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Abstract

This paper studies the Parisian ruin problem first proposed by Dassios and Wu (2008a,b), where
the Parisian ruin time is defined to be the first time when the surplus process has stayed below zero
continuously for a pre-specified time length d. Both the insurance risk process and the dual model
will be considered under exponential distributional assumption on the jump sizes while keeping the
inter-arrival times arbitrary. In these two models, the Laplace transform of the Parisian ruin time is
derived by extending the excursion techniques in Dassios and Wu (2008a) and taking advantage of the
memoryless property exponential distributions. Our results are represented in integral forms, which
are expressed in terms of the (joint) densities of various ruin-related quantities that are available in the
literature or obtainable using the Lagrange’s expansion theorem. As a by-product, we also provide the
joint distribution of the numbers of periods of negative surplus that are of duration more than d and
less than d, which can be obtained using some of our intermediate results. The case where the Parisian
delay period d is replaced by a random time is also discussed, and it is applied to find the Laplace
transform of the occupation time when the surplus is negative. Numerical illustrations concerning an
Erlang(2) insurance risk model are given at the end.

Keywords: Parisian ruin time; Sparre Andersen model; Dual risk model; Lagrange’s expansion theorem;
Excursion; Occupation time in red.

1 Introduction

In this paper, the surplus process {U.(t)}t≥0 of a business enterprise is generally modelled by

U.(t) = u±X(t), t ≥ 0, (1.1)

where U.(0) = u ≥ 0 is the initial surplus and X(t) = ct −
∑N(t)

i=1 Yi with c > 0. It is assumed that
{Yi}∞i=1 is a sequence of independent and identically distributed (i.i.d.) positive jumps, and {N(t)}t≥0 is
a renewal process that is independent of {Yi}∞i=1 and characterized by the sequence of i.i.d. inter-arrival
times {Vi}∞i=1. In the rest of the paper, it is assumed that each Yi is exponentially distributed with
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mean 1/µ. For later use, we define k(·) to be the density of Vi with corresponding Laplace transform
k̃(s) =

∫∞
0 e−stk(t)dt.

Depending on the nature of the business, (1.1) takes on different signs. For a business that receives
income at a constant rate over time and faces losses that occur randomly in both time and amount, (1.1)
takes a positive sign and we denote

US(t) = u+X(t) = u+ ct−
N(t)∑
i=1

Yi, (1.2)

where the subscript ‘S’ stands for ‘standard’ model. A typical example of business enterprise with surplus
process that falls into this category is an insurance company. In this case, c > 0 can be interpreted as
the incoming premium rate per unit time, Yi represents the amount of the i-th insurance claim from
the policyholders, and N(t) is the number of insurance claims until time t. Surplus process with model
dynamics described by (1.2) is commonly referred to as the Sparre Andersen risk model (Sparre Andersen
(1957)) or renewal model. If {N(t)}t≥0 is a Poisson process, then {US(t)}t≥0 reduces to the classical
compound Poisson risk process. The time of ruin of the process {US(t)}t≥0 is typically defined to be
TUS

= inf{t > 0 : US(t) < 0} with the convention that inf{∅} = ∞. The analysis of the ruin probability,
the Gerber-Shiu expected discounted penalty function (Gerber and Shiu (1998)) and other ruin-related
quantities in Sparre Andersen models can be found in e.g. Dickson and Hipp (2001), Li and Garrido
(2004), Gerber and Shiu (2005), Albrecher and Teugels (2006), Willmot (2007), Asmussen and Albrecher
(2010, Chapter IX.4), Cheung et al. (2010), Willmot and Woo (2010), and Cheung (2013).

In contrast, the case of a negative sign in (1.1) is suitable for businesses with a constant rate of
expense c and gains occurring randomly in both time and amount. The surplus process is thus given by

UD(t) = u−X(t) = u− ct+

N(t)∑
i=1

Yi, (1.3)

where the subscript ‘D’ stands for ‘dual’ risk model (as a reflection of the standard model). As commented
by e.g. Avanzi et al. (2007), the dual model (1.3) is appropriate for pharmaceutical and petroleum
companies, and each upward jump can be interpreted as the net present value of future income resulting
from a discovery or an invention. The ruin time of {UD(t)}t≥0 is given by TUD

= inf{t > 0 : UD(t) = 0}.
While classical ruin probability results are available in e.g. Cramér (1955, Section 5.13), Takács (1967,
pp. 152-154), Seal (1969, pp. 116-119) when {N(t)}t≥0 follows a Poisson process, the dual Sparre
Andersen risk model was studied by e.g. Mazza and Rullière (2004), Albrecher et al. (2008, Appendix),
and Cheung (2012).

