+···+τi),X(e−δye−δ(τ2+···+τi)s)
∣∣∣τ1 = y

]

= Mt−y,X(e−δys)E

[Nt−y∏
i=1

Mt−y−Ti,X(e−δye−δTis)

]
= Mt−y,X(e−δys)MZ(t−y)(e

−δys),

and hence putting together with the case of τ1 > t results in

MZ(t)(s) =

∫ ∞

t
dK(y) +

∫ t

0
Mt−y,X(e−δys)MZ(t−y)(e

−δys)dK(y). (23)

Then differentiating both sides of (23) n times with respect to s followed by putting s = 0 leads us to
the n-th joint moment of two types of discounted aggregate reported claims until t. In what follows,
it is convenient to introduce the function

ωδ,j(t) =

∫ t

0
e−δvdWj(v), (24)

which is a (possibly) defective distribution. When n = 1 (i.e. ni = 1 for all i = 1, 2, . . . , k), analogous
to (9), the first derivative of the product of Mt,X and MZ(t) at s = 0 is obtained as follows. First, from
(22), when k = 2 one has∑

B∈A\ {1,2}

∂2−|B|Mt,X(s)∏
i∈B{ ∂si

∣∣∣∣
s=0

= E[X1X2]ωδ,1(t)ωδ,2(t) + E[X2]ωδ,2(t) + E[X1]ωδ,1(t).

Then for the general case k ≥ 1, it follows that∑
B∈A\Ω

∂k−|B|Mt,X(s)∏
i∈B{ ∂si

∣∣∣∣
s=0

=
∑

B∈A\Ω

µB{(t),

where for set Υ,

µΥ(t) = µΥ

∏
i∈Υ

ωδ,i(t), (25)

(e.g. µ{1,2}(t) = E[X1X2]ωδ,1(t)ωδ,2(t)) and µΥ is given in (8). Therefore, we arrive at

∂kMt,X(e−δys)MZ(t)(e
−δys)

∂s1∂s2 · · · ∂sk

∣∣∣∣
s=0

= e−kδyM
(1)
Z(t)(0) + e−kδy

∑
B∈A\Ω

µB{(t)
∂|B|MZ(t)(s)∏

i∈B ∂si

∣∣∣∣
s=0

,
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and in turn, from (23) the joint expectation of k types of discounted aggregate reported claims satisfies
the renewal equation

M
(1)
Z(t)(0) = r1(t) +M

(1)
Z(·)(0) ∗Hkδ(t), (26)

where

r1(t) =
∑

B∈A\Ω

∫ t

0
e−kδyµB{(t− y)

∂|B|MZ(t−y)(s)∏
i∈B ∂si

∣∣∣∣
s=0

dK(y). (27)

Then (26) has the solution

M
(1)
Z(t)(0) = r1 ∗

∞∑
i=0

H∗i
kδ(t), t ≥ 0, (28)

or equivalently

E
[ k∏
j=1

Zj(t)
]
= M

(1)
Z(t)(0) = r1(t) +

∫ t

0
e−kδyr1(t− y)dm(y),

where m(t) = E[Nt] is the renewal function. Similar to (13), with (27), it can be also written as

E
[ k∏
j=1

Zj(t)
]
=

∑
B∈A\Ω

∫ t

0
e−kδyµB{(t− y)E

[ ∏
j∈B

Zj(t− y)
]
dm(y).

Example 2 (k = 1 and n1 = 1) Using (25) with (24), (27) reduces to

r1(t) = E[X1]

∫ t

0
e−δyωδ,1(t− y)dK(y) = E[X1][ωδ,1 ∗Hδ(t)], (29)

and then from (28), the mean of the discounted aggregate reported claim until t is given by

E[Z1(t)] = E[X1]

[
ωδ,1 ∗Hδ ∗

∞∑
i=0

H∗i
δ (t)

]
= E[X1]

∫ t

0
e−δyωδ,1(t− y)dm(y), t ≥ 0.

