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Abstract

In insurance risk theory, dividend and aggregate claim amount are of great research interest as
they represent the insurance company’s payments to its shareholders and policyholders respectively.
Since the analyses of these two quantities are performed separately in the literature, the companion
paper Cheung et al. (2015) generalized the Gerber-Shiu expected discounted penalty function (Gerber
and Shiu (1998)) by further incorporating the moments of the aggregate discounted claims until ruin
and the discounted dividends until ruin. While Cheung et al. (2015) considered the compound
Poisson model with a dividend barrier in which ruin occurs almost surely, the present paper looks
at this generalized Gerber-Shiu function under a threshold dividend strategy where the insurer has
a positive survival probability. Because the Gerber-Shiu function is only defined for sample paths
leading to ruin, we will additionally study the joint moments of the aggregate discounted claims
and the discounted dividends without ruin occurring. Some explicit formulas are derived when the
individual claim distribution follows a combination of exponentials. Numerical illustrations involving
the correlation between aggregate discounted claims and discounted dividends are given. For the case
where ruin occurs, we additionally compute the correlations between the time of ruin and the above
two quantities.

Keywords: Compound Poisson risk model; Threshold dividend strategy; Aggregate discounted claims;
Discounted dividends; Correlation.

1 Introduction

In the classical compound Poisson insurance risk model, the baseline (i.e. without dividends) surplus
process {U(t)}t≥0 of the insurer is modeled as

U(t) = u+ ct− S(t), t ≥ 0, (1.1)

where u = U(0) ≥ 0 is the initial surplus, c > 0 is the incoming premium rate per unit time, and
{S(t)}t≥0 is the aggregate claims process. Specifically, the aggregate claim amount until time t is given

by S(t) =
∑N(t)

k=1 Yk, where {N(t)}t≥0 is a Poisson process with rate λ > 0, and {Yk}∞k=1 is a sequence of
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independent and identically distributed positive continuous random variables representing the individual
claim amounts. Moreover, it is assumed that {N(t)}t≥0 and {Yk}∞k=1 are independent. For later use, the
common probability density function of the random variables {Yk}∞k=1 is denoted by p(·) and its Laplace
transform is p̃(s) =

∫∞
0 e−syp(y) dy.

The seminal paper by de Finetti (1957) suggested that the insurer should redistribute some of its
surplus to its shareholders, leading to extensive study of dividend strategies in various insurance risk
models (see e.g. Albrecher and Thonhauser (2009) and Avanzi (2009) for reviews). The most commonly
studied dividend strategy in the literature is the barrier strategy (e.g. Gerber (1979)) in which any
excess of the surplus over a fixed barrier is immediately paid to the shareholders as dividends. Although
such a strategy is optimal as far as the maximization of the expected discounted dividends until ruin is
concerned when p(·) is completely monotone (e.g. Loeffen (2008, Theorem 3)), it results in an ultimate
ruin probability of one which is practically undesirable. In this paper, we shall impose a threshold
dividend strategy (e.g. Gerber and Shiu (2006) and Lin and Pavlova (2006)) to the surplus process (1.1),
so that part of the incoming premium rate is paid as dividends whenever the insurer’s surplus exceeds a
fixed threshold level b > 0. Denoting the dividend rate by α > 0 and the premium rate by c1 = c, the net
premium rate is c2 = c1 −α when the surplus is above b. Therefore, the modified risk process {Ub(t)}t≥0

under the above threshold strategy follows the dynamics

dUb(t) =

{
c1 dt− dS(t), Ub(t) < b,
c2 dt− dS(t), Ub(t) ≥ b,

and the initial surplus is given by u = Ub(0) ≥ 0. The time of ruin of {Ub(t)}t≥0 is defined to be
τb = inf{t ≥ 0 : Ub(t) < 0} with the convention that τb = inf ∅ = ∞ if Ub(t) ≥ 0 for all t ≥ 0. Then,
the ruin probability is given by ψ(u; b) = Pr{τb <∞|Ub(0) = u}. The positive security loading condition
c2 > λE[Y1] is assumed to ensure that ψ(u; b) < 1 for all u ≥ 0 (e.g. Kyprianou (2013, Corollary 8.5)).
Note that D(t) = U(t)−Ub(t) is the total dividends paid until time t. An important quantity of interest
is the total discounted dividends until ruin, as it represents the value of firm in corporate finance. In the
present context, it is defined by

Dδ(τb) =

∫ τb

0
e−δs dD(s) = α

∫ τb

0
e−δs1{Ub(s)≥b} ds, (1.2)

where δ > 0 is the force of interest and 1A is the indicator function of the event A. When each claim
amount Yk is exponentially distributed, Gerber and Shiu (2006, Section 9) showed that the threshold
strategy is optimal in maximizing the expected discounted dividends until ruin for restricted dividend
rate. Given a threshold strategy, Dickson and Drekic (2006) analyzed the optimal pair of threshold
level and dividend rate that maximizes the expectation of Dδ(τb) under a ruin probability constraint,
whereas Cheung et al. (2008) derived the higher moments of Dδ(τb) and computed the optimal threshold
minimizing the coefficient of variation of Dδ(τb).

Apart from Dδ(τb) which is the total discounted payment made by the insurance company to its
shareholders, another quantity of interest is the aggregate discounted claim amount payable to the poli-
cyholders until ruin, namely

∫ τb
0 e−δt dS(t) where δ > 0 is the force of interest. More generally, one may

consider the aggregate discounted claim costs until ruin defined by

Zδ(τb) =

N(τb)∑
k=1

e−δTkf(Yk), (1.3)
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where Tk is the time of the kth claim (which is the kth arrival time of the Poisson process {N(t)}t≥0),
and f(·) is a non-negative ‘cost function’ applied to each claim. Clearly, if f(y) = y then Zδ(τb) becomes∑N(τb)

k=1 e−δTkYk =
∫ τb
0 e−δt dS(t). We remark that the aggregate discounted claim amount here is different

from the one considered by e.g. Taylor (1979), Willmot (1989), Léveillé and Garrido (2001), and Woo
and Cheung (2013), which is concerned with the aggregate until a fixed time t instead of the ruin time.
The quantity Zδ(τb) in (1.3) has gained some attention in recent years (in models without dividends, i.e.
α = 0). For example, the expectation of Zδ(τb) was studied by Cai et al. (2009, Section 6) and Feng
(2009a, Section 4.2; 2009b, Section 5.2) in the compound Poisson and phase-type renewal risk models,
whereas Cheung and Feng (2013) analyzed the higher moments of Zδ(τb) in a Markovian arrival process.

In addition to the discounted dividends, the Gerber-Shiu expected discounted penalty function has
also been widely studied in insurance risk theory since the seminal paper by Gerber and Shiu (1998) was
published. In the present model, it is defined by

ϕδ(u; b) = E[e−δτbw(Ub(τ
−
b ), |Ub(τb)|)1{τb<∞}|Ub(0) = u], u ≥ 0, (1.4)

where δ ≥ 0 can be regarded as the force of interest or the Laplace transform argument with respect to
the time of ruin τb, and w(·, ·) is a non-negative ‘penalty’ as a function of the surplus immediately before
ruin Ub(τ

−
b ) and the deficit at ruin |Ub(τb)|. Typically, w(·, ·) is assumed to satisfy some mild integrability

conditions. While the Gerber-Shiu function (1.4) was studied by Lin and Pavlova (2006), some related
results on the corresponding discounted densities were given by Zhou (2004, Section 4). Interested readers
are referred to e.g. Albrecher et al. (2007, Section 2), Badescu et al. (2007a), Zhu and Yang (2008), Lu
and Li (2009), and Kyprianou and Loeffen (2010) for the analysis of the discounted dividends and the
Gerber-Shiu function in more general processes such as the generalized Erlang(n) renewal model, risk
model with Markovian claim arrivals, and the Lévy insurance risk process. We also remark that a more
general multi-threshold dividend strategy was also considered by e.g. Albrecher and Hartinger (2007),
Badescu et al. (2007b), and Lin and Sendova (2008).

In almost all works in the literature, the analyses of the discounted dividends (1.2), the aggregate
discounted claim costs (1.3) and (the random variables in) the Gerber-Shiu function (1.4) were performed
separately. Therefore, Cheung et al. (2015) proposed an extended version of the Gerber-Shiu function
defined as

ϕδ1,δ2,δ3,n,m(u; b) = ϕδ123,n,m(u; b) = E[e−δ1τbDn
δ2(τb)Z

m
δ3 (τb)w(Ub(τ

−
b ), |Ub(τb)|)1{τb<∞}|Ub(0) = u], u ≥ 0,

(1.5)
where n,m ∈ N (with N being the set of non-negative integers) are the orders of moments of Dδ2(τb)
and Zδ3(τb). It is assumed that the cost function f(·) satisfies some mild integrability conditions (see
Lemmas 2 and 3). Moreover, we assume δ1 ≥ 0, while δ2, δ3 > 0 are possibly different forces of interest
used to discount dividends and claims for the shareholders and policyholders respectively. Note that the
indicator function 1{τb<∞} does not appear in Cheung et al. (2015)’s definition since they considered a
dividend barrier strategy for which ruin occurs almost surely (a.s.). For notational convenience, we shall
use the abbreviation ϕδ123,n,m(u; b) for ϕδ1,δ2,δ3,n,m(u; b) when it does not cause any confusion. Obviously,
if n = m = 0 then ϕδ123,0,0(u; b) = ϕδ1(u; b) reduces to the classical Gerber-Shiu function defined in
(1.4). Under a compound Poisson risk model with a dividend barrier, Cheung et al. (2015) applied
ϕδ123,n,m(u; b) to find various covariance measures between ruin-related quantities such as the discounted
dividends until ruin and the aggregate discounted claims until ruin. Through some numerical examples,
they demonstrated that the covariance between the above two random variables may take positive or
negative value and gave some interpretations as well. The motivation for calculating the above covariance
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(or the resulting correlation) is as follows. Because the payments to the policyholders (claims) and the
shareholders (dividends) both come from the same source, namely the insurer’s surplus, it is interesting
to see whether the discounted dividends and the aggregate discounted claims tend to move in the same
or opposite direction. A high positive correlation indicates that the needs of the two groups could indeed
be satisfied at the same time, but a negative correlation may suggest conflicting interests between the
two groups. We remark that Gerber-Shiu type functions resembling (1.5) were also introduced and
analyzed by Cheung (2013) and Cheung and Woo (2016) in the absence of dividends. While the former
contribution considered (1.5) where n = 0, δ1 = kδ3 for some k ∈ N and the penalty w only depends on
the deficit in renewal risk models with general interclaim times and exponential claims, the latter looked
at (1.5) where n = 0 and w further depends on the surplus immediately after the second last claim before
ruin in the dependent Sparre Andersen risk model. The latter work was also extended to a discrete-time
framework by Woo and Liu (2014).

It is instructive to note that the Gerber-Shiu function (1.5) only takes into account the sample paths of
{Ub(t)}t≥0 for which ruin occurs. Under the loading condition c2 > λE[Y1], the process {Ub(t)}t≥0 has a
positive survival probability. For these sample paths where {Ub(t)}t≥0 survives forever (i.e. τb = ∞), the
discounted dividends Dδ2(τb) and the aggregate discounted claim costs Zδ3(τb) are still defined although
Ub(τ

−
b ) and |Ub(τb)| are not. Therefore, we will also analyze the joint moments of Dδ2(τb) and Zδ3(τb)

without ruin occurring via

φδ2,δ3,n,m(u; b) = φδ23,n,m(u; b) = E[Dn
δ2(τb)Z

m
δ3 (τb)1{τb=∞}|Ub(0) = u], u ≥ 0, (1.6)

where n,m ∈ N and δ2, δ3 > 0. Note that the usual joint moments for all sample paths can readily be
obtained as

E[Dn
δ2(τb)Z

m
δ3 (τb)|Ub(0) = u] = ϕδ123,n,m(u; b)|δ1=0,w≡1 + φδ23,n,m(u; b). (1.7)

This paper is organized as follows. In Section 2, the integro-differential equations (IDEs) for ϕδ123,n,m(u; b)
and φδ23,n,m(u; b) as well as the corresponding continuity conditions and limiting behaviors as u → ∞
are given. Under the assumption that each individual claim is distributed as a combination of expo-
nentials, Section 3 provides some explicit expressions for ϕδ123,n,m(u; b) and φδ23,n,m(u; b) when f(y) = y
and w(x, y) depends on the deficit argument y but not x. Because the derivation of the IDEs and the
procedure towards the exact solutions are quite standard but require tedious and careful calculations,
only the main results are stated in Sections 2 and 3 with the details of the proofs provided in the Ap-
pendix. Section 4 is concerned with some numerical illustrations in which we compute the correlation
between the discounted dividends and the aggregate discounted claims separately for the cases of ruin
and survival. For the case where ruin occurs, the correlations between the time of ruin and the above
two quantities are also given. Probabilistic interpretations follow as well. Section 5 ends the paper with
some concluding remarks.

2 General results

Due to the presence of the dividend threshold b, the IDEs in u satisfied by ϕδ123,n,m(u; b) are different
depending on whether 0 ≤ u < b or u ≥ b (and hence the solution forms will also be different as in
Section 3). Therefore, we shall denote ϕδ123,n,m(u; b) by ϕL,δ123,n,m(u; b) for 0 ≤ u < b and ϕU,δ123,n,m(u; b)
for u ≥ b, where ‘L’ and ‘U ’ stand for ‘Lower’ and ‘Upper’ layers respectively. Furthermore, we shall use
ϕ′δ123,n,m(u; b) = (d/du)ϕδ123,n,m(u; b) to denote the derivative of ϕδ123,n,m(u; b) with respect to the first
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argument u. Similar notations will be applied to φδ23,n,m(u; b) and other related functions as well. The
proofs of the Theorems and Lemmas in this section are given in the Appendix.