Traditionally, the analyses of the risk processes in the literature have been mostly conducted under
the assumption that ruin occurs immediately once the surplus drops below zero. However, in practice
the ruin probability is usually very small, and even if ruin occurs the company can usually continue its
business and survive negative surplus for some time in the hope of a quick recovery. See comments in e.g.
Gerber (1990), Egidio dos Reis (1993) and Cheung (2012). Recently, there have been increased research
interests in risk models (particularly in the insurance risk process (1.2)) with modified definitions of ruin
that possibly allow the company’s surplus to stay negative without declaring ruin. One of these earliest
concepts is ‘absolute ruin’ (Dassios and Embrechts (1989)), for which the company can borrow money at
a certain debit interest as long as the drift of the process is positive (and absolute ruin occurs when the
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drift becomes negative). See also e.g. Cai (2007), Gerber and Yang (2007), Cai et al. (2009, Section 7),
and Cheung (2011, Section 6). Another development is the idea of randomized observations proposed by
Albrecher et al. (2011a, 2013), where the event of ruin is only monitored at Erlang(n) intervals as the
company balances its books on a periodic basis. See also Albrecher and Ivanovs (2013) and Albrecher et al.
(2014) for further results concerning a Poissonian observer. A model related to randomized observations
is the (Gamma-)Omega model in Albrecher et al. (2011b), Gerber et al. (2012), and Albrecher and
Lautscham (2013), who assumed that the company declares bankruptcy with probability ω(x)dt if the
surplus level is x < 0 at time (t, t+ dt], where ω(·) is the bankruptcy rate function (see Section 5).

In this paper, we focus on the concept of Parisian ruin proposed by Dassios and Wu (2008a,b) in the
context of a compound Poisson insurance risk model. According to their definition, the Parisian ruin time
is defined as the first time when the surplus process has stayed below zero continuously for a prescribed
length of time d > 0. Their idea was motivated by the Parisian options in finance (see e.g. Chesney et al.
(1997) and Schröder (2003)). While Dassios and Wu (2008a) derived the exact Laplace transform of the
Parisian ruin time under exponential claims and provided a diffusion approximation as well, Dassios and
Wu (2008b) showed that a Cramér-Lundberg type asymptotic formula also holds true for the Parisian
ruin probability when claims are light-tailed. Their results were extended to general spectrally negative
Lévy insurance risk processes by Czarna and Palmowski (2011) and Loeffen et al. (2013). When the
constant d is instead replaced by (a sequence of) mixed Erlang random variables, Landriault et al. (2014)
studied the Laplace transform of the Parisian ruin time for a Lévy insurance risk model with bounded
variation. Another extension was also made by Czarna (2014) in the Lévy model, where ruin is declared
once the surplus process stays negative continuously for a period of d or goes below a fixed negative level
−a. Note that Parisian ruin problems have so far only been analyzed in continuous-time risk models in
the literature, with the exception of Czarna et al. (2014) who looked at the compound binomial model.

This paper is organized as follows. In Section 2, the Parisian ruin time and notations in relation to
excursions are formally defined. An auxiliary process resembling the dual model (1.3) will also be defined
as in Cheung (2012), and some discounted/joint densities of various ruin-related quantities required
later are introduced as well. These densities are either available in the literature or obtainable via the
Lagrange’s expansion theorem. This lays the foundation for a systematic analysis of the Parisian ruin
problems in subsequent sections. In Section 3, the main results regarding the Laplace transform of the
Parisian ruin time are presented. Two models will be considered: the standard insurance model (1.2) and
the dual model (1.3) when the inter-arrival times are kept general and the jump sizes are exponentially
distributed (as opposed to Lévy models in the literature). Our derivation is based on an extension of
the excursion techniques used in Dassios and Wu (2008a), and the memoryless property of exponential
distributions plays an important role. We shall demonstrate that the ideas are applicable by appropriately
partitioning the sample path of the surplus process into segments that are mutually independent. The
results are generally represented in integral forms in terms of the densities given in Section 2. Section
4 is concerned with a joint distribution in relation to the numbers of periods of negative surplus (that
are of duration more than d and less than d), which follows as a by-product using our intermediate
findings. Section 5 utilizes the results in Section 3 to state the Laplace transform of the Parisian ruin
time when the deterministic delays are replaced by a sequence of i.i.d. random times. In particular, under
exponential delays, this is applied to derive a neat expression for the Laplace transform of the occupation
time when the surplus is negative (i.e. the time in red). In Section 6, we provide an example concerning
the Erlang(2) insurance risk model with exponential claims, and show how the integrals involved in the
Laplace transform of the Parisian ruin time can be conveniently computed. Numerical illustrations will
be given. Section 7 concludes the paper with some open research problems.
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2 Preliminaries

2.1 Parisian ruin and excursions

Following Dassios and Wu (2008a), we start by defining various stopping times and introducing the
idea of excursions that are applicable to the general model (1.1). First, the time of ruin is given by
τ−,1
U.

= inf{t > 0 : U.(t) < 0} whereas the first recovery time is defined by τ+,1
U.

= inf{t > τ−,1
U.

: U.(t) > 0}.
For n = 2, 3, . . ., we further define τ−,n

U.
= inf{t > τ+,n−1

U.
: U.(t) < 0} to be the n-th time the surplus drops

below zero and τ+,n
U.

= inf{t > τ−,n
U.

: U.(t) > 0} to be the n-th recovery time. Also let τ−,0
U.