In particular, if δ = 0 then from (24) and (29), r1(t) = µ{1}[W1 ∗K(t)] and thus

E[Z1(t)] = E[X1]

∫ t

0
W1(t− y)dm(y) = E[X1]md(t), (30)

where md(t) =
∑∞

i=1W1 ∗ K∗i(t) is the renewal function for a delayed renewal process {Nd,t}t≥0

corresponding to the ordinary renewal process {Nt}t≥0 with the different interarrival distribution for
the first event as W1 ∗ K(t) (e.g. Lemma 6.1 of Léveillé and Garrido (2001a)). We remark that the
mean of the number of reported claims until t appearing in (30) (i.e. excluding µ1) is also given by
Karlsson (1974, p.384) as

∞∑
i=0

(W ∗K0 ∗K∗i)(t),

where W is a lag cdf, K0 is the interarrival cdf of the first claim starting from time 0 (in the present
paper K0 is assumed to be K). �

For a general ni ≥ 0, the following result holds.
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Theorem 2 For ni = 0, 1, 2, . . . , and
∑k

i=1 ni ̸= 0, the n-th joint moment of k types of discounted
aggregate reported claims until t satisfies the renewal equation

E
[ k∏
j=1

Z
nj

j (t)
]
= M

(n)
Z(t)(0) = rn(t) +M

(n)
Z(t)(0) ∗Hηδ(t), t ≥ 0,

where η =
∑k

i=1 ni, which can be evaluated recursively using the equation

E
[ k∏
j=1

Z
nj

j (t)
]
= rn(t) +

∫ t

0
e−ηδyrn(t− y)dm(y), t ≥ 0,

where

rn(t) =
∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ ∏
j∈C

X
nj−lj
j

] ∫ t

0
e−ηδyE

[ k∏
j=1

Z
lj
j (t− y)

][ ∏
j∈C

ω(nj−lj)δ,j(t− y)
]
dK(y),

with G given in (15), C = Cl1,...,lk being a subset of {1, 2, . . . , k} containing the i’s such that li ̸= ni,
and ωδ,j(t) given in (24). Equivalently,

E
[ k∏
j=1

Z
nj

j (t)
]
=

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ ∏
j∈C

X
nj−lj
j

] ∫ t

0
e−ηδyE

[ k∏
j=1

Z
lj
j (t−y)

][ ∏
j∈C

ω(nj−lj)δ,j(t−y)
]
dm(y).

(31)
Proof: Using the result

∂
∑k

j=1(nj−lj)Mt,X(s)∏k
j=1 ∂s

nj−lj
j

∣∣∣∣
s=0

= E
[∏
i∈C

Xni−li
i

]∏
i∈C

ω(ni−li)δ,i(t),

the rest of proof is similar to the one for n = 1 given previously. �

Moreover, from (31) with (24) and (3) when t → ∞, the asymptotic joint moment of k types of
discounted aggregate reported claims can be obtained in the following corollary.

Corollary 1 For ni = 0, 1, 2, . . . , and
∑k

i=1 ni ̸= 0, the asymptotic n-th joint moment of k types of
discounted aggregate reported claims is given by

E
[ k∏
j=1

Z
nj

j (∞)
]
=

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ ∏
j∈C

X
nj−lj
j

]
E
[ k∏
j=1

Z
lj
j (∞)

][ ∏
j∈C

w̃j{(nj − lj)δ}
] k̃(ηδ)

1− k̃(ηδ)
.

(32)
�

Remark 1 If there no reporting delay (i.e. for x ≥ 0 and j = 1, 2, . . . , k, Wj(x) = Pr(Li,j = 0) = 1),
then we can retrieve results obtained in Section 3.1. �
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3.3 k types of discounted total IBNR claims

Since each incurred claim Xi,j is either a reported claim or an IBNR claim, the joint moment of k
types of discounted total IBNR claims can be derived in the same manner as for the model in Section
3.2. Specifically, we only need to impose a slightly different assumption on ft,Ti,Li,j (Xi,j), namely a
reverse inequality on the event in the indicator function I(Li,j > t− Ti) for t ≥ 0. In this case, (22) is
now updated as

M∗
t,X(s) =

∫ ∞

0
· · ·

∫ ∞

0
E
[
e
∑k

j=1 sje
−δLi,jXi,jI(Li,j>t)

∣∣Li,1 = v1, . . . , Li,k = vk
]
dW1(v1) · · · dWk(vk), (33)

and thus, from (4) and (5) with the help of (33) we get

MZ(t)(s) = E

[ Nt∏
i=1

M∗
t−Ti,X(e−δTis)

]
.