2.1 IDEs and continuity condition for ϕδ123,n,m(u; b) when n = 0

First, we consider ϕδ123,0,m(u; b) (i.e. n = 0) so that the dividend component Dδ2(τb) does not appear in
the definition (1.5). For notational convenience, we write

ϕδ13,m(u; b) = ϕδ123,0,m(u; b) = E[e−δ1τbZm
δ3 (τb)w(Ub(τ

−
b ), |Ub(τb)|)1{τb<∞}|Ub(0) = u], u ≥ 0. (2.1)

The IDEs and continuity condition for ϕδ13,m(u; b) are stated in the following Theorem, where ϕδ13,m(u; b) =
ϕL,δ13,m(u; b) for 0 ≤ u < b and ϕδ13,m(u; b) = ϕU,δ13,m(u; b) for u ≥ b according to our afore-mentioned
convention.

Theorem 1 For m ∈ N, the Gerber-Shiu function ϕδ13,m(u; b) in (2.1) satisfies the IDEs, for 0 < u < b,

c1ϕ
′
L,δ13,m(u; b)− (λ+ δ1 +mδ3)ϕL,δ13,m(u; b) + λ

m∑
i=0

(
m

i

)∫ u

0
fm−i(y)ϕL,δ13,i(u− y; b)p(y) dy

+ λ

∫ ∞

u
fm(y)w(u, y − u)p(y) dy = 0, (2.2)

and for u > b,

c2ϕ
′
U,δ13,m(u; b)− (λ+ δ1 +mδ3)ϕU,δ13,m(u; b) + λ

m∑
i=0

(
m

i

)∫ u−b

0
fm−i(y)ϕU,δ13,i(u− y; b)p(y) dy

+ λ
m∑
i=0

(
m

i

)∫ u

u−b
fm−i(y)ϕL,δ13,i(u− y; b)p(y) dy + λ

∫ ∞

u
fm(y)w(u, y − u)p(y) dy = 0. (2.3)

In addition, ϕδ13,m(u; b) is continuous at u = b, i.e.

ϕL,δ13,m(b−; b) = ϕU,δ13,m(b+; b). (2.4)

�

Remark 1 As ϕδ13,m(u; b) reduces to the classical Gerber-Shiu function ϕδ1(u; b) when m = 0, it is noted
that the results in Lin and Pavlova (2006, Theorem 3.1) can be retrieved from the above Theorem by
putting m = 0. Note also that the determination of ϕδ13,m(u; b) is recursive in m, with the starting point
given by ϕδ1(u; b). Assuming that the lower order Gerber-Shiu functions ϕδ13,i(·; b) for i = 0, 1, . . . ,m− 1
are known, it is observed that the IDE (2.3) involves both ϕL,δ13,m(·; b) in the lower layer and ϕU,δ13,m(·; b)
in the upper layer as unknown functions, while (2.2) only involves ϕL,δ13,m(·; b). Therefore, the typical
procedure is to first utilize (2.2) to determine the solution form of ϕL,δ13,m(·; b), and then attempt to find
ϕU,δ13,m(·; b) in (2.3) by treating ϕL,δ13,m(·; b) as known (see the proofs of Theorems in Section 3). �

Remark 2 Having established the continuity of ϕδ13,i(·; b) for i ∈ N in the proof of Theorem 1, we observe
from (2.2) that for each m ∈ N the derivative ϕ′L,δ13,m(u; b) is continuous in u in the layer 0 < u < b if∫∞
u fm(y)w(u, y−u)p(y) dy is continuous in u. A sufficient condition for

∫∞
u fm(y)w(u, y−u)p(y) dy to be

continuous in u is that the penalty w(·, ·) is a continuous function. For the same reason, ϕ′U,δ13,m(u; b) is
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continuous in u for u > b under the same sufficient condition. However, although ϕδ13,m(u; b) is continuous
at u = b, the derivative ϕ′δ13,m(u; b) is generally not continuous at u = b. To see this, letting u → b− in

(2.2) and u→ b+ in (2.3) (assuming
∫∞
u fm(y)w(u, y − u)p(y) dy is continuous at u = b) and comparing

the two equations gives rise to

c1ϕ
′
L,δ13,m(b−; b) = c2ϕ

′
U,δ13,m(b+; b),

which generalizes the result at the end of Section 3 in Lin and Pavlova (2006) (see also Gerber and
Shiu (2006, Equation (10.5))). Therefore, ϕ′L,δ13,m(b−; b) ̸= ϕ′U,δ13,m(b+; b) unless c1 = c2 (or equivalently
α = 0). �

2.2 IDEs and continuity condition for ϕδ123,n,m(u; b) when n ∈ N+

Next, we look at the Gerber-Shiu function ϕδ123,n,m(u; b) defined in (1.5) when n ∈ N+ and m ∈ N (where
N+ is the set of positive integers). The following Theorem gives the associated IDEs and continuity
condition.

Theorem 2 For n ∈ N+ and m ∈ N, the Gerber-Shiu function ϕδ123,n,m(u; b) in (1.5) satisfies the IDEs,
for 0 < u < b,

c1ϕ
′
L,δ123,n,m(u; b)−(λ+δ1+nδ2+mδ3)ϕL,δ123,n,m(u; b)+λ

m∑
i=0

(
m

i

)∫ u

0
fm−i(y)ϕL,δ123,n,i(u−y; b)p(y) dy = 0,

(2.5)
and for u > b,

c2ϕ
′
U,δ123,n,m(u; b)− (λ+ δ1 + nδ2 +mδ3)ϕU,δ123,n,m(u; b) + αnϕU,δ123,n−1,m(u; b)

+ λ

m∑
i=0

(
m

i

)∫ u−b

0
fm−i(y)ϕU,δ123,n,i(u− y; b)p(y) dy + λ

m∑
i=0

(
m

i

)∫ u

u−b
fm−i(y)ϕL,δ123,n,i(u− y; b)p(y) dy = 0.

(2.6)

In addition, ϕδ123,n,m(u; b) is continuous at u = b, i.e.

ϕL,δ123,n,m(b−; b) = ϕU,δ123,n,m(b+; b). (2.7)

�

Remark 3 It is instructive to note from (2.5) and (2.6) that one requires a double recursion in both n and
m to determine ϕδ123,n,m(u; b) (see similar comments in Remark 1 concerning ϕδ13,m(u; b)). Furthermore,
in parallel to Remark 2, (assuming

∫∞
u fm(y)w(u, y − u)p(y) dy is continuous at u = b) it is clear that,

for n ∈ N+,
c1ϕ

′
L,δ123,n,m(b−; b) = c2ϕ

′
U,δ123,n,m(b+; b) + αnϕU,δ123,n−1,m(b; b),

i.e. the derivative of ϕδ123,n,m(u; b) is not necessarily continuous at u = b. �

Remark 4 Note that the IDEs (2.2) and (2.5) for ϕδ123,n,m(u; b) in the lower layer are the same as those
in Theorems 1 and 2 in Cheung et al. (2015) concerning the dividend barrier strategy. This is because
these IDEs are obtainable by considering an infinitesimal time interval, for which the dynamics of the
surplus process are identical as no dividend is payable in the lower layer regardless of whether a barrier or
a threshold strategy is implemented. Such an observation will allow us to reuse some of the intermediate
results in Cheung et al. (2015) in Section 3. �
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2.3 IDEs and continuity condition for φδ23,n,m(u; b)

In the next Theorem, the IDEs and continuity condition concerning φδ23,n,m(u; b) (i.e. without ruin
occurring) for n,m ∈ N will be provided. Because the dividend value Dδ2(τb) cannot be zero on the set
{τb = ∞}, here we do not need to separate the analysis into the cases n = 0 or n ∈ N+ (unlike the
Gerber-Shiu function ϕδ123,n,m(u; b) in the previous two subsections).

Theorem 3 For n,m ∈ N, the joint moment φδ23,n,m(u; b) in (1.6) satisfies the IDEs, for 0 < u < b,

c1φ
′
L,δ23,n,m(u; b)− (λ+ nδ2 +mδ3)φL,δ23,n,m(u; b) + λ

m∑
i=0

(
m

i

)∫ u

0
fm−i(y)φL,δ23,n,i(u− y; b)p(y) dy = 0,

(2.8)
and for u > b,

c2φ
′
U,δ23,n,m(u; b)− (λ+ nδ2 +mδ3)φU,δ23,n,m(u; b) + αnφU,δ23,n−1,m(u; b)

+ λ
m∑
i=0

(
m

i

)∫ u−b

0
fm−i(y)φU,δ23,n,i(u− y; b)p(y) dy + λ

m∑
i=0

(
m

i

)∫ u

u−b
fm−i(y)φL,δ23,n,i(u− y; b)p(y) dy = 0.

(2.9)

In addition, φδ23,n,m(u; b) is continuous at u = b, i.e.

φL,δ23,n,m(b−; b) = φU,δ23,n,m(b+; b). (2.10)

It is understood that φU,δ23,n−1,m(u; b) appearing in (2.9) is regarded as zero when n = 0. �

Remark 5 For n ∈ N+ and m ∈ N, it is observed that the IDEs (2.5) and (2.6) in Theorem 2 sat-
isfied by ϕδ123,n,m(u; b)|δ1=0 in the case of ruin are identical to the IDEs (2.8) and (2.9) in Theorem 3
for φδ23,n,m(u; b) concerning the case of survival. However, the full solutions to ϕδ123,n,m(u; b)|δ1=0 and
φδ23,n,m(u; b) are generally different due to different limiting conditions as u→ ∞ (which will be discussed
in the next subsection) and the fact that the lower order moments appearing in the two sets of IDEs are
different. �

2.4 Limits of ϕδ123,n,m(u; b) and φδ23,n,m(u; b) as u → ∞

From Theorems 1 and 2, the Gerber-Shiu function ϕδ123,n,m(u; b) satisfies two different IDEs in the lower
and upper layers, and each IDE contains a derivative term. Therefore, the determination of the full
solution of ϕδ123,n,m(u; b) from the IDEs typically requires one more piece of information apart from
the continuity condition. Similar comments are applicable to φδ23,n,m(u; b) as well. In this subsection,
we shall derive the limits limu→∞ ϕδ123,n,m(u; b) and limu→∞ φδ23,n,m(u; b). It is not our objective here
to discuss the existence and/or uniqueness of solution to the IDEs given the continuity and limiting
conditions in general, but we point out that these are sufficient to yield a unique solution in Section 3
when each claim is distributed as a combination of exponentials (see Remark 9). Interested readers are
referred to e.g. Mihálykó and Mihálykó (2011) where conditions for the uniqueness of the solution to an
integral equation satisfied by the classical Gerber-Shiu function are analyzed. Before providing the limits
in Lemmas 2 and 3, we state the following Lemma which is a special case of Léveillé and Garrido (2001,
Corollary 2.1).
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Lemma 1 Define, for m ∈ N and δ > 0,

θδ,m = E

[( ∞∑
k=1

e−δTkf(Yk)

)m]
. (2.11)

Then, θδ,m can be computed recursively using, for m ∈ N+,

θδ,m =
λ

mδ

m−1∑
i=0

(
m

i

)
E[fm−i(Y1)]θδ,i,

with the starting value θδ,0 = 1. �

Remark 6 From Lemma 1, it is clear that θδ,1 is finite if E[f(Y1)] is finite. For θδ,2 to be finite, one
requires E[f2(Y1)] to be finite (which implies finiteness of E[f(Y1)] and hence θδ,1). Recursively, one
observes that θδ,m is finite if E[fm(Y1)] is finite. �

Next, we shall first state limu→∞ φδ23,n,m(u; b) in the following Lemma under some mild conditions,
and some intermediate results in the proof will be used to identify limu→∞ ϕδ123,n,m(u; b) in the proof of
Lemma 2.

Lemma 2 For a given value ofm ∈ N, if θδ3,m defined via (2.11) is finite, then under the positive security
loading condition, the limit of φδ23,n,m(u; b) is finite and is given by, for n ∈ N,

lim
u→∞

φδ23,n,m(u; b) =
( α
δ2

)n
θδ3,m. (2.12)

�

Lemma 3 For a given value of m ∈ N, if the penalty function w(·, ·) is bounded and θδ3,m defined via
(2.11) is finite, then under the positive security loading condition, the limit of ϕδ123,n,m(u; b) is given by,
for n ∈ N,

lim
u→∞

ϕδ123,n,m(u; b) = 0. (2.13)

�

3 Combination of exponentials claims

In this entire section, we assume that the distribution of each claim amount Yk follows a combination of
exponentials with density

p(y) =

r∑
k=1

qkµke
−µky, y > 0, (3.1)

where
∑r

k=1 qk = 1, and for k = 1, 2, . . . , r the parameters µk’s are positive and distinct whereas qk’s
are non-zero. The class of combinations of exponentials is known to be dense in the set of distributions
on (0,∞), and we refer interested readers to Dufresne (2007) for its fitting. Concerning the quantity

Zδ3(τb) defined via (1.3), we shall focus on its special case
∑N(τb)

k=1 e−δ3TkYk (for δ3 > 0) which represents
the aggregate discounted claims until ruin. Thus, it is assumed that f(y) = y throughout this section.
Since all the moments of Y1 are finite, the quantity θδ3,m computed via Lemma 1 is also finite for
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every m ∈ N according to Remark 6. In particular, the first two moments of Y1 are given by E[Y1] =∑r
k=1 qk/µk and E[Y 2

1 ] =
∑r

k=1 2qk/µ
2
k. Consequently, the random variable

∑N(τb)
k=1 e−δ3TkYk is integrable

as
∑N(τb)

k=1 e−δ3TkYk ≤
∑∞

k=1 e
−δ3TkYk and E[

∑∞
k=1 e

−δ3TkYk] = θδ3,1 is finite, and hence
∑N(τb)

k=1 e−δ3TkYk
is also integrable on the sets {τb < ∞} and {τb = ∞}. Conditional on ruin occurring, we are interested

in correlations involving any two of the aggregate discounted claims until ruin
∑N(τb)

k=1 e−δ3TkYk, the
discounted dividends until ruin Dδ2(τb) (for δ2 > 0), and the ruin time τb (see Section 4). Although a
penalty function of w ≡ 1 is sufficient for our purposes, we shall assume a bounded penalty w(x, y) = w(y)
that depends on the deficit |Ub(τb)| but not the surplus prior to ruin Ub(τ

−
b ), as this does not complicate

our analysis. Note that the limiting condition (2.13) is applicable under the above setting, so is the
condition (2.12) as far as the joint moments of the aggregate discounted claims and the discounted
dividends are concerned without ruin occurring.