= τ+,0
U.

= 0.

Then, for j = 1, 2, . . ., the time interval between τ+,j−1
U.

and τ−,j
U.

constitutes the j-th excursion of

{U.(t)}t≥0 above zero whereas the interval between τ−,j
U.

and τ+,j
U.

is the j-th excursion below zero. Letting

L = inf{n ∈ N : τ+,n
U.

− τ−,n
U.

≥ d} (where N is the set of natural numbers), the Parisian ruin time τU. can
be defined as

τU. =

{
τ−,L
U.

+ d =
∑L

j=1(τ
−,j
U.

− τ−,j−1
U.

) + d, L <∞.

∞, L = ∞.
(2.1)

Clearly, if L < ∞ then L represents the number of excursions above zero before Parisian ruin whereas
L = ∞ (i.e. τU. = ∞) means that Parisian ruin does not occur. Sample paths for the insurance risk
process {US(t)}t≥0 and the dual model {UD(t)}t≥0 are depicted in Figures 1 and 2 respectively.

Figure 1: Sample path of {US(t)}t≥0

The key quantity of interest in this paper is the Laplace transform of the Parisian ruin time given by

ψδ,U.(u) = Eu[e−δτU.1{τU.<∞}], u ≥ 0, (2.2)

where δ ≥ 0 is the Laplace transform argument, 1A is the indicator function of the event A, and Eu

represents the expectation taken under the initial condition U.(0) = u. Clearly, ψδ,U.(u) reduces to the
(ultimate) Parisian ruin probability when δ = 0. To ease our upcoming analysis, for j = 1, 2, . . . we define
the following random times pertaining to the process {U.(t)}t≥0, namely

L+,j = τ−,j
U.

− τ+,j−1
U.

= Length of the j-th excursion above zero,
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Figure 2: Sample path of {UD(t)}t≥0

L−,j = τ+,j
U.

− τ−,j
U.

= Length of the j-th excursion below zero,

as well as the events

Bj = {L+,j <∞} = Event that the j-th excursion above zero is of finite time length.

Cj = {L−,j < d} = Event that the j-th excursion below zero is of length less than d.

Hence, when Parisian ruin occurs, the Parisian ruin time τU. defined by (2.1) admits the representation

τU. =
i∑

j=1

L+,j +
i−1∑
j=1

L−,j + d on the set Ai, (2.3)

where the set Ai is given by

Ai = Event that the first time the length of excursion below zero reaches d happens in the i-th excursion

=

{
B1 ∩ Cc

1, i = 1.(∩i
j=1Bj

)
∩
(∩i−1

j=1Cj

)
∩ Cc

i , i = 2, 3, . . . .
(2.4)

Because the set {τU. <∞} is equivalent to
∪∞

i=1Ai, (2.2) can be rewritten as

ψδ,U.(u) =
∞∑
i=1

Eu[e−δτU.1Ai ]. (2.5)

In other words, to determine the Laplace transform of the Parisian ruin time, it is sufficient to evaluate
Eu[e−δτU.1Ai ]. This will be performed in the Section 3 for the (dual) Sparre Andersen model with
exponential jumps. We remark that the discussion in this subsection is also applicable to the (dual)
compound Poisson model with general jump distribution, where the determination of Eu[e−δτU.1Ai ] can
be found in Wong (2014, Chapters 2.5.3 and 2.5.4).
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2.2 Other ruin-related random variables and an auxiliary process

To analyze renewal models in Section 3 where the density k(·) of the inter-arrival times {Vi}∞i=1 is
kept general, apart from the idea of excursions we need to rely on some new random variables and an
auxiliary process introduced in Cheung (2012). For convenience, we shall follow closely the notations

therein. First, for the dual model {UD(t)}t≥0 in (1.3), the random time T ∗
UD

=
∑N(TUD

)+1

i=1 Vi represents

the time of the first gain after the (traditional) ruin time and |UD(T
∗−
UD

)| is the (absolute) amount of
the shortfall immediately before T ∗

UD
. Note that the ruin time is related to these variables via TUD

=

T ∗
UD

− |UD(T
∗−
UD

)|/c (see Cheung (2012, Figure 1)). The joint distribution of (T ∗
UD
, |UD(T

∗−
UD

)|) given
UD(0) = u ≥ 0 consists of two parts. Specifically, for ruin occurring without any upward jump, one has
that T ∗

UD
= (u + |UD(T

∗−
UD

)|)/c. In this case, the marginal density of |UD(T
∗−
UD

)| at y > 0 is sufficient to
characterize the joint distribution, and it is given by (1/c)k((u + y)/c). In contrast, if there is at least
one jump before ruin, then there is no simple relationship between T ∗

UD
and |UD(T

∗−
UD

)|, and the density
at (t, y) for y > 0 and t > (u+ y)/c is denoted by fUD

(t, y|u).