Similar to (24), let us introduce the function associated with the report lag distribution for type-j
claim as

ωδ,j(t) =

∫ ∞

t
e−δvdWj(v), (34)

then it is straightforward to derive the following theorem.

Theorem 3 For ni = 0, 1, 2, . . . , and
∑k

i=1 ni ̸= 0, the n-th joint moment of k types of discounted
total IBNR claims until t, satisfies the renewal equation as

E
[ k∏
j=1

Z
nj

j (t)
]
= M

(n)
Z(t)(0) = bn(t) +M

(n)
Z(·)(0) ∗Hηδ(t), t ≥ 0,

where η =
∑k

i=1 ni. This can be evaluated recursively by using

E
[ k∏
j=1

Z
nj

j (t)
]
= bn(t) +

∫ t

0
e−ηδybn(t− y)dm(y), t ≥ 0,

where

bn(t) =
∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ ∏
j∈C

X
nj−lj
j

] ∫ t

0
e−ηδyE

[ k∏
j=1

Z
lj
j (t− y)

][ ∏
j∈C

ω(nj−lj)δ,j(t− y)
]
dK(y),

(35)
with G given in (15), C = Cl1,...,lk being a subset of {1, 2, . . . , k} containing the i’s such that li ̸= ni,
and ωδ,j(t) given in (34). Equivalently,

E
[ k∏
j=1

Z
nj

j (t)
]
=

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)
E
[ ∏
j∈C

X
nj−lj
j

] ∫ t

0
e−ηδyE

[ k∏
j=1

Z
lj
j (t−y)

][ ∏
j∈C

ω(nj−lj)δ,j(t−y)
]
dm(y).

(36)
Proof: The result immediately follows from Theorem 2 with the use of (33) and (34). �

Then similar to Example 2, we get the mean of discounted total IBNR claims until t in the following
example.
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Example 3 (k = 1 and n1 = 1) We find that (35) with (34) becomes

b1(t) = E[X1]

∫ t

0
e−δyωδ,1(t− y)dK(y) = E[X1][ωδ,1 ∗Hδ(t)],

and thus the mean of the discounted total IBNR claims until t is obtained as

E[Z1(t)] = E[X1]

[
ωδ,1 ∗Hδ ∗

∞∑
i=0

H∗i
δ (t)

]
= E[X1]

∫ t

0
e−δyωδ,1(t− y)dm(y), t ≥ 0. (37)

In particular, when δ = 0 it reduces to E[Z1(t)] = E[X1]
∫ t
0 W (t− y)dm(y). �

While the asymptotic joint moment of k types of discounted total reported claims was nicely
obtained as in (32), in the present case of unreported claims, the joint moment for δ > 0 is going to
be zero as t → ∞. To be more precise, the joint moment of discounted aggregate unreported claims
in the integral on the right-hand side of (36) is smaller than the joint moment of discounted aggregate
claims until t which is bounded by (20), and ωδ,j(y) ≤ ωδ,j(0) = w̃j(δ) < 1 from (34). Also, from (3),
we have

∫∞
0 e−δydm(y) < ∞. Hence, by dominated convergence it follows that (36) will be zero as

t → ∞ due to limt→∞ ωδ,j(t) = 0.
Moreover, it is straightforward to obtain the n-th joint moments of k types of total number of

IBNR claims until time t from Theorem 3. The result is given in the following corollary.

Corollary 2 For ni = 0, 1, 2, . . . , and
∑k

i=1 ni ̸= 0, the n-th joint moment of k types of total number
of IBNR claims until t, satisfies the renewal equation as

E
[ k∏
j=1

Z
nj

j (t)
]
= M

(n)
Z(t)(0) = βn(t) +M

(n)
Z(·)(0) ∗H0(t), t ≥ 0.