The derivations of explicit expressions for ϕδ123,n,m(u; b) and φδ23,n,m(u; b) rely on the Lundberg’s
equation, for l = 1, 2 and n,m ∈ N,

cls− (λ+ δ1 + nδ2 +mδ3) + λp̃(s) = 0, (3.2)

where p̃(s) =
∑r

k=1 qkµk/(µk + s) is the Laplace transform of Y1. Let {ρn,m,j}r+1
j=1 and {κn,m,j}r+1

j=1 be the
r + 1 roots of (3.2) when l = 1 and l = 2 respectively (i.e. the roots ρ’s correspond to the full premium
rate c1 = c while κ’s belong to the net premium rate c2 = c − α). Each of these two sets of roots are
assumed to be distinct (see Remark 7). It is well known that (3.2) has a unique root with non-negative
real part (and it is a real root), while the other r roots have negative real parts. When l = 2, we need to
distinguish between these roots, and the non-negative root is denoted by κn,m,r+1. (Note that κn,m,r+1 is
indeed positive except when δ1 = n = m = 0.) Also, ρn,m,j and κn,m,j are denoted by ρ∗n,m,j and κ∗n,m,j

respectively when δ1 = 0. We shall see that the solutions to ϕδ123,n,m(u; b) and φδ23,n,m(u; b) admit the
representations

ϕL,δ123,n,m(u; b) =

m∑
i=0

r+1∑
j=1

An,m,i,je
ρn,i,ju, 0 ≤ u ≤ b, (3.3)

ϕU,δ123,n,m(u; b) =

n∑
i=0

m∑
j=0

r∑
k=1

A∗
n,m,i,j,ke

κi,j,ku, u ≥ b, (3.4)

φL,δ23,n,m(u; b) =
m∑
i=0

r+1∑
j=1

Cn,m,i,je
ρ∗n,i,ju, 0 ≤ u ≤ b, (3.5)

and

φU,δ23,n,m(u; b) =
n∑

i=0

m∑
j=0

r∑
k=1

C∗
n,m,i,j,ke

κ∗
i,j,ku +

( α
δ2

)n
θδ3,m u ≥ b. (3.6)

As it has been shown that ϕδ123,n,m(u; b) and φδ23,n,m(u; b) are continuous for u ≥ 0, we shall use the
domain 0 ≤ u ≤ b and u ≥ b for the lower and upper layers respectively in the upcoming Lemmas and
Theorems.

Remark 7 In the unlikely case where there are multiple roots to the Lundberg’s equation, one or
more model parameters (such as λ or δ1) may be slightly modified such that the roots become distinct.
Consequently, one may approximate the ruin quantities of interest by the corresponding ones in a model
with distinct roots. For a detailed treatment of multiple Lundberg’s roots, we refer interested readers to
e.g. Ji and Zhang (2012). Nevertheless, from e.g. Gerber and Shiu (2006, Equation (A.8)), a sufficient
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condition for the roots to be distinct is that all qk’s in the claim density (3.1) are positive (so that p(·) is
a proper mixture of exponentials). Another sufficient condition is that r = 2. See e.g. Equations (7.14)
and (7.15) of Gerber et al. (2006) and Figures 1 and 2 therein. Under either condition, the roots are
real. �

3.1 ϕδ123,n,m(u; b) and φδ23,n,m(u; b) when n = m = 0

When n = m = 0, ϕδ123,0,0(u; b) = ϕδ13,0(u; b) = ϕδ1(u; b) is simply the classical Gerber-Shiu function
defined in (1.4). Its solution can be obtained from Gerber and Shiu (2006, Appendix B) with minor
adjustments (as they considered w ≡ 1). Since this will be used as a starting point to compute higher
moments, the result is stated in the following Lemma.

Lemma 4 The classical Gerber-Shiu function ϕδ1(u; b) is given by

ϕδ1(u; b) = ϕL,δ1(u; b) =

r+1∑
j=1

A0,0,0,je
ρ0,0,ju, 0 ≤ u ≤ b, (3.7)

and

ϕδ1(u; b) = ϕU,δ1(u; b) =

r∑
j=1

A∗
0,0,0,0,je

κ0,0,ju, u ≥ b, (3.8)

where {ρ0,0,j}r+1
j=1 and {κ0,0,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {A0,0,0,j}r+1

j=1

and {A∗
0,0,0,0,j}rj=1 satisfy the 2r + 1 linear equations which consist of

r+1∑
j=1

A0,0,0,j

µk + ρ0,0,j
= w̃(µk), k = 1, 2, . . . , r, (3.9)

r+1∑
j=1

A0,0,0,j

µk + ρ0,0,j
eρ0,0,jb =

r∑
j=1

A∗
0,0,0,0,j

µk + κ0,0,j
eκ0,0,jb, k = 1, 2, . . . , r, (3.10)

and
r+1∑
j=1

A0,0,0,je
ρ0,0,jb =

r∑
j=1

A∗
0,0,0,0,je

κ0,0,jb, (3.11)

where w̃(s) =
∫∞
0 e−syw(y) dy is the Laplace transform of w(·). �

When n = m = 0, it is clear from the definition (1.6) that φδ23,0,0(u; b) = φ(u; b) is the survival prob-
ability (i.e. probability that ruin does not occur). Therefore, one has that φ(u; b) = 1−ϕδ1(u; b)|δ1=0,w≡1

where ϕδ1(u; b)|δ1=0,w≡1 can be computed using Lemma 4. This leads to the following Lemma.

Lemma 5 The survival probability φ(u; b) is given by

φ(u; b) = φL(u; b) =
r+1∑
j=1

C0,0,0,je
ρ∗0,0,ju, 0 ≤ u ≤ b,

and

φ(u; b) = φU (u; b) =
r∑

j=1

C∗
0,0,0,0,je

κ∗
0,0,ju + 1, u ≥ b, (3.12)
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where {ρ∗0,0,j}
r+1
j=1 and {κ∗0,0,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {C0,0,0,j}r+1

j=1

and {C∗
0,0,0,0,j}rj=1 satisfy the 2r + 1 linear equations which consist of

r+1∑
j=1

C0,0,0,j

µk + ρ∗0,0,j
= 0, k = 1, 2, . . . , r,

r+1∑
j=1

C0,0,0,jµk
µk + ρ∗0,0,j

eρ
∗
0,0,jb =

r∑
j=1

C∗
0,0,0,0,jµk

µk + κ∗0,0,j
eκ

∗
0,0,jb + 1, k = 1, 2, . . . , r,

and
r+1∑
j=1

C0,0,0,je
ρ∗0,0,jb =

r∑
j=1

C∗
0,0,0,0,je

κ∗
0,0,jb + 1.

�

3.2 ϕδ123,n,m(u; b) and φδ23,n,m(u; b) when n ∈ N+ and m = 0

We start with the special cases of (1.5) and (1.6) where n ∈ N+ and m = 0, so that the aggregate claims

component Zδ3(τb) =
∑N(τb)

k=1 e−δ3TkYk is absent in ϕδ123,n,m(u; b) and φδ23,n,m(u; b). These will be denoted
by ϕδ123,n,0(u; b) = ϕδ12,n(u; b) and φδ23,n,0(u; b) = φδ2,n(u; b) respectively and given in the following two
Theorems. The proofs are provided in the Appendix.

Theorem 4 For n ∈ N+, the Gerber-Shiu function ϕδ12,n(u; b) = ϕδ123,n,0(u; b) is given by

ϕδ12,n(u; b) = ϕL,δ12,n(u; b) =
r+1∑
j=1

An,0,0,je
ρn,0,ju, 0 ≤ u ≤ b, (3.13)

and

ϕδ12,n(u; b) = ϕU,δ12,n(u; b) =

n∑
i=0

r∑
j=1

A∗
n,0,i,0,je

κi,0,ju, u ≥ b, (3.14)

where {ρn,0,j}r+1
j=1 and {κi,0,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {A∗

n,0,i,0,j}rj=1

(for i = 0, 1, . . . , n− 1) can be obtained from

A∗
n,0,i,0,j =

αn

(n− i)δ2
A∗

n−1,0,i,0,j , i = 0, 1, . . . , n− 1; j = 1, 2, . . . , r, (3.15)

while the coefficients {An,0,0,j}r+1
j=1 and {A∗

n,0,n,0,j}rj=1 satisfy the 2r+ 1 linear equations which consist of

r+1∑
j=1

An,0,0,j

µk + ρn,0,j
= 0, k = 1, 2, . . . , r, (3.16)

r+1∑
j=1

An,0,0,j

µk + ρn,0,j
eρn,0,jb =

n∑
i=0

r∑
j=1

A∗
n,0,i,0,j

µk + κi,0,j
eκi,0,jb, k = 1, 2, . . . , r, (3.17)

and
r+1∑
j=1

An,0,0,je
ρn,0,jb =

n∑
i=0

r∑
j=1

A∗
n,0,i,0,je

κi,0,jb. (3.18)

The coefficients {A∗
0,0,0,0,j}rj=1 which form the starting point of the recursion in n can be evaluated using

Lemma 4. �
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Theorem 5 For n ∈ N+, the nth moment of the discounted dividends without ruin occurring φδ2,n(u; b) =
φδ23,n,0(u; b) is given by

φδ2,n(u; b) = φL,δ2,n(u; b) =

r+1∑
j=1

Cn,0,0,je
ρ∗n,0,ju, 0 ≤ u ≤ b, (3.19)

and

φδ2,n(u; b) = φU,δ2,n(u; b) =

n∑
i=0

r∑
j=1

C∗
n,0,i,0,je

κ∗
i,0,ju +

( α
δ2

)n
, u ≥ b, (3.20)

where {ρ∗n,0,j}
r+1
j=1 and {κ∗i,0,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {C∗

n,0,i,0,j}rj=1

(for i = 0, 1, . . . , n− 1) can be obtained from

C∗
n,0,i,0,j =

αn

(n− i)δ2
C∗
n−1,0,i,0,j , i = 0, 1, . . . , n− 1; j = 1, 2, . . . , r, (3.21)

while the coefficients {Cn,0,0,j}r+1
j=1 and {C∗

n,0,n,0,j}rj=1 satisfy the 2r + 1 linear equations which consist of

r+1∑
j=1

Cn,0,0,j

µk + ρ∗n,0,j
= 0, k = 1, 2, . . . , r, (3.22)

r+1∑
j=1

Cn,0,0,j

µk + ρ∗n,0,j
eρ

∗
n,0,jb =

n∑
i=0

r∑
j=1

C∗
n,0,i,0,j

µk + κ∗i,0,j
eκ

∗
i,0,jb +

1

µk

( α
δ2

)n
, k = 1, 2, . . . , r, (3.23)

and
r+1∑
j=1

Cn,0,0,je
ρ∗n,0,jb =

n∑
i=0

r∑
j=1

C∗
n,0,i,0,je

κ∗
i,0,jb +

( α
δ2

)n
. (3.24)

The coefficients {C∗
0,0,0,0,j}rj=1 which form the starting point of the recursion in n can be evaluated using

Lemma 5. �

3.3 ϕδ123,n,m(u; b) and φδ23,n,m(u; b) when n = 0 and m = 1, 2

We now look at ϕδ123,n,m(u; b) when n = 0, which is denoted by ϕδ123,0,m(u; b) = ϕδ13,m(u; b) in Section 2.1.
The following Theorem gives the explicit expression for ϕδ13,1(u; b). The proof is given in the Appendix.
It will be seen that the analysis is more involved when m is now non-zero.

Theorem 6 The Gerber-Shiu function ϕδ13,1(u; b) = ϕδ123,0,1(u; b) is given by

ϕδ13,1(u; b) = ϕL,δ13,1(u; b) =

1∑
i=0

r+1∑
j=1

A0,1,i,je
ρ0,i,ju, 0 ≤ u ≤ b, (3.25)

and

ϕδ13,1(u; b) = ϕU,δ13,1(u; b) =

1∑
i=0

r∑
j=1

A∗
0,1,0,i,je

κ0,i,ju, u ≥ b, (3.26)
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where {ρ0,i,j}r+1
j=1 and {κ0,i,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {A0,1,0,j}r+1

j=1 and
{A∗

0,1,0,0,j}rj=1 can be computed directly using

A0,1,0,j =
λA0,0,0,j

δ3

r∑
k=1

qkµk
(µk + ρ0,0,j)2

, j = 1, 2, . . . , r + 1, (3.27)

and

A∗
0,1,0,0,j =

λA∗
0,0,0,0,j

δ3

r∑
k=1

qkµk
(µk + κ0,0,j)2

, j = 1, 2, . . . , r, (3.28)

where {A0,0,0,j}r+1
j=1 and {A∗

0,0,0,0,j}rj=1 are obtainable from Lemma 4. Then the coefficients {A0,1,1,j}r+1
j=1

and {A∗
0,1,0,1,j}rj=1 can be solved from the 2r + 1 linear equations which consist of

1∑
i=0

r+1∑
j=1

A0,1,i,j

µk + ρ0,i,j
+

r+1∑
j=1

A0,0,0,j

(µk + ρ0,0,j)2
= T 2

µk
w(0), k = 1, 2, . . . , r, (3.29)

1∑
i=0

r+1∑
j=1

A0,1,i,j

µk + ρ0,i,j
eρ0,i,jb +

r+1∑
j=1

A0,0,0,j

(µk + ρ0,0,j)2
eρ0,0,jb =

1∑
i=0

r∑
j=1

A∗
0,1,0,i,j

µk + κ0,i,j
eκ0,i,jb +

r∑
j=1

A∗
0,0,0,0,j

(µk + κ0,0,j)2
eκ0,0,jb,

k = 1, 2, . . . , r, (3.30)

and
1∑

i=0

r+1∑
j=1

A0,1,i,je
ρ0,i,jb =

1∑
i=0

r∑
j=1

A∗
0,1,0,i,je

κ0,i,jb, (3.31)

where T 2
µk
w(0) =

∫∞
0 ye−µkyw(y) dy in (3.29) is the notation of a double Dickson-Hipp operator (see

Dickson and Hipp (2001) and Li and Garrido (2004)). �

The next Theorem gives the result for ϕδ13,2(u; b). Since the logic of the derivation is identical to that
of Theorem 6 (although it is more tedious), the proof is omitted. Note that (3.32)-(3.35) concerning the
Gerber-Shiu function ϕL,δ13,2(u; b) in the lower layer are direct consequences of (39)-(42) in Theorem 7
of Cheung et al. (2015) (see Remark 4).