In relation to the process {UD(t)}t≥0 is the modified dual process {ZD(t)}t≥0 defined by

ZD(t) = z + Y1 − ct+

M(t)∑
i=1

Yi+1, t ≥ 0, (2.6)

where ZD(0
−) = z ≥ 0 is the initial level and {M(t)}t≥0 is a renewal process characterized by the

sequence of (shifted) inter-arrival times {Vi+1}∞i=1. Note that the process {ZD(t)}t≥0 starts with an
upward jump of size Y1 at time 0, and it essentially behaves like {UD(t)}t≥0 but with the interval
[0, V1) removed. With TZD

= inf{t > 0 : ZD(t) = 0} being the ruin time of {ZD(t)}t≥0, we also

define T ∗
ZD

=
∑M(TZD

)+1

i=1 Vi+1 and |ZD(T
∗−
ZD

)| as analogues of T ∗
UD

and |UD(T
∗−
UD

)| respectively, and

the relationship TZD
= T ∗

ZD
− |ZD(T

∗−
ZD

)|/c holds. See Cheung (2012, Figure 2). The joint density

of (T ∗
ZD
, |Z(T ∗−

ZD
)|) at (t, y) pertaining to the process (2.6) is denoted by fZD

(t, y|z) for y > 0 and
t > (z + y)/c.

2.3 Densities required to analyze the dual model

Having defined various joint distributions for the processes {UD(t)}t≥0 and {ZD(t)}t≥0, we are ready to
introduce related discounted densities which are needed in Section 3.2 concerning the dual model subject
to exponential gains each with mean 1/µ. By Cheung (2012, Equations (2.14) and (2.4)), the discounted
density of |UD(T

∗−
UD

)| at y is given by

hδ,UD
(y|u) = 1

c
e−δ(u+y

c )k

(
u+ y

c

)
+

∫ ∞

u+y
c

e−δtfUD
(t, y|u)dt, y > 0, (2.7)

while that of |Z(T ∗−
ZD

)| at y is defined by

hδ,ZD
(y|z) =

∫ ∞

z+y
c

e−δtfZD
(t, y|z)dt, y > 0. (2.8)

In particular, at z = 0, simplification of Cheung (2012, Equation (4.12)) yields

hδ,ZD
(y|0) = µe−

δ
c
y

∫ ∞

y
c

e−(Rδ+
δ
c )(ct−y)k(t)dt, (2.9)
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where Rδ is the unique non-negative root that satisfies the Lundberg’s equation

1− k̃(cRδ + δ)
µ

µ−Rδ
= 0. (2.10)

Define κδ =
∫∞
0 hδ,ZD

(y|0)dy. Note that κδ < 1 under the loading assumption in Section 3.2. Further
define the proper density βδ(y) = hδ,ZD

(y|0)/κδ for y > 0, and the compound geometric density

αδ(y) =

∞∑
n=1

(1− κδ)κ
n
δ β

∗n
δ (y), y > 0,

where β∗nδ (·) represents the n-fold convolution density of βδ(·) with itself (and similar notation applies
to the convolution of other densities). Then, from Equations (2.11) and (2.13) of Cheung (2012), the
discounted densities defined in (2.8) and (2.7) can be fully characterized as

hδ,ZD
(y|z) = κδβδ(z + y) +

κδ
1− κδ

∫ z

0
αδ(z − x)βδ(x+ y)dx.

hδ,UD
(y|u) = 1

c
e−δ(u+y

c )k

(
u+ y

c

)
+

∫ u
c

0
e−δthδ,ZD

(y|u− ct)k(t)dt. (2.11)

Section 3.2 also requires the density of the time of ruin TUS
pertaining to the process {US(t)}t≥0

in (1.2) with initial surplus US(0) = u. Under general inter-arrival times and exponential jumps, this
density at t is given by

fUS
(t|u) = e−µ(u+ct)

∞∑
n=0

µn(u+ ct)n−1

n!

(
u+

ct

n+ 1

)
k∗(n+1)(t), t > 0. (2.12)

See Borovkov and Dickson (2008, Equation (3)). Interested readers are also referred to Drekic and
Willmot (2003), Dickson et al. (2005, Section 3.3) and Dickson and Li (2010, Section 4) when the
inter-arrival times follow exponential, Erlang(n) and Erlang(2) distributions respectively.

2.4 A density required to analyze the insurance model

The exact solution to the joint density fZD
(t, y|0) will be required in Section 3.1 to study the insurance

model with exponential claims. As demonstrated by a number of papers in the literature (e.g. Dickson
and Willmot (2005)), the Lagrange’s expansion theorem (also known as Lagrange’s inversion theorem or
Lagrange’s implicit function theorem) plays a major role in obtaining probability densities involving the
time component via inversion of appropriate Laplace transforms. The Lagrange’s expansion theorem is
now stated as follows for the sake of completeness. If

v = w + γφ(v),

then for any analytic function a(·), one has

a(v) = a(w) +

∞∑
n=1

γn

n!

∂n−1

∂xn−1
{a′(x)[φ(x)]n}

∣∣∣∣
x=w

.