This also has a recursive expression given as

E
[ k∏
j=1

Z
nj

j (t)
]
= βn(t) +

∫ t

0
βn(t− y)dm(y), t ≥ 0, (38)

where

βn(t) =
∑
G

(
n1

l1

)
· · ·

(
nk

lk

)∫ t

0
E
[ k∏
j=1

Z
lj
j (t− y)

][ ∏
j∈C

W j(t− y)
]
dK(y). (39)

Alternatively, (38) can be expressed as

E
[ k∏
j=1

Z
nj

j (t)
]
=

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)∫ t

0
E
[ k∏
j=1

Z
lj
j (t− y)

][ ∏
j∈C

W j(t− y)
]
dm(y). (40)

Proof: Setting δ = 0 and Xi,j = 1 in (34) and (35) yields (39), and thus the result follows. �

In addition, the asymptotic mean of IBNR claim can be obtained in the following corollary.
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Corollary 3 The asymptotic mean of total IBNR number of j-type claim in a renewal claim counting
process can be obtained as

E[Zj (∞)] =
E[Lj ]

E[τ1]
. (41)

Proof: Let us denote hj(t) =
∫ t
0 W j(t)dm(y) ≡ W j ∗ m(t) where h̃j(s) =

∫∞
0 e−sxhj(x)dx. Then

using (3) and
∫∞
0 e−sxW j(x)dx = {1− w̃j(s)}/s, we have h̃j(s) = (

1−w̃j(s)
s ) k̃(s)

1−k̃(s)
. Therefore, by final

value theorem it follows that

hj(∞) = lim
s→0

sh̃j(s) = lim
s→0

k̃(s)
1− w̃j(s)

1− k̃(s)
= lim

s→0

1− w̃j(s)

1− k̃(s)
= lim

s→0

−w̃′
j(0)

−k̃′(0)
,

which gives rise to (41). �

In particular, for the Poisson process with rate λ (i.e. m(t) = λt), (41) becomes λE[Lj ]. Thus, for a
mixed Poisson process with intensity Λ, the asymptotic mean of total IBNR number of j-type claim is

E[Zj(∞)] = E[Λ]E[L1],

which is known in the literature (e.g. Equation (2.1.5) of Willmot (1990)).
For a general k ≥ 1, the asymptotic joint moment of total IBNR claims can also be calculated for

a mixed Poisson process with intensity Λ as

E
[ k∏
j=1

Z
nj

j (∞)
]
= E[Λ]

∑
G

(
n1

l1

)
· · ·

(
nk

lk

)∫ ∞

0
E
[ k∏
j=1

Z
lj
j (y)

][ ∏
j∈C

W j(y)
]
dy, (42)

although it is not a recursive formula for asymptotic joint moment like (20) or (32).

4 Numerical illustrations

We now present numerical examples to illustrate how to calculate covariance and correlation coeffi-
cient of two types of (i) discounted aggregate claims; (ii) discounted reported claims; (iii) discounted
unreported claims; and (iv) total number of IBNR claims until time t. The procedure requires the
joint moments derived in Section 3 when k = 2 and n1 = n2 = 1 as well as the second moments
of the univariate case of (i)-(iv) for each type of claim. Throughout this section, let ZA

i (t) be the
discounted aggregate claims (type-i) until time t, and other superscripts “R”, “U”, and “N” added to
Zi(t) indicate “discounted aggregate reported claims”, “discounted aggregate unreported claims”, and
“total number of IBNR claims” respectively. Same notation rules are applied to covariance (Cov) and
correlation coefficient (ρ), e.g.

CovA(t) = E[ZA
1 (t)Z

A
2 (t)]− E[ZA

1 (t)]E[ZA
2 (t)],

and

ρA(t) =
E[ZA

1 (t)Z
A
2 (t)]− E[ZA

1 (t)]E[ZA
2 (t)]√

E[ZA
1 (t)

2]− E[ZA
1 (t)]

2
√
E[ZA

2 (t)
2]− E[ZA

2 (t)]
2
.

Suppose that there are two types of claim severities modeled via the bivariate gamma distribution
proposed by Izawa (1953), which is constructed from gamma marginals with different scale and shape
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parameters. As discussed by Balakrishnan and Lai (2009), applications of this bivariate gamma dis-
tribution can be found in several fields such as the modeling of rainfall at two nearby rain gauges (e.g.
Izawa (1965)). Then in this example, the marginal pdf of Xi is assumed to be (e−x/βixα−1)/(βα

i Γ(α))
with mean αβi, variance αβ2

i for i = 1, 2, and the covariance of X1 and X2 is αβ1β2ρ (i.e. correlation
coefficient is ρ). Also, from Izawa (1965), the joint pdf and the joint characteristic function are given
by

pX1,X2(x1, x2) =
(x1x2)