Theorem 7 The Gerber-Shiu function ϕδ13,2(u; b) = ϕδ123,0,2(u; b) is given by

ϕδ13,2(u; b) = ϕL,δ13,2(u; b) =

2∑
i=0

r+1∑
j=1

A0,2,i,je
ρ0,i,ju, 0 ≤ u ≤ b, (3.32)

and

ϕδ13,2(u; b) = ϕU,δ13,2(u; b) =

2∑
i=0

r∑
j=1

A∗
0,2,0,i,je

κ0,i,ju, u ≥ b,

where {ρ0,i,j}r+1
j=1 and {κ0,i,j}rj=1 are Lundberg’s roots defined via (3.2). For i = 0, 1, the coefficients

{A0,2,i,j}r+1
j=1 and {A∗

0,2,0,i,j}rj=1 can be computed directly using

A0,2,0,j =
λA0,1,0,j

δ3

r∑
k=1

qkµk
(µk + ρ0,0,j)2

+
λA0,0,0,j

δ3

r∑
k=1

qkµk
(µk + ρ0,0,j)3

, j = 1, 2, . . . , r + 1, (3.33)
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A0,2,1,j =
2λA0,1,1,j

δ3

r∑
k=1

qkµk
(µk + ρ0,1,j)2

, j = 1, 2, . . . , r + 1, (3.34)

A∗
0,2,0,0,j =

λA∗
0,1,0,0,j

δ3

r∑
k=1

qkµk
(µk + κ0,0,j)2

+
λA∗

0,0,0,0,j

δ3

r∑
k=1

qkµk
(µk + κ0,0,j)3

, j = 1, 2, . . . , r,

and

A∗
0,2,0,1,j =

2λA∗
0,1,0,1,j

δ3

r∑
k=1

qkµk
(µk + κ0,1,j)2

, j = 1, 2, . . . , r,

where {A0,0,0,j}r+1
j=1 and {A∗

0,0,0,0,j}rj=1 are obtainable from Lemma 4 while for i = 0, 1 the coefficients

{A0,1,i,j}r+1
j=1 and {A∗

0,1,0,i,j}rj=1 are obtainable from Theorem 6. Then, the coefficients {A0,2,2,j}r+1
j=1 and

{A∗
0,2,0,2,j}rj=1 can be solved from the 2r + 1 linear equations which consist of

2∑
i=0

r+1∑
j=1

A0,2,i,j

µk + ρ0,i,j
+

1∑
i=0

r+1∑
j=1

2A0,1,i,j

(µk + ρ0,i,j)2
+

r+1∑
j=1

2A0,0,0,j

(µk + ρ0,0,j)3
= 2T 3

µk
w(0), k = 1, 2, . . . , r, (3.35)

2∑
i=0

r+1∑
j=1

A0,2,i,j

µk + ρ0,i,j
eρ0,i,jb +

1∑
i=0

r+1∑
j=1

2A0,1,i,j

(µk + ρ0,i,j)2
eρ0,i,jb +

r+1∑
j=1

2A0,0,0,j

(µk + ρ0,0,j)3
eρ0,0,jb

=
2∑

i=0

r∑
j=1

A∗
0,2,0,i,j

µk + κ0,i,j
eκ0,i,jb +

1∑
i=0

r∑
j=1

2A∗
0,1,0,i,j

(µk + κ0,i,j)2
eκ0,i,jb +

r∑
j=1

2A∗
0,0,0,0,j

(µk + κ0,0,j)3
eκ0,0,jb, k = 1, 2, . . . , r,

and
2∑

i=0

r+1∑
j=1

A0,2,i,je
ρ0,i,jb =

2∑
i=0

r∑
j=1

A∗
0,2,0,i,je

κ0,i,jb,

where T 3
µk
w(0) =

∫∞
0 (y2e−µky/2)w(y) dy in (3.35) is the notation of a triple Dickson-Hipp operator. �

Concerning the first two moments of the aggregate discounted claims without ruin occurring (denoted
by φδ23,0,m(u; b) = φδ3,m(u; b) form = 1, 2), the results are stated in the following Theorems. Their proofs
follow closely those of Theorems 6 and 7 and are omitted.

Theorem 8 The expected aggregate discounted claims φδ3,1(u; b) = φδ23,0,1(u; b) without ruin occurring
is given by

φδ3,1(u; b) = φL,δ3,1(u; b) =
1∑

i=0

r+1∑
j=1

C0,1,i,je
ρ∗0,i,ju, 0 ≤ u ≤ b,

and

φδ3,1(u; b) = φU,δ3,1(u; b) =

1∑
i=0

r∑
j=1

C∗
0,1,0,i,je

κ∗
0,i,ju +

λE[Y1]

δ3
, u ≥ b,

where {ρ∗0,i,j}
r+1
j=1 and {κ∗0,i,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {C0,1,0,j}r+1

j=1 and
{C∗

0,1,0,0,j}rj=1 can be computed directly using

C0,1,0,j =
λC0,0,0,j

δ3

r∑
k=1

qkµk
(µk + ρ∗0,0,j)

2
, j = 1, 2, . . . , r + 1,
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and

C∗
0,1,0,0,j =

λC∗
0,0,0,0,j

δ3

r∑
k=1

qkµk
(µk + κ∗0,0,j)

2
, j = 1, 2, . . . , r,

where {C0,0,0,j}r+1
j=1 and {C∗

0,0,0,0,j}rj=1 are obtainable from Lemma 5. Then the coefficients {C0,1,1,j}r+1
j=1

and {C∗
0,1,0,1,j}rj=1 can be solved from the 2r + 1 linear equations which consist of

1∑
i=0

r+1∑
j=1

C0,1,i,j

µk + ρ∗0,i,j
+

r+1∑
j=1

C0,0,0,j

(µk + ρ∗0,0,j)
2
= 0, k = 1, 2, . . . , r,

1∑
i=0

r+1∑
j=1

C0,1,i,j

µk + ρ∗0,i,j
eρ

∗
0,i,jb +

r+1∑
j=1

C0,0,0,j

(µk + ρ∗0,0,j)
2
eρ

∗
0,0,jb

=
1∑

i=0

r∑
j=1

C∗
0,1,0,i,j

µk + κ∗0,i,j
eκ

∗
0,i,jb +

r∑
j=1

C∗
0,0,0,0,j

(µk + κ∗0,0,j)
2
eκ

∗
0,0,jb +

λE[Y1]

µkδ3
+

1

µ2k
, k = 1, 2, . . . , r,

and
1∑

i=0

r+1∑
j=1

C0,1,i,je
ρ∗0,i,jb =

1∑
i=0

r∑
j=1

C∗
0,1,0,i,je

κ∗
0,i,jb +

λE[Y1]

δ3
.

�

Theorem 9 The second moment of the aggregate discounted claims φδ3,2(u; b) = φδ23,0,2(u; b) without
ruin occurring is given by

φδ3,2(u; b) = φL,δ3,2(u; b) =
2∑

i=0

r+1∑
j=1

C0,2,i,je
ρ∗0,i,ju, 0 ≤ u ≤ b,

and

φδ3,2(u; b) = φU,δ3,2(u; b) =
2∑

i=0

r∑
j=1

C∗
0,2,0,i,je

κ∗
0,i,ju + θδ3,2, u ≥ b, (3.36)

where {ρ∗0,i,j}
r+1
j=1 and {κ∗0,i,j}rj=1 are Lundberg’s roots defined via (3.2). The constant term θδ3,2 in (3.36)

can be evaluated by Lemma 1 as θδ3,2 = λ(2E[Y1]θδ3,1+E[Y 2
1 ])/(2δ3) with θδ3,1 = λE[Y1]/δ3. For i = 0, 1,

the coefficients {C0,2,i,j}r+1
j=1 and {C∗

0,2,0,i,j}rj=1 can be computed directly using

C0,2,0,j =
λC0,1,0,j

δ3

r∑
k=1

qkµk
(µk + ρ∗0,0,j)

2
+
λC0,0,0,j

δ3

r∑
k=1

qkµk
(µk + ρ∗0,0,j)

3
, j = 1, 2, . . . , r + 1,

C0,2,1,j =
2λC0,1,1,j

δ3

r∑
k=1

qkµk
(µk + ρ∗0,1,j)

2
, j = 1, 2, . . . , r + 1,

C∗
0,2,0,0,j =

λC∗
0,1,0,0,j

δ3

r∑
k=1

qkµk
(µk + κ∗0,0,j)

2
+
λC∗

0,0,0,0,j

δ3

r∑
k=1

qkµk
(µk + κ∗0,0,j)

3
, j = 1, 2, . . . , r,
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and

C∗
0,2,0,1,j =

2λC∗
0,1,0,1,j

δ3

r∑
k=1

qkµk
(µk + κ∗0,1,j)

2
, j = 1, 2, . . . , r,

where {C0,0,0,j}r+1
j=1 and {C∗

0,0,0,0,j}rj=1 are obtainable from Lemma 5 while for i = 0, 1 the coefficients

{C0,1,i,j}r+1
j=1 and {C∗

0,1,0,i,j}rj=1 are obtainable from Theorem 8. Then, the coefficients {C0,2,2,j}r+1
j=1 and

{C∗
0,2,0,2,j}rj=1 can be solved from the 2r + 1 linear equations which consist of

2∑
i=0

r+1∑
j=1

C0,2,i,j

µk + ρ∗0,i,j
+

1∑
i=0

r+1∑
j=1

2C0,1,i,j

(µk + ρ∗0,i,j)
2
+

r+1∑
j=1

2C0,0,0,j

(µk + ρ∗0,0,j)
3
= 0, k = 1, 2, . . . , r,

2∑
i=0

r+1∑
j=1

C0,2,i,j

µk + ρ∗0,i,j
eρ

∗
0,i,jb +

1∑
i=0

r+1∑
j=1

2C0,1,i,j

(µk + ρ∗0,i,j)
2
eρ

∗
0,i,jb +

r+1∑
j=1

2C0,0,0,j

(µk + ρ∗0,0,j)
3
eρ

∗
0,0,jb −

θδ3,2
µk

−
2θδ3,1
µ2k

− 2

µ3k

=

2∑
i=0

r∑
j=1

C∗
0,2,0,i,j

µk + κ∗0,i,j
eκ

∗
0,i,jb +

1∑
i=0

r∑
j=1

2C∗
0,1,0,i,j

(µk + κ∗0,i,j)
2
eκ

∗
0,i,jb +

r∑
j=1

2C∗
0,0,0,0,j

(µk + κ∗0,0,j)
3
eκ

∗
0,0,jb, k = 1, 2, . . . , r,

and
2∑

i=0

r+1∑
j=1

C0,2,i,je
ρ∗0,i,jb =

2∑
i=0

r∑
j=1

C∗
0,2,0,i,je

κ∗
0,i,jb + θδ3,2.

�

3.4 ϕδ123,n,m(u; b) and φδ23,n,m(u; b) when n = m = 1

In the next two Theorems, the procedures to find ϕδ123,1,1(u; b) and φδ23,1,1(u; b) are provided. These two
quantities will be useful for computing the covariance (and hence correlation) between the discounted

dividends Dδ2(τb) and the aggregate discounted claims Zδ3(τb) =
∑N(τb)

k=1 e−δ3TkYk. Again, (3.37), (3.39)
and (3.43) follow directly from Cheung et al. (2015, Equations (50)-(52)).