Consider the process {ZD(t)}t≥0 defined via (2.6) when each jump Yi is exponential with mean
1/µ and the inter-arrival times {Vi+1}∞i=1 have arbitrary common density k(·). For convenience, we
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define b(x) = (1/c)k(x/c) to be the density of a scaled inter-arrival time, and the corresponding Laplace
transform is b̃(s) = k̃(cs). Then the Lundberg’s equation (2.10) which defines Rδ can be rewritten as

Rδ = µ− µb̃

(
Rδ +

δ

c

)
.

Because of (2.8) and (2.9), we have the relationship∫ ∞

y
c

e−δtfZD
(t, y|0)dt = µe−

δ
c
y

∫ ∞

y
c

e−(Rδ+
δ
c )(ct−y)k(t)dt. (2.13)

Our goal is to invert the Laplace transform on the right-hand side of (2.13) with respect to δ so as to
obtain fZD

(t, y|0). By applying Lagrange’s expansion theorem to the integrand on the right-hand side of

(2.13) (with a(v) = e−(v+δ/c)(ct−y), v = Rδ, w = µ, γ = −µ and φ(v) = b̃(v + δ/c)), we arrive at∫ ∞

y
c

e−δtfZD
(t, y|0)dt = µe−

δ
c
y

∫ ∞

y
c

{
e−(µ+

δ
c )(ct−y)

+
∞∑
n=1

(−µ)n

n!

∂n−1

∂xn−1

(
(y − ct)e−(x+

δ
c )(ct−y)

∫ ∞

0
e−(x+

δ
c )zb∗n(z)dz

)∣∣∣∣
x=µ

}
k(t)dt,

(2.14)

where we have used the fact that [̃b(s)]n =
∫∞
0 e−szb∗n(z)dz. While the first term in (2.14) is given by

µe−
δ
c
y

∫ ∞

y
c

e−(µ+
δ
c )(ct−y)k(t)dt =

∫ ∞

y
c

e−δt
(
µe−µ(ct−y)k(t)

)
dt,

the second term can be simplified as

µe−
δ
c
y

∫ ∞

y
c

∞∑
n=1

(−µ)n

n!

∂n−1

∂xn−1

(
(y − ct)e−(x+

δ
c )(ct−y)

∫ ∞

0
e−(x+

δ
c )zb∗n(z)dz

)∣∣∣∣
x=µ

k(t)dt

= µe−
δ
c
y

∫ ∞

y
c

∞∑
n=1

(−µ)n

n!

∂n−1

∂xn−1

(
(y − ct)

∫ ∞

0
e−(x+

δ
c )(z+ct−y)b∗n(z)dz

)∣∣∣∣
x=µ

k(t)dt

= µe−
δ
c
y

∫ ∞

y
c

∞∑
n=1

(−µ)n

n!

(
(y − ct)(−1)n−1

∫ ∞

0
(z + ct− y)n−1e−(µ+

δ
c )(z+ct−y)b∗n(z)dz

)
k(t)dt

=

∫ ∞

y
c

∫ ∞

ct

∞∑
n=1

µn+1

n!
e−

δ
c
z(ct− y)(z − y)n−1e−µ(z−y)b∗n(z − ct)k(t)dzdt

=

∫ ∞

y

∫ z
c

y
c

∞∑
n=1

µn+1

n!
e−

δ
c
z(ct− y)(z − y)n−1e−µ(z−y)b∗n(z − ct)k(t)dtdz

=

∫ ∞

y
c

∫ z

y
c

∞∑
n=1

µn+1

n!
e−δz(ct− y)(cz − y)n−1e−µ(cz−y)b∗n(cz − ct)k(t)cdtdz

=

∫ ∞

y
c

e−δt

(
µe−µ(ct−y)

∞∑
n=1

µn

n!
(ct− y)n−1

∫ t

y
c

(cz − y)k∗n(t− z)k(z)dz

)
dt.
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It follows from substitution of the above two expressions into (2.14) along with the uniqueness of the
Laplace transform that, for y > 0 and t > y/c,

fZD
(t, y|0) = µe−µ(ct−y)

(
k(t) +

∞∑
n=1

µn

n!
(ct− y)n−1

∫ t

y
c

(cz − y)k∗n(t− z)k(z)dz

)
. (2.15)

3 Laplace transform of Parisian ruin time

3.1 Sparre Andersen insurance model with exponential claims

We start with the Sparre Andersen insurance risk model {US(t)}t≥0 in (1.2) under exponential claim
amounts and arbitrary interclaim times. The positive security loading condition cE[V1] > E[Y1] = 1/µ is
assumed to hold, so that {US(t)}t≥0 drifts to infinity in the long run and the ruin probability is strictly
less than 1 (e.g. Prabhu (1998, Part I, Theorems 2 and 7)).