(α−1)/2 exp
[
− 1

1−ρ

(
x1
β1

+ x2
β2

)]
Γ(α)(β1β2)(α+1)/2(1− ρ)ρ(α−1)/2

Iα−1

(
2
√
ρ

√
β1β2(1− ρ)

√
x1x2

)
,

where Iα−1(x) is the modified Bessel function of the first kind of order α− 1, and

ϕ(s1, s2) = [1 + (1− ρ)β1β2s1s2 + (β1s1 + β2s2)]
−α,

respectively. Note that the range of correlation coefficient in this distribution takes only non-negative
value. Here we set the parameters α = 2, β1 = 1, β2 = 5 and ρ = 0, 0.5, 0.9 (i.e. ρ = 0 is the
independent case). In other words, E[X1] = 2 and E[X2] = 10. As mentioned in Willmot (1990), the
time to report/settle a claim may depend on the size of claim (e.g. large claims may be reported more
quickly than small claims). Thus, the time lag distribution for the type-1 and type-2 claims are assumed
to be exponential with mean 1 and 0.2 respectively, i.e. W1(t) = 1 − e−t and W2(t) = 1 − e−5t for
t > 0. However, note that the discounted aggregate claims do not depend on the time lag distribution.
Furthermore, we consider the two different claim counting processes including Poisson process with
k(t) = e−t and Erlang(2) process with k(t) = te−t. In addition, the discount factor δ is assumed to be
5%. All the following calculations were carried out using Mathematica.

First, we calculate the expectations of four different quantities in (i)-(iv) for type-1 and type-2
claims separately (i.e. univariate case) in the Poisson process. A summary of results is given in
Table 1. All values are increasing in t except for the discounted aggregate unreported claims. The
asymptotic expectations for each quantity of interest can be also confirmed numerically. For example,
the average total number of IBNR claim as t → ∞ is essentially the mean of time lag distribution
(due to E[τ1] = 1 in the Poisson example), and thus the means are obtained as E[L1] = 1 for type-1
claim and E[L2] = 0.2 for type-2 claim respectively. In particular, as discussed in Section 3.2, the
asymptotic moment of discounted aggregate unreported claims is going to be zero as t → ∞. Since the
mean of type-2 claim is larger than the the mean of type-1 claim, and the reporting delay for type-2
claim is shorter than type-1 claim, all expectations of discounted aggregate claims and reported claims
are much larger than those of type-1 claim. On the contrary, for the unreported claims and its total
number, expectations for type-2 claim are smaller.

t E[ZA
1 (t)] E[ZA

2 (t)] E[ZR
1 (t)] E[ZR

2 (t)] E[ZU
1 (t)] E[ZU

2 (t)] E[ZN
1 (t)] E[ZN

2 (t)]

1 1.9508 9.7541 0.7126 7.7866 1.1453 1.8709 0.6321 0.1987
5 8.8480 44.2398 6.9532 42.2596 1.4734 1.5422 0.9933 0.2000
10 15.7388 78.6939 13.8341 76.7137 1.1552 1.2011 0.9999 0.2000

100 39.7305 198.6520 37.8257 196.6720 0.0128 0.0133 1.0000 0.2000
1000 40.0000 200.0000 38.0952 198.0200 0.0000 0.0000 1.0000 0.2000

∞ 40.0000 200.0000 38.0952 198.0200 0.0000 0.0000 1.0000 0.2000

Table 1: Expectations of (i)-(iv) for each type of claim in the Poisson process

Next, Tables 2-4 presents covariances and correlations between type-1 and type-2’s (i)-(iv) by
implementing the results of Theorems 1-3 and Corollary 2 with different correlation coefficient of X1

and X2, which include the cases of ρ = 0, 0.5 and 0.9 respectively. Note that CovN and ρN are
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excluded in Tables 3-4 since these quantities are not affected by the (dependency between) the two
claim sizes. As was evident in Tables 2-4, as t increases, while CovA(t) and CovR(t) exhibit a similar
increasing trend, CovU (t) decreases. Moreover, due to the concurrent impact from the same claim
incurral process on the occurrence of type-1 and type-2 claims, positive dependencies are observed
through correlation coefficients of all quantities (i)-(iv) for both types. In particular, Tables 3-4 enable
us to assert the impact of correlation between different types of claim severities on the relation between
their discounted aggregate quantities listed in (i)-(iii). As ρ between X1 and X2 gets larger, correlations
between ZA

i (t)’s, Z
A
R(t)’s, and ZU

i (t)’s (for i = 1, 2) also become stronger.