Theorem 10 The Gerber-Shiu function ϕδ123,1,1(u; b) is given by

ϕδ123,1,1(u; b) = ϕL,δ123,1,1(u; b) =

1∑
i=0

r+1∑
j=1

A1,1,i,je
ρ1,i,ju, 0 ≤ u ≤ b, (3.37)

and

ϕδ123,1,1(u; b) = ϕU,δ123,1,1(u; b) =

1∑
l=0

1∑
i=0

r∑
j=1

A∗
1,1,l,i,je

κl,i,ju, u ≥ b, (3.38)

where {ρ1,i,j}r+1
j=1 and {κl,i,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {A1,1,0,j}r+1

j=1,
{A∗

1,1,0,i,j}rj=1 (for i = 0, 1) and {A∗
1,1,1,0,j}rj=1 can be computed directly using

A1,1,0,j =
λA1,0,0,j

δ3

r∑
k=1

qkµk
(µk + ρ1,0,j)2

, j = 1, 2, . . . , r + 1, (3.39)

A∗
1,1,0,0,j =

αA∗
0,1,0,0,j

δ2 + δ3
+
λA∗

1,0,0,0,j

δ2 + δ3

r∑
k=1

qkµk
(µk + κ0,0,j)2

, j = 1, 2, . . . , r, (3.40)
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A∗
1,1,0,1,j =

α

δ2
A∗

0,1,0,1,j , j = 1, 2, . . . , r, (3.41)

and

A∗
1,1,1,0,j =

λA∗
1,0,1,0,j

δ3

r∑
k=1

qkµk
(µk + κ1,0,j)2

, j = 1, 2, . . . , r, (3.42)

where {A1,0,0,j}r+1
j=1 and {A∗

1,0,i,0,j}rj=1 (for i = 0, 1) are obtainable from Theorem 4 while {A∗
0,1,0,i,j}rj=1

(for i = 0, 1) are obtainable from Theorem 6. Then the coefficients {A1,1,1,j}r+1
j=1 and {A∗

1,1,1,1,j}rj=1 can
be solved from the 2r + 1 linear equations which consist of

1∑
i=0

r+1∑
j=1

A1,1,i,j

µk + ρ1,i,j
+

r+1∑
j=1

A1,0,0,j

(µk + ρ1,0,j)2
= 0, k = 1, 2, . . . , r, (3.43)

1∑
i=0

r+1∑
j=1

A1,1,i,j

µk + ρ1,i,j
eρ1,i,jb +

r+1∑
j=1

A1,0,0,j

(µk + ρ1,0,j)2
eρ1,0,jb

=
1∑

l=0

1∑
i=0

r∑
j=1

A∗
1,1,l,i,j

µk + κl,i,j
eκl,i,jb +

1∑
i=0

r∑
j=1

A∗
1,0,i,0,j

(µk + κi,0,j)2
eκi,0,jb, k = 1, 2, . . . , r, (3.44)

and
1∑

i=0

r+1∑
j=1

A1,1,i,je
ρ1,i,jb =

1∑
l=0

1∑
i=0

r∑
j=1

A∗
1,1,l,i,je

κl,i,jb. (3.45)

�

Theorem 11 The first joint moment of the discounted dividends and the aggregate discounted claims
φδ23,1,1(u; b) without ruin occurring is given by

φδ23,1,1(u; b) = φL,δ23,1,1(u; b) =

1∑
i=0

r+1∑
j=1

C1,1,i,je
ρ∗1,i,ju, 0 ≤ u ≤ b,

and

φδ23,1,1(u; b) = φU,δ23,1,1(u; b) =

1∑
l=0

1∑
i=0

r∑
j=1

C∗
1,1,l,i,je

κ∗
l,i,ju +

αλE[Y1]

δ2δ3
, u ≥ b,

where {ρ∗1,i,j}
r+1
j=1 and {κ∗l,i,j}rj=1 are Lundberg’s roots defined via (3.2). The coefficients {C1,1,0,j}r+1

j=1,
{C∗

1,1,0,i,j}rj=1 (for i = 0, 1) and {C∗
1,1,1,0,j}rj=1 can be computed directly using

C1,1,0,j =
λC1,0,0,j

δ3

r∑
k=1

qkµk
(µk + ρ∗1,0,j)

2
, j = 1, 2, . . . , r + 1,

C∗
1,1,0,0,j =

αC∗
0,1,0,0,j

δ2 + δ3
+
λC∗

1,0,0,0,j

δ2 + δ3

r∑
k=1

qkµk
(µk + κ∗0,0,j)

2
, j = 1, 2, . . . , r,

C∗
1,1,0,1,j =

α

δ2
C∗
0,1,0,1,j , j = 1, 2, . . . , r,
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and

C∗
1,1,1,0,j =

λC∗
1,0,1,0,j

δ3

r∑
k=1

qkµk
(µk + κ∗1,0,j)

2
, j = 1, 2, . . . , r,

where {C1,0,0,j}r+1
j=1 and {C∗

1,0,i,0,j}rj=1 (for i = 0, 1) are obtainable from Theorem 5 while {C∗
0,1,0,i,j}rj=1

(for i = 0, 1) are obtainable from Theorem 8. Then the coefficients {C1,1,1,j}r+1
j=1 and {C∗

1,1,1,1,j}rj=1 can
be solved from the 2r + 1 linear equations which consist of

1∑
i=0

r+1∑
j=1

C1,1,i,j

µk + ρ∗1,i,j
+

r+1∑
j=1

C1,0,0,j

(µk + ρ∗1,0,j)
2
= 0, k = 1, 2, . . . , r,

1∑
i=0

r+1∑
j=1

C1,1,i,j

µk + ρ∗1,i,j
eρ

∗
1,i,jb +

r+1∑
j=1

C1,0,0,j

(µk + ρ∗1,0,j)
2
eρ

∗
1,0,jb

=

1∑
l=0

1∑
i=0

r∑
j=1

C∗
1,1,l,i,j

µk + κ∗l,i,j
eκ

∗
l,i,jb +

1∑
i=0

r∑
j=1

C∗
1,0,i,0,j

(µk + κ∗i,0,j)
2
eκ

∗
i,0,jb +

αλE[Y1]

µkδ2δ3
+

α

µ2kδ2
, k = 1, 2, . . . , r,

and
1∑

i=0

r+1∑
j=1

C1,1,i,je
ρ∗1,i,jb =

1∑
l=0

1∑
i=0

r∑
j=1

C∗
1,1,l,i,je

κ∗
l,i,jb +

αλE[Y1]

δ2δ3
.

�

Remark 8 From the statements of the Theorems in this section, it is important to note the recursive
nature of the determination of the coefficients involved in the solution forms (3.3)-(3.6). For example, the
computational steps required to calculate ϕδ123,1,1(u; b) via Theorem 10 involve the use of earlier Lemma
and Theorems, and these are summarized as follows.

1. For each fixed l = 1, 2 and n,m = 0, 1, we solve the Lundberg’s equation (3.2) which has r + 1
roots, i.e. the equation is solved 8 times. When l = 1 the roots are denoted by {ρn,m,j}r+1

j=1, but

when l = 2 they are denoted by {κn,m,j}r+1
j=1 and the non-negative root κn,m,r+1 is discarded.

2. Obtain {A0,0,0,j}r+1
j=1 and {A∗

0,0,0,0,j}rj=1 from Lemma 4 by solving the linear equations (3.9)-(3.11).

3. Apply the special case of Theorem 4 under n = 1, where {A1,0,0,j}r+1
j=1 and {A∗

1,0,i,0,j}rj=1 (for i = 0, 1)
are computed from (3.15) and the linear system (3.16)-(3.18).

4. Use Theorem 6 to compute {A0,1,i,j}r+1
j=1 and {A∗

0,1,0,i,j}rj=1 (both for i = 0, 1) via (3.27) and (3.28)
along with the linear system (3.29)-(3.31). (Although A0,1,i,j ’s are not needed in the next step, they
have to be determined together with A∗

0,1,0,1,j ’s.)

5. Utilize Theorem 10 to calculate {A1,1,i,j}r+1
j=1 (for i = 0, 1) and {A∗

1,1,l,i,j}rj=1 (for l, i = 0, 1) via
(3.39)-(3.42) and the linear system (3.43)-(3.45), so that ϕδ123,1,1(u; b) is finally evaluated with
(3.37) and (3.38). �
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Remark 9 Following the proof of Theorem 4 in the Appendix, it is noted that the exact value of the
limit limu→∞ ϕδ12,1(u; b) is indeed not required for deriving the full solution to ϕδ12,1(u; b). We only need
the finiteness of the limit to conclude that the coefficient of the exponential term eκ1,0,r+1u is zero as
κ1,0,r+1 > 0, and then from (3.14) the limit limu→∞ ϕδ12,1(u; b) must equal zero as κ1,0,j has negative real
part for j = 1, 2, . . . , r. This is also true for the proof of Theorem 5, except that the final term in (3.20)
(when n = 1) obtainable via equating the constant term in (A.17) is non-zero (and it automatically
satisfies the limiting value limu→∞ φδ2,1(u; b) suggested by Lemma 2). The same comments are also
applicable to Theorems 6-11 (although the proofs of Theorems 7-11 have been omitted). �

4 Numerical examples

In this section, the results in Section 3 are applied to compute the correlations involving the total dis-

counted dividends until ruin Dδ2(τb), the aggregate discounted claim amount until ruin
∑N(τb)

k=1 e−δ3TkYk,
and the time of ruin τb (which is considered only when ruin occurs). Hence, we assume a cost function

of f(y) = y (i.e. Zδ3(τb) =
∑N(τb)

k=1 e−δ3TkYk) and a penalty of w ≡ 1 throughout this section. With
initial surplus Ub(0) = u and threshold level b, for notational convenience we denote the unconditional
expectation of a random variable X by E[X|u; b], and we shall use Er[X|u; b] (respectively Es[X|u; b]) to
denote the expectation of X conditional on the event {τb <∞} (respectively {τb = ∞}). The subscripts
‘r’ and ‘s’ correspond to ‘ruin’ and ‘survival’ respectively. Clearly, one has

Er[X|u; b] =
E[X1{τb<∞}|u; b]

ψ(u; b)

and

Es[X|u; b] =
E[X1{τb=∞}|u; b]

φ(u; b)
,

where ψ(u; b) and φ(u; b) are the ruin probability and survival probability respectively. Then the corre-
lation of the random variables X1 and X2 is given by

Corr•(X1, X2|u; b) =
Cov•(X1, X2|u; b)√

Var•(X1|u; b)Var•(X2|u; b)
,

where
Cov•(X1, X2|u; b) = E•[X1X2|u; b]− E•[X1|u; b]E•[X2|u; b]

is the covariance of X1 and X2, and

Var•(X|u; b) = E•[X
2|u; b]− (E•[X|u; b])2

is the variance of X. Here the expectation E• can be the unconditional expectation E or the conditional
expectations Er or Es, and this applies to other moment-based quantities as well. All intermediate quan-
tities required in our computation involving τb, Dδ2(τb) and Zδ3(τb) are obtainable from the Gerber-Shiu
function ϕδ1,δ2,δ3,n,m(u; b) = ϕδ123,n,m(u; b) in (1.5) and the joint moment φδ2,δ3,n,m(u; b) = φδ23,n,m(u; b)
in (1.6). For example, the first joint moment Er[Dδ2(τb)Zδ3(τb)|u; b] conditional on ruin is the ratio of
E[Dδ2(τb)Zδ3(τb)1{τb<∞}|u; b] = ϕδ123,1,1(u; b)|δ1=0 to ψ(u; b) = ϕδ1(u; b)|δ1=0, which can be evaluated us-
ing Theorem 10 and Lemma 4. Similarly, the first joint moment Es[Dδ2(τb)Zδ3(τb)|u; b] conditional on
survival follows from E[Dδ2(τb)Zδ3(τb)1{τb=∞}|u; b] = φδ23,1,1(u; b) (that is available in Theorem 11) and
φ(u; b) = 1− ψ(u; b). The unconditional first joint moment E[Dδ2(τb)Zδ3(τb)|u; b] is given by (1.7) when
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n = m = 1. It is instructive to note that correlations in relation to τb only exist when τb < ∞, and the
(joint) moments involving τb can be obtained from ϕδ123,n,m(u; b). For example, one has

Er[τbZδ3(τb)|u; b] =
E[τbZδ3(τb)1{τb<∞}|u; b]

ψ(u; b)
= −

∂
∂δ1
ϕδ123,0,1(u; b)|δ1=0

ψ(u; b)
.

Before discussing specific examples, we first note that in general the relationship

u+ cτb + |Ub(τb)| = D(τb) + S(τb) on the set {τb <∞} (4.1)

among the random variables is valid for sample paths leading to ruin, where D(τb) is the total dividends

paid until ruin and S(τb) =
∑N(τb)

k=1 Yk is the aggregate claims until ruin (both without discounting). For
these sample paths, it is clear that

D(τb) ≤ ατb on the set {τb <∞}, (4.2)

and therefore
S(τb) ≥ u+ c2τb + |Ub(τb)| on the set {τb <∞}. (4.3)

On the other hand, concerning the sample paths for which the process survives, one has that

D(t) + S(t) ≤ u+ ct for all t ≥ 0 on the set {τb = ∞}. (4.4)

Parameter Value

Threshold level b 10
Premium rate c = c1 1.5

Dividend rate α = c1 − c2 0.2
Poisson arrival rate λ 1

Shareholders’ force of interest δ2 0.01
Policyholders’ force of interest δ3 0.01

Table 1: Parameters used in all numerical examples

The parameter values that are used for all numerical illustrations are summarized in Table 1. In
each subsequent figure, the quantity of interest is plotted against the initial surplus level u under three
different claim size distributions, namely

(i) a sum of two exponentials (‘Sum Exp’) with density p(y) = 3e−(3/2)y − 3e−3y;

(ii) an exponential distribution (‘Exp’) with density p(y) = e−y; and

(iii) a mixture of two exponentials (‘Mixed Exp’) with density p(y) = (1/6)e−(1/2)y + (4/3)e−2y.

All these distributions belong to the class of combinations of exponentials (see (3.1)) and have the same
mean of 1 (and the loading condition c2 > λE[Y1] holds true). However, they have different amount of
variability as evident in their variances of 0.56, 1 and 2 respectively. The curves corresponding to the
above claim distributions are marked in solid, dashed and dotted lines respectively.