Due to (2.5), we only need to find Eu[e−δτUS 1Ai ] for i = 1, 2, . . . in order to characterize the Laplace
transform of the Parisian ruin time ψδ,US

(u). Using the representations of the Parisian ruin time (2.3)
and the set Ai in (2.4), it is immediate that

Eu[e−δτUS 1A1 ] = Eu[e−δ(L+,1+d)1B1∩Cc
1
] = Eu[(e−δL+,11B1)(e

−δd1Cc
1
)],

and for i = 2, 3, . . .,

Eu[e−δτUS 1Ai ] = Eu
[
e−δ(

∑i
j=1 L+,j+

∑i−1
j=1 L−,j+d)1(

∩i
j=1 Bj)∩(

∩i−1
j=1 Cj)∩Cc

i

]
= Eu

[
e−δL+,11B1

( i−1∏
j=1

e−δ(L−,j+L+,j+1)1Cj∩Bj+1

)
e−δd1Cc

i

]
.

Note that the final expression indeed also holds true for i = 1. Under exponential claims, it is well known
(e.g. Willmot (2007, Example 3.1)) that whenever the surplus process {US(t)}t≥0 drops below zero at

time τ−,j
US

(see Figure 1), the resulting amount of shortfall follows the same exponential distribution with
mean 1/µ. This along with the renewal property of {N(t)}t≥0 implies that the excursions for the process

{US(t)}t≥0 in the time intervals [τ−,j−1
US

, τ−,j
US

) for j = 1, 2, . . . are all independent. In particular, given

L+,1 and the event B1, the only impact on the events subsequent to time τ−,1
US

is the exponential amount

of shortfall at time τ−,1
US

. Along the same line of logic, for each fixed j = 2, 3, . . ., given L+,1, B1, L−,1,

C1, L+,2, B2 . . . , L−,j−1, Cj−1, L+,j , Bj , the amount of shortfall at time τ−,j
US

is exponentially distributed,

and this is the only impact on events subsequent to time τ−,j
US

. Because the events in the time intervals

[τ−,j
US

, τ−,j+1
US

) for j = 1, 2, . . . follow the same probability law, we have that, for i = 1, 2, . . .,

Eu[e−δτUS 1Ai ] = Eu[e−δL+,11B1 ](E∗[e−δ(L−,1+L+,2)1C1∩B2 ])
i−1E∗[e−δd1Cc

1
], (3.1)

where the expectation E∗ is conditional on that |US(τ
−,1
US

)| is exponential with mean 1/µ.

From (3.1), it suffices to evaluate the three expectations Eu[e−δL+,11B1 ], E∗[e−δ(L−,1+L+,2)1C1∩B2 ]
and E∗[e−δd1Cc

1
]. The first expectation is simply the Laplace transform of the time of ruin under the

traditional definition, which is given by e.g. Willmot (2007, Equation (3.15)) as

Eu[e−δL+,11B1 ] = Eu[e−δTUS 1{TUS
<∞}] = ϕδe

−µ(1−ϕδ)u, (3.2)

9



where ϕδ (such that 0 < ϕδ < 1) satisfies the Lundberg’s equation

ϕδ = k̃(δ + cµ(1− ϕδ)).

Note that Rδ defined via (2.10) is related to ϕδ by Rδ = µ(1− ϕδ).

Figure 3: Relationship between {US(t)}t≥τ−,1
US

and {ZD(t)}t≥0

The key to evaluating the two remaining expectations is to recognize that the law of the reflection
of the process {US(t)}t≥τ−,1

US

(conditional on τ−,1
US

< ∞) is actually identical to that of the process

{ZD(t)}t≥0 with initial condition ZD(0
−) = 0. See Figure 3. Note that because of the loading condition

cE[V1] > E[Y1] = 1/µ, given τ−,1
US

< ∞ the recovery of {US(t)}t≥τ−,1
US

occurs almost surely, i.e. TZD
< ∞

almost surely for {ZD(t)}t≥0. Define Θ(s) = inf{t > s : N(t−) + 1 = N(t)} to be the first time when a
jump occurs after the time point s. The following observations can be made.

• The joint distribution of (Θ(τ+,1
US

) − τ−,1
US

, US(Θ(τ+,1
US

)−)) given τ−,1
US

< ∞ is the same as that of

(T ∗
ZD
, |Z(T ∗−

ZD
)|) under ZD(0

−) = 0, whose joint density fZD
(t, y|0) is given in (2.15).

• The relationship L−,1 = Θ(τ+,1
US

)− τ−,1
US

− US(Θ(τ+,1
US

)−)/c holds.

• Due to the renewal property of {N(t)}t≥0, the law of {US(t)}t≥Θ(τ+,1
US

)
only depends on the surplus

level US(Θ(τ+,1
US

)) = US(Θ(τ+,1
US

)−) − Y
N(Θ(τ+,1

US
))
, where Y

N(Θ(τ+,1
US

))
is the exponential jump that

occurs at time Θ(τ+,1
US

) which is independent of US(Θ(τ+,1
US

)−).

• If Y
N(Θ(τ+,1

US
))
> US(Θ(τ+,1

US
)−) then τ−,2

US
= Θ(τ+,1

US
). On the other hand, if Y

N(Θ(τ+,1
US

))
≤ US(Θ(τ+,1

US
)−),

then the process {US(t)}t≥Θ(τ+,1
US

)
restarts at time Θ(τ+,1

US
) with τ−,2

US
−Θ(τ+,1

US
) having the same dis-

tribution as the time of ruin of the process {US(t)}t≥0 under US(0) = US(Θ(τ+,1
US

)−)− Y
N(Θ(τ+,1

US
))
.