t CovA(t) ρA(t) CovR(t) ρR(t) CovU (t) ρU (t) CovN (t) ρN (t)

1 19.0325 0.6667 6.34517 0.4139 2.8370 0.3124 0.1663 0.4692
5 78.6939 0.6667 61.8637 0.6128 1.9064 0.2490 0.1667 0.3739
10 126.4241 0.6667 111.6640 0.6465 1.1563 0.2482 0.1667 0.3727

100 199.9909 0.6667 188.5808 0.6659 0.0001 0.2482 0.1667 0.3727
500 199.9999 0.6667 188.5903 0.6659 0.0000 0.2482 0.1667 0.3727
1000 200.0000 0.6667 188.5903 0.6659 0.0000 0.2482 0.1667 0.3727

Table 2: Covariances and Correlation coefficients of (i)-(iv) in the Poisson process (ρ = 0)

t CovA(t) ρA(t) CovR(t) ρR(t) CovU (t) ρU (t)

1 23.7906 0.8333 7.9315 0.5173 3.5463 0.3905
5 98.3673 0.8333 77.3296 0.7659 2.3830 0.3112

10 158.0301 0.8333 139.5801 0.8081 1.4454 0.3102
100 249.9887 0.8333 235.7260 0.8323 0.0002 0.3102
500 249.9999 0.8333 235.7379 0.8323 0.0000 0.3102

1000 250.0000 0.8333 235.7379 0.8323 0.0000 0.3102

Table 3: Covariances and Correlation coefficients of (i)-(iv) in the Poisson process (ρ = 0.5)

t CovA(t) ρA(t) CovR(t) ρR(t) CovU (t) ρU (t)

1 27.5971 0.9667 9.2005 0.6001 4.1137 0.4530
5 114.1061 0.9667 89.7023 0.8885 2.7643 0.3610

10 183.3150 0.9667 161.9129 0.9374 1.6767 0.3598
100 289.9868 0.9667 273.4422 0.9655 0.0002 0.3598
500 289.9999 0.9667 273.4559 0.9655 0.0000 0.3598

1000 290.0000 0.9667 273.4559 0.9655 0.0000 0.3598

Table 4: Covariances and Correlation coefficients of (i)-(iv) in the Poisson process (ρ = 0.9)

Furthermore, those quantities in Tables 1-4 are calculated again under the Erlang(2) claim incurral
process. Similar patterns to Tables 1-4 are observed in this process. Note that the absolute values
in Tables 5-8 are smaller than counterparts of Poisson case, whereas the variabilities of the values
of E[Zi(t)], Cov(t), and ρ(t) from time 0 to 1000 are larger under the Erlang(2) process. It can be
explained by the fact that the mean and the variance of Erlang(2) interclaim time distribution are
both 2 which are larger than those of Poisson risk process (i.e. E[τ1] = Var(τ1) = 1 in the exponential
interclaim time distribution). In addition, the asymptotic means of total number of IBNR claim, i.e.
E[ZN

1 (∞)] and E[ZN
2 (∞)] are reduced by 50% compared to the values in the Poisson process as the
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mean of interclaim distribution is changed from 1 to 2, which confirms the result in Corollary 3.

t E[ZA
1 (t)] E[ZA

2 (t)] E[ZR
1 (t)] E[ZR

2 (t)] E[ZU
1 (t)] E[ZU

2 (t)] E[ZN
1 (t)] E[ZN

2 (t)]

1 0.5504 2.7520 0.1622 1.9912 0.3620 0.7336 0.1998 0.0779
5 3.9362 19.6810 3.0170 18.7151 0.7318 0.7710 0.4933 0.0999
10 7.3816 36.9079 6.4525 35.9420 0.5776 0.6005 0.4999 0.0999

100 19.3774 96.8872 18.4483 95.9212 0.0006 0.0007 0.5000 0.1000
1000 19.5122 97.5610 18.5830 96.5950 0.0000 0.0000 0.5000 0.1000