Conditional on ruin occurring, Figures 1-3 show how the pairwise correlations of τ10 and Z0.01(τ10)
and D0.01(τ10) vary with u for 0 ≤ u ≤ 200. (For simplicity, we shall write τ , Z and D instead
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Figure 1: Correlation of ruin time and aggregate discounted claims conditional on ruin

of τ10, Z0.01(τ10) and D0.01(τ10) respectively in the y-axis of the plots.) From Figure 1, it is ob-
served that Corrr(τ10, Z0.01(τ10)|u; 10) for all three claim distributions is of the same shape. Specifi-
cally, Corrr(τ10, Z0.01(τ10)|u; 10) starts with a positive value of over 0.9, and it decreases as u increases
and then becomes negative when u reaches approximately 95. This complements Figures 1 and 2 in
Cheung and Woo (2016), which demonstrated a sign change of the covariance of the ruin time and the
aggregate discounted claims until ruin in a dependent Sparre Andersen risk model without dividends
as u increases. Some interpretations therein are indeed applicable: for fixed u, two opposing effects
are in place when one analyzes sample paths for which τb is large. Intuitively, the aggregate (non-

discounted) claim amount S(τ10) =
∑N(τ10)

k=1 Yk tends to be large because more claims arise as the process
survives longer (see also (4.3)). But these claims occur over a longer time horizon and a large claim
does not happen early (otherwise it would have caused early ruin), meaning that the discounted amount

Z0.01(τ10) =
∑N(τ10)

k=1 e−0.01TkYk possibly has a tendency to become smaller due to discounting. Figure 1
suggests that the former effect is more dominant until the correlation changes sign at around u = 95. As
u increases further from 95, the effect of discounting starts to dominate because the discounting on the
nominal amount u appearing on the right-hand side of (4.3) is getting significant.

Next, when we look at Figure 2 which depicts the behavior of Corrr(τ10, D0.01(τ10)|u; 10), it is noted
that the correlation is always positive. This is unlike Corrr(τ10, Z0.01(τ10)|u; 10) in Figure 1 where there
is a change in sign as u increases. A possible explanation is that u does not appear on the right-hand
side of (4.2) (as dividend is paid from part of the premium income but not the initial surplus), and thus
the effect of discounting on u is absent in this case. As a result, the positive correlation between τ10 and
D0.01(τ10) is simply attributed to the fact that, for each fixed u, the surplus process is more likely to stay
above the threshold more often when the ruin time is large, resulting in more dividends.

In Figure 3, the correlation Corrr(Z0.01(τ10), D0.01(τ10)|u; 10) conditional on ruin takes on positive
values when u increases to about 100 and then it becomes negative. From the above discussions, we
argue that the aggregate non-discounted values of the claim amount S(τ10) and dividends D(τ10) both
tend to increase with the ruin time τ10. However, S(τ10) and D(τ10) may also move in opposite directions
because only part of the claims are paid from the premium while all dividend payments come from the
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Figure 2: Correlation of ruin time and discounted dividends conditional on ruin

premium (see also (4.1) for the constraint on the sum D(τ10) + S(τ10)). Under discounting, Figure 3
suggests that the former effect dominates for u less than 100 while the latter becomes dominant when
u exceeds 100. Interestingly, we observe that Corrr(Z0.01(τ10), D0.01(τ10)|u; 10) in Figure 3 changes sign
at roughly the same place as Corrr(τ10, Z0.01(τ10)|u; 10) does in Figure 1. Note also that the curves in
Figure 3 are ordered according to the variance of the individual claim size distribution.

Now, we turn to Figure 4 concerning the correlation of Z0.01(τ10) and D0.01(τ10) conditional on
survival. Clearly, the shape of Corrs(Z0.01(τ10), D0.01(τ10)|u; 10) is completely different from that of
Corrr(Z0.01(τ10), D0.01(τ10)|u; 10) in Figure 3. In particular, Corrs(Z0.01(τ10), D0.01(τ10)|u; 10) in Figure
4 begins at a negative value between −0.55 and −0.60. It increases with u, stays negative and converges
to zero from below. Note also that the above pattern appears to kick in earlier when the claim size
has smaller variance. The reason for negative correlation is the constraint (4.4), which makes it impos-
sible for both Z0.01(τ10) and D0.01(τ10) to be large in the presence of discounting. The convergence of
Corrs(Z0.01(τ10), D0.01(τ10)|u; 10) to zero as u increases can be explained by zero covariance at the limit.
Indeed, we can apply Lemma 2 three times with (n,m) = (1, 1), (1, 0) and (0, 1) to see that

lim
u→∞

E[Dδ2(τb)Zδ3(τb)1{τb=∞}|u; b] =
(
lim
u→∞

E[Dδ2(τb)1{τb=∞}|u; b]
)(

lim
u→∞

E[Zδ3(τb)1{τb=∞}|u; b]
)
.

Division of each of the three above limits by the limiting survival probability limu→∞ φ(u; b) = 1 reveals
that Covs(Zδ3(τb), Dδ2(τb)|u; b) = Es[Zδ3(τb)Dδ2(τb)|u; b] − Es[Zδ3(τb)|u; b]Es[Dδ2(τb)|u; b] tends to zero
as u→ ∞.

Lastly, Figure 5 plots the unconditional correlation of Z0.01(τ10) and D0.01(τ10) against u. As a
function of u, the correlation Corr(Z0.01(τ10), D0.01(τ10)|u; 10) first decreases from over 0.95 to negative
values and finally converges to zero. Similar to Figure 4, the pattern prevails earlier when the individual
claim size has less variability. Note that the unconditional correlation takes all sample paths into account
regardless of whether the process ruins or survives. The contributions of these events are in accordance
with the ruin probability ψ(u; 10) and the survival probability φ(u; 10) = 1−ψ(u; 10) respectively. As u
increases, ψ(u; 10) decreases and converges to zero and therefore the impact of ruin occurrence becomes
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Figure 3: Correlation of aggregate discounted claims and discounted dividends conditional on ruin

less significant while that of survival becomes stronger. The shape of Figure 5 is thus a combination of
Figures 3 and 4.

5 Concluding remarks

This paper jointly analyzes the aggregate discounted claims until ruin (payments to policyholders) and
the discounted dividends until ruin (payments to shareholders) in the compound Poisson insurance risk
model with a threshold dividend strategy. The method adopted here is based on the derivation of recursive
IDEs satisfied by Gerber-Shiu type functions involving the joint moments of these two random variables.
When each claim amount is distributed as a combination of exponentials, these IDEs are transformed to
ordinary differential equations that can be solved with the help of the continuity and limiting conditions.

An alternative approach will be to connect the risk process to an equivalent fluid flow model (e.g.
Badescu et al. (2005)). In such a construction, a downward jump (caused by the arrival of a claim) of
size y in the risk model is replaced by decreasing segment of slope −C in the fluid model over a time
period of y/C for some constant C > 0. It is well known that (e.g. Ramaswami (2006) and Ahn et
al. (2007)) the Laplace transforms of various first passage times can typically be expressed in terms
of the Laplace transform of the busy period, whose evaluation can be done by numerical algorithms
that converge quadratically fast (e.g. Ahn and Ramaswami (2005) and Bean et al. (2005)). Then one
may try to express our Gerber-Shiu type functions in terms of these quantities pertaining to the fluid
model. While the moments of discounted dividends were derived by Badescu and Landriault (2008) in
this manner for a multi-threshold model, the aggregate discounted claim amount until ruin has never
been analyzed via fluid flow to the best of our knowledge. Nevertheless, in the absence of discounting,
we note that the total dividend is (a scalar multiple of) the occupation time when the fluid level is
in an increasing phase above the threshold level b while the aggregate claim amount corresponds to (a
scalar multiple of) the occupation time of the fluid in a decreasing phase. Finally, we also remark that
another research problem will be to determine the exact joint distribution of the discounted dividends
and the aggregate discounted claims until ruin (as opposed to joint moments in the present work), which
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Figure 4: Correlation of aggregate discounted claims and discounted dividends conditional on survival

is expected to be a very challenging task. We leave these as open questions.
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A Appendix: Proofs of Theorems and Lemmas in Sections 2 and 3

Proof of Theorem 1: We use the standard approach of considering the time interval (0, h] for some
small h > 0. Conditioning on all possible events together with a binomial expansion (if a claim occurs)
yields, for 0 ≤ u < b,

ϕδ13,m(u; b) = (1− λh)e−(δ1+mδ3)hϕδ13,m(u+ c1h; b)

+ λhe−(δ1+mδ3)h

[ ∫ u+c1h

0

m∑
i=0

(
m

i

)
fm−i(y)ϕδ13,i(u+ c1h− y; b)p(y) dy

+

∫ ∞

u+c1h
fm(y)w(u+ c1h, y − u− c1h)p(y) dy

]
+ o(h). (A.1)

Letting h→ 0+, one observes that ϕδ13,m(u; b) is right-continuous in u for 0 ≤ u < b. Since e−(δ1+mδ3)h =
1− (δ1 +mδ3)h+ o(h), rearrangements and division by h give, for 0 ≤ u < b,

ϕδ13,m(u+ c1h; b)− ϕδ13,m(u; b)

h
− (λ+ δ1 +mδ3)ϕδ13,m(u+ c1h; b)

+ λe−(δ1+mδ3)h

[ ∫ u+c1h

0

m∑
i=0

(
m

i

)
fm−i(y)ϕδ13,i(u+ c1h− y; b)p(y) dy
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+

∫ ∞

u+c1h
fm(y)w(u+ c1h, y − u− c1h)p(y) dy

]
+
o(h)

h
= 0. (A.2)

Again, sending h→ 0+ and noting that the above equation only involves ϕδ13,i(·; b) in the lower layer, we
obtain (2.2) with ϕ′L,δ13,m(u; b) being a right derivative. If we replace u by u− c1h in (A.1), then similar
procedure reveals that ϕδ13,m(u; b) is left-continuous in u for 0 < u ≤ b and (2.2) also holds true with
ϕ′L,δ13,m(u; b) being a left derivative.

For u ≥ b, it can be easily seen that (A.1) (and hence (A.2)) is also applicable but with c1 replaced by
c2. Therefore, following the same arguments as above, one can conclude that ϕδ13,m(u; b) is continuous
for u ≥ b. Further noting that, for u ≥ b,∫ u

0
fm−i(y)ϕδ13,i(u−y; b)p(y) dy =

∫ u−b

0
fm−i(y)ϕU,δ13,i(u−y; b)p(y) dy+

∫ u

u−b
fm−i(y)ϕL,δ13,i(u−y; b)p(y) dy,

it is found that (2.3) is valid for both right and left derivatives of ϕU,δ13,m(·; b). Finally, the continuity
condition (2.4) is a direct consequence of the left-continuity of ϕδ13,m(u; b) at u = b in the lower layer and
the right-continuity of ϕδ13,m(u; b) at u = b in the upper layer. �

Proof of Theorem 2: The same method as in the proof of Theorem 1 of considering a small time
interval (0, h] can be adopted. If the process {Ub(t)}t≥0 starts below the threshold level b, then it is
possible that Dδ2(τb) = 0 (when the process {Ub(t)}t≥0 never reaches b before ruin). We first arrive at,
for 0 ≤ u < b,

ϕδ123,n,m(u; b) = (1− λh)e−(δ1+nδ2+mδ3)hϕδ123,n,m(u+ c1h; b)

+ λhe−(δ1+nδ2+mδ3)h

∫ u+c1h

0

m∑
i=0

(
m

i

)
fm−i(y)ϕδ123,n,i(u+ c1h− y; b)p(y) dy + o(h).

(A.3)

The above equation is almost identical to (A.1) in Theorem 1 except that the term
∫∞
u+c1h

fm(y)w(u +
c1h, y − u− c1h)p(y) dy is now absent. Following the arguments therein, one can see that ϕδ123,n,m(u; b)
is continuous in u for 0 ≤ u ≤ b, and (2.5) holds true.

On the other hand, if u ≥ b, dividends are paid continuously at rate α until the surplus falls below b.
Denoting st δ = (eδt − 1)/δ as the actuarial symbol for the accumulated value of an annuity with rate $1
per unit time payable continuously for t time units under a force of interest δ, we have that, for u ≥ b,

ϕδ123,n,m(u; b) = (1− λh)e−(δ1+nδ2+mδ3)h
n∑

j=0

(
n

j

)(
αsh δ2

)j
ϕδ123,n−j,m(u+ c2h; b)

+ λhe−(δ1+nδ2+mδ3)h

[ ∫ u+c2h

0

n∑
j=0

(
n

j

)(
αsh δ2

)j m∑
i=0

(
m

i

)
fm−i(y)ϕδ123,n−j,i(u+ c2h− y; b)p(y) dy

+

∫ ∞

u+c2h

(
αsh δ2

)n
fm(y)w(u+ c2h, y − u− c2h)p(y) dy

]
+ o(h). (A.4)

Noting limh→0+ sh δ2
= 0 and the convention 00 = 1, we separate the contribution j = 0 in the first

summation term above and let h → 0+ to establish the right-continuity of ϕδ123,n,m(u; b) for u ≥ b. As
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e−(δ1+nδ2+mδ3)h = 1 − (δ1 + nδ2 + mδ3)h + o(h), rearranging (A.4) and then dividing by h yields, for
u ≥ b,

ϕδ123,n,m(u+ c2h; b)− ϕδ123,n,m(u; b)

h
+

n∑
j=1

(
n

j

)(
αsh δ2

)j
h

ϕδ123,n−j,m(u+ c2h; b)

− (λ+ δ1 + nδ2 +mδ3)
n∑

j=0

(
n

j

)(
αsh δ2

)j
ϕδ123,n−j,m(u+ c2h; b)

+ λe−(δ1+nδ2+mδ3)h

[ ∫ u+c2h

0

n∑
j=0

(
n

j

)(
αsh δ2

)j m∑
i=0

(
m

i

)
fm−i(y)ϕδ123,n−j,i(u+ c2h− y; b)p(y) dy

+

∫ ∞

u+c2h

(
αsh δ2

)n
fm(y)w(u+ c2h, y − u− c2h)p(y) dy

]
+
o(h)

h
= 0.