(Here {US(t)}t≥0 is an independent process with the same law as {US(t)}t≥0.)

Hence, by conditioning on Y
N(Θ(τ+,1

US
))

along with the use of (3.2) and the density fZD
(t, y|0), we arrive

at

E∗[e−δ(L−,1+L+,2)1C1∩B2 ] = E∗
[
e
−δ[(Θ(τ+,1

US
)−τ−,1

US
)+(τ−,2

US
−Θ(τ+,1

US
))]
1{L−,1<d}∩{L+,2<∞}

]
10



=

∫ ∞

0

∫ y

0

(∫ y
c
+d

y
c

e−δtfZD
(t, y|0)dt

)
(µe−µx)(ϕδe

−µ(1−ϕδ)(y−x))dxdy

+

∫ ∞

0

∫ ∞

y

(∫ y
c
+d

y
c

e−δtfZD
(t, y|0)dt

)
(µe−µx)dxdy

=

∫ ∞

0
e−µ(1−ϕδ)y

∫ y
c
+d

y
c

e−δtfZD
(t, y|0)dtdy. (3.3)

Similar reasoning leads us to

E∗[e−δd1Cc
1
] = e−δdP

{
T ∗
ZD

−
|Z(T ∗−

ZD
)|

c
≥ d
∣∣∣ZD(0

−) = 0

}
= e−δd

∫ ∞

0

∫ ∞

y
c
+d
fZD

(t, y|0)dtdy. (3.4)

To summarize, using (3.1), the Laplace transform of the Parisian ruin time in (2.5) reduces to

ψδ,US
(u) =

Eu[e−δL+,11B1 ]E∗[e−δd1Cc
1
]

1− E∗[e−δ(L−,1+L+,2)1C1∩B2 ]
, (3.5)

where the components are given by (3.2)-(3.4). It is interesting to note that (3.5) simply equals the
Laplace transform of the traditional ruin time (3.2) (which is an exponential function in u) multiplied by
a constant term that is independent of u.

Remark 1 Define, on the event of Parisian ruin, Q∗ = sup{n ∈ {0} ∪ N : τ−,n+1
US

< τUS
} to be the

number of periods of negative surplus before Parisian ruin (excluding the one in which Parisian ruin
occurs). Note that the set Ai defined in (2.4) is equivalent to Ai = {τUS

< ∞} ∩ {Q∗ = i − 1} for
i = 1, 2, . . .. Let Pu be the probability measure under the initial condition US(0) = u, and P∗ be the
probability conditional on that |US(τ

−,1
US

)| is exponential with mean 1/µ. Use of (3.1) and (3.5) with
δ = 0 yields

Pu{Q∗ = i|τUS
<∞} =

Pu{Ai+1}
ψ0,US

(u)
= (P∗{C1 ∩B2})i(1− P∗{C1 ∩B2}), i = 0, 1, . . . .

In other words, conditional on the event of Parisian ruin, Q∗ follows the same geometric distribution
regardless of the initial surplus level u ≥ 0. �

3.2 Dual Sparre Andersen model with exponential gains

In this subsection, we look at the dual Sparre Andersen risk process {UD(t)}t≥0 in which the gains {Yi}∞i=1

are exponential with mean 1/µ and the inter-arrival times {Vi}∞i=1 follow an arbitrary distribution. It is
assumed that the loading condition 1/µ > cE[V1] is satisfied.

As in Section 3.1, we need to determine Eu[e−δτUD 1Ai ] for i = 1, 2, . . ., which can be done by par-
titioning the sample path in Figure 2 into independent segments such that the corresponding Laplace
transforms can be multiplied together. Application of (2.3) and (2.4) results in

Eu[e−δτUD 1A1 ] = Eu[e−δ(L+,1+d)1B1∩Cc
1
], (3.6)

and, for i = 2, 3, . . .,

Eu[e−δτUD 1Ai ] = Eu

[
e−δ(L+,1+L−,1)1B1∩C1

( i−1∏
j=2

e−δ(L+,j+L−,j)1Bj∩Cj

)
e−δ(L+,i+d)1Bi∩Cc

i

]
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= Eu[e−δ(L+,1+L−,1)1B1∩C1 ](E∗[e−δ(L+,2+L−,2)1B2∩C2 ])
i−2E∗[e−δ(L+,2+d)1B2∩Cc

2
], (3.7)

where E∗ is now the conditional expectation given that UD(τ
+,1
UD

) is exponential with mean 1/µ, i.e.

from time τ+,1
UD

onward the process {UD(t)}t≥τ+,1
UD

behaves like {ZD(t)}t≥0 with ZD(0
−) = 0. The second

equality above can be obtained as follows. For each fixed j = 1, 2, . . ., given L+,1, B1, L−,1, C1, . . . , L+,j ,

Bj , L−,j , Cj , the only impact on events subsequent to time τ+,j
UD

is the exponential jump Y
N(τ+,j

UD
)
at

time τ+,j
UD

. By the memoryless property, the resulting overshoot above zero at time τ+,j
UD

follows the same

exponential distribution with mean 1/µ. The excursions of the process {UD(t)}t≥0 in [τ+,j−1
UD

, τ+,j
UD

) are
independent for all j = 1, 2, . . ., but they follow the same probability law only for j = 2, 3, . . .. These
explain (3.7).