∞ 19.5122 97.5610 18.5830 96.5950 0.0000 0.0000 0.5000 0.1000

Table 5: Expectations of (i)-(iv) for each type of claim in the Erlang(2) process

t CovA(t) ρA(t) CovR(t) ρR(t) CovU (t) ρU (t) CovN (t) ρN (t)

1 4.5855 0.6321 1.2074 0.3442 0.9811 0.3245 0.0575 0.5018
5 20.3631 0.5408 15.6816 0.4790 0.7263 0.2070 0.0635 0.3254

10 31.9913 0.5226 28.0290 0.4992 0.4405 0.2055 0.0635 0.3228
100 49.9114 0.5118 47.0638 0.5109 0.0001 0.2055 0.0635 0.3228
500 49.9136 0.5118 47.0661 0.5109 0.0000 0.2055 0.0635 0.3228
1000 49.9136 0.5118 47.0661 0.5109 0.0000 0.2055 0.0635 0.3228

Table 6: Covariances and Correlation coefficients of (i)-(iv) in the Erlang(2) process (ρ = 0)

t CovA(t) ρA(t) CovR(t) ρR(t) CovU (t) ρU (t)

1 5.9199 0.8161 1.5481 0.4413 1.2649 0.4183
5 29.0094 0.7704 22.3038 0.6813 0.9646 0.2749
10 46.6038 0.7613 40.8646 0.7278 0.5850 0.2729

100 73.7198 0.7559 69.5138 0.7546 0.0001 0.2729
500 73.7231 0.7559 69.5173 0.7546 0.0000 0.2729
1000 73.7231 0.7559 69.5173 0.7546 0.0000 0.2729

Table 7: Covariances and Correlation coefficients of (i)-(iv) in the Erlang(2) process (ρ = 0.5)

5 Concluding remarks

The proposed model in this paper has the merit of providing a unified framework in studying the
joint moments of the discounted total multivariate claims in the presence of reporting/payment de-
lay. We should point out that most studies in the literature related to the discounted aggregate
(reported/unreported) claims (i.e. without delay or with delay in reporting) are done separately under
various claim counting processes such as renewal processes and a (non-homogeneous or mixed) Poisson
processes with univariate claim severities.

As shown in this paper, the extension to the case of aggregate multivariate claim severities involving
the delay component in terms of reporting/payment is performed by using the renewal arguments.
Utilizing the regenerative property at claim instants assumed in the renewal claim counting process,
the joint moments of the aggregate discounted claims with univariate claim severity were studied by
Léveillé and Garrido (2001a,b) and Woo and Cheung (2013). To find the joint moments of {Zj(t)}j∈Rk ,
the result from combinatorics of partial derivatives by Hardy (2006) is adopted. It is of theoretical and
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t CovA(t) ρA(t) CovR(t) ρR(t) CovU (t) ρU (t)

1 6.9874 0.9632 1.8206 0.5190 1.4919 0.4934
5 35.9265 0.9541 27.6015 0.8431 1.1552 0.3293
10 58.2938 0.9523 51.1330 0.9107 0.7007 0.3268

100 92.7665 0.9512 87.4738 0.9495 0.0001 0.3268
500 92.7707 0.9512 87.4783 0.9495 0.0000 0.3268
1000 92.7707 0.9512 87.4783 0.9495 0.0000 0.3268

Table 8: Covariances and Correlation coefficients of (i)-(iv) in the Erlang(2) process (ρ = 0.9)

practical interest to investigate the risk aggregation of the multiline insurance, especially when claim
severities are dependent on their incurral time. Moreover, we remark that the expressions for the joint
moment of the discounted multivariate claim obtained in Section 3 are recursively evaluated with the
aid of the renewal function m(t) and the mixed moment of (X1, X2, . . . , Xk) of order (n1, n2, . . . , nk).
The former quantity is simple and well known in some processes but is not explicitly available in some
other processes. However, bounds and asymptotic properties for m(t) are broadly studied in the area
of renewal theory. The latter quantity is also explicitly given for many multivariate distributions, e.g.
Moran and Downton’s multivariate exponential (Equation (47.119) of Kotz et al. (2000)). Finally, as
demonstrated by the previous examples in Section 4, we note that unified approach given in Section 3 is
easily implemented to study the impact of dependency between different types of claims on the relation
of their discounted (reported/unreported) aggregate amounts as well as to obtain the asymptotic joint
moments under the different claim incurral processes.
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