Because limh→0+ sh δ2
/h = 1 and limh→0+(sh δ2

)j/h = 0 for j > 1, taking the limit h → 0+ in the above
equation leads to the IDE (2.6), with ϕ′U,δ123,n,m(u; b) understood to be a right derivative. Next, for
u > b, by assuming an initial surplus level of u − c2h instead in (A.4), we obtain the left-continuity of
ϕU,δ123,n,m(u; b) and that (2.6) is valid with ϕ′U,δ123,n,m(u; b) being a left derivative as well. Lastly, the
continuity condition (2.7) follows in the same manner as in the proof of Theorem 1. �

Proof of Theorem 3: As the definition (1.6) contains the indicator 1{τb=∞}, sample paths for which
a claim amount exceeds the surplus level just before its occurrence contribute nothing to φδ23,n,m(u; b).
Again, by conditioning on the possible claim events within (0, h] for some small h, we have, for 0 ≤ u < b,

φδ23,n,m(u; b) = (1− λh)e−(nδ2+mδ3)hφδ23,n,m(u+ c1h; b)

+ λhe−(nδ2+mδ3)h

∫ u+c1h

0

m∑
i=0

(
m

i

)
fm−i(y)φδ23,n,i(u+ c1h− y; b)p(y) dy + o(h), (A.5)

and, for u ≥ b,

φδ23,n,m(u; b) = (1− λh)e−(nδ2+mδ3)h
n∑

j=0

(
n

j

)(
αsh δ2

)j
φδ23,n−j,m(u+ c2h; b)

+ λhe−(nδ2+mδ3)h

∫ u+c2h

0

n∑
j=0

(
n

j

)(
αsh δ2

)j m∑
i=0

(
m

i

)
fm−i(y)φδ23,n−j,i(u+ c2h− y; b)p(y) dy

+ o(h). (A.6)

While (A.5) is structurally identical to (A.3), (A.6) is like (A.4) except that the term with the penalty
function is absent. Hence, the IDEs (2.8) and (2.9) together with the continuity condition (2.10) follow
in the same manner as how Theorem 2 (and also Theorem 1) is proved. �

Proof of Lemma 2: For presentation purposes, in this proof we shall specify the dependence of the
time of ruin on the initial surplus u by writing τu,b instead of τb. Moreover, we let Dδ2(u, b, t) =

α
∫ t
0 e

−δ2s1{Ub(s)≥b} ds be the total discounted dividends paid until time t. Then, it is clear thatDδ2(u, b, t)
is increasing (i.e. non-decreasing) in both u and t, and the dividend variable defined via (1.2) shall be

written as Dδ2(τb) = Dδ2(u, b, τu,b). In contrast, with Zδ3(t) =
∑N(t)

k=1 e
−δ3Tkf(Yk) being the aggregate

discounted claim costs until time t, it is noted that Zδ3(τu,b) =
∑N(τu,b)

k=1 e−δ3Tkf(Yk) depends on u only
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via the ruin time τu,b. In this proof, the initial condition Ub(0) = u will be omitted in related expectations
and probabilities.

Note that the ruin probability ψ(u; b) = Pr{τu,b < ∞} is bounded by ψ(u; 0) for which the net
premium income is always c2. Under the loading condition c2 > λE[Y1], it is known from e.g. Kypri-
anou (2013, Theorem 4.3 and Equation (9.16)) that limu→∞ ψ(u; 0) = 0. Therefore, one has that
limu→∞ ψ(u; b) = 0, or equivalently limu→∞ Pr{τu,b = ∞} = 1. Meanwhile, for every realization of
the aggregate claims process {S(t)}t≥0, it is clear that τu,b is increasing in u and the sequence of sets
{{τu,b = ∞}}∞u=1 is increasing as well. This leads to limu→∞ Pr{τu,b = ∞} = Pr{limu→∞{τu,b = ∞}}.
Combining the above two results, we arrive at Pr{limu→∞{τu,b = ∞}} = 1, i.e. the event limu→∞{τu,b =
∞} occurs a.s.. In other words, 1limu→∞{τu,b=∞} = 1 a.s.. Again due to the fact that the set {τu,b = ∞}
is increasing in u, we have 1limu→∞{τu,b=∞} = limu→∞ 1{τu,b=∞}, and the intermediate result

lim
u→∞

1{τu,b=∞} = 1 a.s. (A.7)

follows. Next, we look at the limit of (1.6), namely

lim
u→∞

φδ23,n,m(u; b) = lim
u→∞

E[Dn
δ2(u, b, τu,b)Z

m
δ3 (τu,b)1{τu,b=∞}],

where n,m ∈ N. For any sample path of {S(t)}t≥0, it is observed that the random variables Dδ2(u, b, τu,b),
Zδ3(τu,b) and 1{τu,b=∞} are all non-negative and increasing in u. Applying the Monotone Convergence
Theorem to change the order of limit and expectation leads to

lim
u→∞

φδ23,n,m(u; b) = E
[
lim
u→∞

(
Dn

δ2(u, b, τu,b)Z
m
δ3 (τu,b)1{τu,b=∞}

)]
. (A.8)

Because Dn
δ2
(u, b, τu,b)Z

m
δ3
(τu,b) = Dn

δ2
(u, b,∞)Zm

δ3
(∞) on the set {τu,b = ∞}, the above equation can be

rewritten as
lim
u→∞

φδ23,n,m(u; b) = E
[
lim
u→∞

(
Dn

δ2(u, b,∞)Zm
δ3 (∞)1{τu,b=∞}

)]
.

Since N(t) → ∞ a.s. as t → ∞, we note that Zδ3(∞) =
∑∞

k=1 e
−δ3Tkf(Yk) a.s. which does not depend

on u, and therefore

lim
u→∞

φδ23,n,m(u; b) = E
[
Zm
δ3 (∞) lim

u→∞

(
Dn

δ2(u, b,∞)1{τu,b=∞}
)]

= E
[
Zm
δ3 (∞)

(
lim
u→∞

Dn
δ2(u, b,∞)

)(
lim
u→∞

1{τu,b=∞}

)]
= E

[
Zm
δ3 (∞) lim

u→∞
Dn

δ2(u, b,∞)
]
.

In the second equality above, we have used the fact that the limit of product is the product of limits as long
as the individual limits exist. While the limit of 1{τu,b=∞} is given by (A.7), the limit limu→∞Dδ2(u, b,∞)
exists because Dδ2(u, b,∞) is increasing in u and bounded by α/δ2.

Next, for any realization of {S(t)}t≥0, the event {Ub(s) ≥ b for all s ≥ 0} (for {Ub(t)}t≥0 starting
with initial surplus u ≥ b) is equivalent to the event {τu−b,0 = ∞} (for {U0(t)}t≥0 starting with u − b).
Since limu→∞ ψ(u− b; 0) = 0, using the same arguments leading to (A.7) yields limu→∞ 1{τu−b,0=∞} = 1
a.s. and hence limu→∞ 1{Ub(s)≥b for all s≥0} = 1 a.s.. By consolidating these observations, it is found that

lim
u→∞

φδ23,n,m(u; b) = E
[
Zm
δ3 (∞) lim

u→∞

(
Dn

δ2(u, b,∞)1{Ub(s)≥b for all s≥0}
)]
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= E
[
Zm
δ3 (∞) lim

u→∞

(( α
δ2

)n
1{Ub(s)≥b for all s≥0}

)]
=

( α
δ2

)n
E

[( ∞∑
k=1

e−δ3Tkf(Yk)

)m]
.

Note that we have also used the fact that Dδ2(u, b,∞) = α
∫∞
0 e−δ2s1{Ub(s)≥b} ds = α/δ2 on the set

{Ub(s) ≥ b for all s ≥ 0} as well as Zδ3(∞) =
∑∞

k=1 e
−δ3Tkf(Yk) a.s. in the last two equalities. From the

definition (2.11), the result (2.12) follows, from which it is clear that the right-hand side is finite if θδ3,m
is finite (and from Remark 6 a sufficient condition for this is that the mth moment of f(Y1) is finite). �

Proof of Lemma 3: Suppose that w(·, ·) is bounded by a constant W . Using the notations in the proof
of Lemma 2, we have that, for n,m ∈ N,

lim
u→∞

ϕδ123,n,m(u; b) = lim
u→∞

E[e−δ1τu,bDn
δ2(u, b, τu,b)Z

m
δ3 (τu,b)w(Ub(τ

−
u,b), |Ub(τu,b)|)1{τu,b<∞}]

≤ W lim
u→∞

E[Dn
δ2(u, b, τu,b)Z

m
δ3 (τu,b)1{τu,b<∞}]

= W lim
u→∞

(
E[Dn

δ2(u, b, τu,b)Z
m
δ3 (τu,b)]− E[Dn

δ2(u, b, τu,b)Z
m
δ3 (τu,b)1{τu,b=∞}]

)
(A.9)

= W
(
lim
u→∞

E[Dn
δ2(u, b, τu,b)Z

m
δ3 (τu,b)]− lim

u→∞
φδ23,n,m(u; b)

)
. (A.10)

One can apply Monotone Convergence Theorem to the first limit to yield

lim
u→∞

E[Dn
δ2(u, b, τu,b)Z

m
δ3 (τu,b)] = E

[
lim
u→∞

(
Dn

δ2(u, b, τu,b)Z
m
δ3 (τu,b)

)]
= lim

u→∞
φδ23,n,m(u; b),

where the last equality follows from (A.7) and (A.8). For a given m ∈ N, the limit limu→∞ φδ23,n,m(u; b)
on the right-hand side is finite according to Lemma 2 since we assume that θδ3,m is finite. As both
limits appearing in (A.10) are equal, one has that limu→∞ ϕδ123,n,m(u; b) ≤ 0, which along with the non-
negativity of ϕδ123,n,m(u; b) results in (2.13). (Note that we require both E[Dn

δ2
(u, b, τu,b)Z

m
δ3
(τu,b)] and

E[Dn
δ2
(u, b, τu,b)Z

m
δ3
(τu,b)1{τu,b=∞}] to be finite in obtaining the equality (A.9). But this must be true as

both expectations are increasing in u and converge to a finite limit.) �

Proof of Theorem 4: When m = 0, the IDE (2.5) becomes, for 0 < u < b,

c1ϕ
′
L,δ12,n(u; b)− (λ+ δ1 + nδ2)ϕL,δ12,n(u; b) + λ

∫ u

0
ϕL,δ12,n(u− y; b)p(y) dy = 0,

which is structurally identical to e.g. Gerber et al. (2006, Equation (2.12)). Therefore, the solution form
(3.13) along with (3.16) is a direct consequence of their Equations (7.3) and (7.8).

Next, (3.14), (3.15) and (3.17) can be proved by induction on n ∈ N+. To begin, we look at the case
n = 1. From (2.6), we have that, for u > b,

c2ϕ
′
U,δ12,1(u; b)− (λ+ δ1 + δ2)ϕU,δ12,1(u; b) + αϕU,δ1(u; b) + λ

∫ u−b

0
ϕU,δ12,1(u− y; b)p(y) dy

+ λ

∫ u

u−b
ϕL,δ12,1(u− y; b)p(y) dy = 0. (A.11)

Using the density (3.1) and (3.13) with n = 1 leads the last integral in (A.11) to

λ

∫ u

u−b
ϕL,δ12,1(u− y; b)p(y) dy = λ

r+1∑
j=1

r∑
k=1

A1,0,0,jqkµk
µk + ρ1,0,j

(
e(µk+ρ1,0,j)b − 1

)
e−µku. (A.12)
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Because (d/du+µk)
∫ u−b
0 ϕU,δ12,1(u−y; b)e−µky dy = ϕU,δ12,1(u; b), insertion of (3.1), (A.12) and ϕU,δ1(u; b)

given in Lemma 4 into (A.11) followed by application of the operator
∏r

k=1(d/du + µk) results in an
(r + 1)th order differential equation with constant coefficients satisfied by ϕU,δ12,1(·; b). Note that the
non-homogeneous part of this differential equation involves the exponential terms {eκ0,0,ju}rj=1. Let

{κ1,0,j}r+1
j=1 be the roots of the characteristic equation of the homogeneous part. Later we will see that

{κ1,0,j}r+1
j=1 are really Lundberg’s roots defined via (3.2). Then, we arrive at the solution form

ϕU,δ12,1(u; b) =

r∑
j=1

A∗
1,0,0,0,je

κ0,0,ju +

r+1∑
j=1

A∗
1,0,1,0,je

κ1,0,ju, u > b, (A.13)

where A∗
1,0,i,0,j ’s are constants to be determined. Utilizing (3.1), (3.8) and (A.13), we evaluate the first

four terms in (A.11) as

c2ϕ
′
U,δ12,1(u; b)− (λ+ δ1 + δ2)ϕU,δ12,1(u; b) + αϕU,δ1(u; b) + λ

∫ u−b

0
ϕU,δ12,1(u− y; b)p(y) dy

= c2

( r∑
j=1

A∗
1,0,0,0,jκ0,0,je

κ0,0,ju +
r+1∑
j=1

A∗
1,0,1,0,jκ1,0,je

κ1,0,ju

)

− (λ+ δ1 + δ2)

( r∑
j=1

A∗
1,0,0,0,je

κ0,0,ju +

r+1∑
j=1

A∗
1,0,1,0,je

κ1,0,ju

)
+ α

r∑
j=1

A∗
0,0,0,0,je

κ0,0,ju

+ λ

r∑
j=1

r∑
k=1

A∗
1,0,0,0,jqkµk

µk + κ0,0,j

(
eκ0,0,ju − e(µk+κ0,0,j)be−µku

)
+ λ

r+1∑
j=1

r∑
k=1

A∗
1,0,1,0,jqkµk

µk + κ1,0,j

(
eκ1,0,ju − e(µk+κ1,0,j)be−µku

)
.

(A.14)

As the sum of (A.12) and (A.14) is zero for all u > b due to (A.11), relationships among the unknown
constants in (A.13) can be obtained by equating various exponential terms with zero. First, examining
the coefficients of eκ1,0,ju asserts that {κ1,0,j}r+1

j=1 are the roots of (3.2) when l = 2, n = 1 and m = 0.
Since κ1,0,r+1 > 0, application of the limiting condition (2.13) to (A.13) reveals that A∗

1,0,1,0,r+1 = 0 (see
Remark 9), and therefore we have proved (3.14) when n = 1. Next, from the coefficients of eκ0,0,ju, we
get

c2A
∗
1,0,0,0,jκ0,0,j − (λ+ δ1 + δ2)A

∗
1,0,0,0,j + αA∗

0,0,0,0,j + λ

r∑
k=1

A∗
1,0,0,0,jqkµk

µk + κ0,0,j
= 0, j = 1, 2, . . . , r,

which leads to (3.15) when n = 1 because each κ0,0,j satisfies (3.2) when l = 2 and n = m = 0. Lastly,
the coefficients of e−µku along with the use of A∗

1,0,1,0,r+1 = 0 imply

−λ
1∑

i=0

r∑
j=1

A∗
1,0,i,0,jqkµk

µk + κi,0,j
e(µk+κi,0,j)b + λ

r+1∑
j=1

A1,0,0,jqkµk
µk + ρ1,0,j

(
e(µk+ρ1,0,j)b − 1

)
= 0, k = 1, 2, . . . , r.

One can use (3.16) when n = 1 to simplify the above equation and observe that (3.17) holds true when
n = 1. Having shown that (3.14), (3.15) and (3.17) are true for n = 1, mathematical induction can be
applied to prove that they are also valid for all n ∈ N+. Since the induction step is almost identical to
the above proof, the details are omitted here. Finally, (3.18) is a result of the continuity condition (2.7)
and the solutions (3.13) and (3.14). �
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Proof of Theorem 5: It is instructive to note that the analysis of the IDE for the lower layer is identical
to that in Theorem 4. Therefore, it is clear that (3.19) and (3.22) hold true. Moreover, once the solution
(3.20) in the upper layer is proved (in what follows), (3.24) simply comes from the continuity condition
(2.10).

Like the proof of Theorem 4, we shall focus on proving (3.20), (3.21) and (3.23) for n = 1, as the
induction step is essentially the same as this first step. When n = 1 and m = 0, (2.9) becomes, for u > b,

c2φ
′
U,δ2,1(u; b)− (λ+ δ2)φU,δ2,1(u; b) + αφU (u; b) + λ

∫ u−b

0
φU,δ2,1(u− y; b)p(y) dy

+ λ

∫ u

u−b
φL,δ2,1(u− y; b)p(y) dy = 0. (A.15)

Although the above IDE looks identical to (A.11), it contains the starting point φU (u; b) (given in
(3.12)) which involves an additional constant term compared to the starting point ϕU,δ1(u; b) (given in
(3.8)) of (A.11). See Remark 5. Similar to the derivations of Theorem 4, application of the operator∏r

k=1(d/du + µk) leads (A.15) to an (r + 1)th order differential equation with constant coefficients as

well as some non-homogeneous terms involving a constant and the exponential terms {eκ
∗
0,0,ju}rj=1. We

shall see that the roots of the characteristic equation of the homogeneous part are the Lundberg’s roots
{κ∗1,0,j}

r+1
j=1, and hence the general solution of φU,δ2,1(u; b) is

φU,δ2,1(u; b) =

r∑
j=1

C∗
1,0,0,0,je

κ∗
0,0,ju +

r+1∑
j=1

C∗
1,0,1,0,je

κ∗
1,0,ju + E1,0, u > b, (A.16)

for some constants C∗
1,0,0,0,j ’s, C

∗
1,0,1,0,j ’s and E1,0. Substitution of (3.1), (3.12), (3.19) with n = 1, and

(A.16) into the left-hand side of (A.15) followed by straightforward calculations yields

0 = c2

( r∑
j=1

C∗
1,0,0,0,jκ

∗
0,0,je

κ∗
0,0,ju +

r+1∑
j=1

C∗
1,0,1,0,jκ

∗
1,0,je

κ∗
1,0,ju

)

− (λ+ δ2)

( r∑
j=1

C∗
1,0,0,0,je

κ∗
0,0,ju +

r+1∑
j=1

C∗
1,0,1,0,je

κ∗
1,0,ju + E1,0

)
+ α

( r∑
j=1

C∗
0,0,0,0,je

κ∗
0,0,ju + 1

)

+ λ
r∑

j=1

r∑
k=1

C∗
1,0,0,0,jqkµk

µk + κ∗0,0,j

(
eκ

∗
0,0,ju − e(µk+κ∗

0,0,j)be−µku
)

+ λ

r+1∑
j=1

r∑
k=1

C∗
1,0,1,0,jqkµk

µk + κ∗1,0,j

(
eκ

∗
1,0,ju − e(µk+κ∗

1,0,j)be−µku
)
+ λE1,0

r∑
k=1

qk(1− eµkbe−µku)

+ λ

r+1∑
j=1

r∑
k=1

C1,0,0,jqkµk
ρ∗1,0,j + µk

(
e(µk+ρ∗1,0,j)b − 1

)
e−µku. (A.17)

First, one confirms that {κ∗1,0,j}
r+1
j=1 are the roots of (3.2) when l = 2, n = 1, and m = δ1 = 0 by equating

the coefficients of eκ
∗
1,0,ju with zero. Noting that κ∗1,0,r+1 > 0, the boundedness of φU,δ2,1(u; b) as u→ ∞

according to Lemma 2 means that C∗
1,0,1,0,r+1 = 0. Second, the constant term implies E1,0 = α/δ2, which

must be the case because of E1,0 = limu→∞ φδ23,1,0(u) and Lemma 2. Thus, the solution form (A.16)

reduces to (3.20) when n = 1. Finally, using the coefficients of eκ
∗
0,0,ju and e−µku respectively proves that
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(3.21) and (3.23) are true for n = 1 in the same manner as (3.15) and (3.17) when n = 1 are shown. The
induction step of the proof of (3.20), (3.21) and (3.23) is omitted. �

Proof of Theorem 6: We begin by recalling from Remark 4 that ϕδ13,1(u; b) = ϕL,δ13,1(u; b) in the
lower layer satisfies the same IDE as the counterpart under a dividend barrier strategy. As a result, some
results in Cheung et al. (2015, Theorem 6) are applicable. In particular, (3.25), (3.27) and (3.29) directly
follow from Equations (29)-(31) therein. Therefore, it is sufficient to look at the IDE in the upper layer.
From (2.3), it is given by, for u > b,

c2ϕ
′
U,δ13,1(u; b)− (λ+ δ1 + δ3)ϕU,δ13,1(u; b) + λ

∫ u−b

0
ϕU,δ13,1(u− y; b)p(y) dy + λ

∫ u

u−b
ϕL,δ13,1(u− y; b)p(y) dy

+ λ

∫ u−b

0
yϕU,δ1(u− y; b)p(y) dy + λ

∫ u

u−b
yϕL,δ1(u− y; b)p(y) dy + λ

∫ ∞

u
yw(y − u)p(y) dy = 0. (A.18)

Using (3.1), (3.7), (3.8) and (3.25), the last four integrals in (A.18) are evaluated as

λ

∫ u

u−b
ϕL,δ13,1(u− y; b)p(y) dy = λ

1∑
i=0

r+1∑
j=1

r∑
k=1

A0,1,i,jqkµk
µk + ρ0,i,j

(
e(µk+ρ0,i,j)b − 1

)
e−µku, (A.19)

λ

∫ u−b

0
yϕU,δ1(u− y; b)p(y) dy = λ

r∑
j=1

r∑
k=1

A∗
0,0,0,0,jqkµk

[
1

(µk + κ0,0,j)2
eκ0,0,ju − 1

µk + κ0,0,j
e(µk+κ0,0,j)bue−µku

+

(
b

µk + κ0,0,j
− 1

(µk + κ0,0,j)2

)
e(µk+κ0,0,j)be−µku

]
, (A.20)

λ

∫ u

u−b
yϕL,δ1(u− y; b)p(y) dy = λ

r+1∑
j=1

r∑
k=1

A0,0,0,jqkµk

{
1

µk + ρ0,0,j

(
e(µk+ρ0,0,j)b − 1

)
ue−µku

+

[
− b

µk + ρ0,0,j
e(µk+ρ0,0,j)b +

1

(µk + ρ0,0,j)2
(
e(µk+ρ0,0,j)b − 1

)]
e−µku

}
,

(A.21)

and

λ

∫ ∞

u
yw(y − u)p(y) dy = λ

r∑
k=1

qkµkw̃(µk)ue
−µku + λ

r∑
k=1

qkµkT 2
µk
w(0)e−µku. (A.22)

Applying the operator
∏r

k=1(d/du + µk) to (A.18) yields an (r + 1)th order differential equation with
constant coefficients, and the non-homogeneous terms involve the exponential terms {eκ0,0,ju}rj=1 and

{e−µku}rk=1. As the Lundberg’s roots {κ0,1,j}r+1
j=1 will be shown to satisfy the characteristic equation of

the homogeneous part, we arrive at the solution form

ϕU,δ13,1(u; b) =
r∑

j=1

A∗
0,1,0,0,je

κ0,0,ju +
r+1∑
j=1

A∗
0,1,0,1,je

κ0,1,ju +
r∑

k=1

B∗
0,1,0,ke

−µku, u > b, (A.23)

for some constants A∗
0,1,0,i,j ’s and B∗

0,1,0,k’s. With (3.1) and (A.23), the first three terms in (A.18) are
found to be

c2ϕ
′
U,δ13,1(u; b)− (λ+ δ1 + δ3)ϕU,δ13,1(u; b) + λ

∫ u−b

0
ϕU,δ13,1(u− y; b)p(y) dy
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= c2

( r∑
j=1

A∗
0,1,0,0,jκ0,0,je

κ0,0,ju +

r+1∑
j=1

A∗
0,1,0,1,jκ0,1,je

κ0,1,ju −
r∑

k=1

B∗
0,1,0,kµke

−µku

)

− (λ+ δ1 + δ3)

( r∑
j=1

A∗
0,1,0,0,je

κ0,0,ju +

r+1∑
j=1

A∗
0,1,0,1,je

κ0,1,ju +

r∑
k=1

B∗
0,1,0,ke

−µku

)

+ λ
r∑

j=1

r∑
k=1

A∗
0,1,0,0,jqkµk

µk + κ0,0,j

(
eκ0,0,ju − e(µk+κ0,0,j)be−µku

)
+ λ

r+1∑
j=1

r∑
k=1

A∗
0,1,0,1,jqkµk

µk + κ0,1,j

(
eκ0,1,ju − e(µk+κ0,1,j)be−µku

)
+ λ

r∑
k=1

r∑
i=1,i ̸=k

B∗
0,1,0,iqkµk

µk − µi

(
e−µiu − e(µk−µi)be−µku

)
+ λ

r∑
k=1

B∗
0,1,0,kqkµk(u− b)e−µku. (A.24)

Owing to (A.18), the sum of (A.19)-(A.22) and (A.24) is identical to zero. From the coefficients of eκ0,1,ju,
we know that {κ0,1,j}r+1

j=1 are the roots of (3.2) when l = 2, n = 0 and m = 1. As κ0,1,r+1 > 0, the limiting

condition (2.13) implies A∗
0,1,0,1,r+1 = 0. Next, comparing the coefficients of ue−µku leads to

λB∗
0,1,0,kqkµk − λ

r∑
j=1

A∗
0,0,0,0,jqkµk

µk + κ0,0,j
e(µk+κ0,0,j)b + λ

r+1∑
j=1

A0,0,0,jqkµk
µk + ρ0,0,j

(
e(µk+ρ0,0,j)b − 1

)
+ λqkµkw̃(µk) = 0,

k = 1, 2, . . . , r.

Rearrangements give

B∗
0,1,0,k =

( r+1∑
j=1

A0,0,0,j

µk + ρ0,0,j
−w̃(µk)

)
+

( r∑
j=1

A∗
0,0,0,0,j

µk + κ0,0,j
eκ0,0,jb−

r+1∑
j=1

A0,0,0,j

µk + ρ0,0,j
eρ0,0,jb

)
eµkb = 0, k = 1, 2, . . . , r,

thanks to (3.9) and (3.10). Hence, (A.23) reduces to (3.26). Utilizing the coefficients of eκ0,0,ju, one has

c2A
∗
0,1,0,0,jκ0,0,j − (λ+ δ1+ δ3)A

∗
0,1,0,0,j +λ

r∑
k=1

A∗
0,1,0,0,jqkµk

µk + κ0,0,j
+λ

r∑
k=1

A∗
0,0,0,0,jqkµk

(µk + κ0,0,j)2
= 0, j = 1, 2, . . . , r,

which results in (3.28) since each κ0,0,j satisfies the Lundberg’s equation (3.2) when l = 2 and n = m = 0.
Lastly, equating the coefficients of e−µku results in

− λ
1∑

i=0

r∑
j=1

A∗
0,1,0,i,jqkµk

µk + κ0,i,j
e(µk+κ0,i,j)b + λ

1∑
i=0

r+1∑
j=1

A0,1,i,jqkµk
µk + ρ0,i,j

(
e(µk+ρ0,i,j)b − 1

)
+ λ

r∑
j=1

A∗
0,0,0,0,jqkµk

(
b

µk + κ0,0,j
− 1

(µk + κ0,0,j)2

)
e(µk+κ0,0,j)b

+ λ
r+1∑
j=1

A0,0,0,jqkµk

[
− b

µk + ρ0,0,j
e(µk+ρ0,0,j)b +

1

(µk + ρ0,0,j)2
(
e(µk+ρ0,0,j)b − 1

)]
+ λqkµkT 2

µk
w(0) = 0, k = 1, 2, . . . , r.

With the help of (3.10) and (3.29), simplifications of the above equation yield (3.30). The remaining
formula (3.31) comes from the continuity condition (2.4). �
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