Figure 4: Relationship between {UD(t)}t≥T ∗
UD

and {US(t)}t≥0

It is clear from (3.6) and (3.7) that it remains to determine the four expectations Eu[e−δ(L+,1+d)1B1∩Cc
1
],

Eu[e−δ(L+,1+L−,1)1B1∩C1 ], E∗[e−δ(L+,2+L−,2)1B2∩C2 ] and E∗[e−δ(L+,2+d)1B2∩Cc
2
]. For the first two expecta-

tions, we note that in the case where the jump YN(T ∗
UD

) at time T ∗
UD

does not result in an overshoot above

zero, the reflection of the process {UD(t)}t≥T ∗
UD

is identical in law to {US(t)}t≥0 with the initial level

US(0) = |UD(T
∗−
UD

)| − YN(T ∗
UD

). See Figure 4. Similar connections are applicable to {ZD(t)}t≥T ∗
ZD

and

{US(t)}t≥0, and these will be needed to evaluate the expectation E∗. In order to use similar conditioning
arguments leading to (3.3), we shall apply the densities fUD

(t, y|u), fUS
(t|u) and fZD

(t, y|0) defined in
Section 2. Consolidating the above observations, Eu[e−δ(L+,i+d)1B1∩Cc

1
] is first evaluated as

Eu[e−δ(L+,1+d)1B1∩Cc
1
] =

∫ ∞

cd
e−δ(u

c
+d)

(
1

c
k

(
u+ y

c

))
dy +

∫ ∞

cd

∫ ∞

u+y
c

e−δ(t− y
c
+d)fUD

(t, y|u)dtdy

+

∫ cd

0

∫ y

0

∫ ∞

d− y
c

e−δ(u
c
+d)

(
1

c
k

(
u+ y

c

))
(µe−µx)fUS

(v|y − x)dvdxdy

+

∫ cd

0

∫ ∞

u+y
c

∫ y

0

∫ ∞

d− y
c

e−δ(t− y
c
+d)fUD

(t, y|u)(µe−µx)fUS
(v|y − x)dvdxdtdy

=

∫ ∞

cd
e−δ(d− y

c )hδ,UD
(y|u)dy

12



+

∫ cd

0

∫ y

0

∫ ∞

d− y
c

e−δ(d− y
c )hδ,UD

(y|u)(µe−µx)fUS
(v|y − x)dvdxdy, (3.8)

where the last equality follows from (2.7). The expectation E∗[e−δ(L+,2+d)1B2∩Cc
2
] can be derived in a

similar manner with the use of (2.8), giving

E∗[e−δ(L+,2+d)1B2∩Cc
2
] =

∫ ∞

cd

∫ ∞

y
c

e−δ(t− y
c
+d)fZD

(t, y|0)dtdy

+

∫ cd

0

∫ ∞

y
c

∫ y

0

∫ ∞

d− y
c

e−δ(t− y
c
+d)fZD

(t, y|0)(µe−µx)fUS
(v|y − x)dvdxdtdy

=

∫ ∞

cd
e−δ(d− y

c )hδ,ZD
(y|0)dy

+

∫ cd

0

∫ y

0

∫ ∞

d− y
c

e−δ(d− y
c )hδ,ZD

(y|0)(µe−µx)fUS
(v|y − x)dvdxdy. (3.9)

Upon integration over another appropriate region, Eu[e−δ(L+,1+L−,1)1B1∩C1 ] is found to be

Eu[e−δ(L+,1+L−,1)1B1∩C1 ] =

∫ cd

0

∫ ∞

y
e−δ(u+y

c )
(
1

c
k

(
u+ y

c

))
(µe−µx)dxdy

+

∫ cd

0

∫ ∞

u+y
c

∫ ∞

y
e−δtfUD

(t, y|u)(µe−µx)dxdtdy

+

∫ cd

0

∫ y

0

∫ d− y
c

0
e−δ(u+y

c
+v)

(
1

c
k

(
u+ y

c

))
(µe−µx)fUS

(v|y − x)dvdxdy

+

∫ cd

0

∫ ∞

u+y
c

∫ y

0

∫ d− y
c

0
e−δ(t+v)fUD

(t, y|u)(µe−µx)fUS
(v|y − x)dvdxdtdy

=

∫ cd

0
hδ,UD

(y|u)(e−µy)dy

+

∫ cd

0

∫ y

0

∫ d− y
c

0
e−δvhδ,UD

(y|u)(µe−µx)fUS
(v|y − x)dvdxdy, (3.10)

while E∗[e−δ(L+,2+L−,2)1B2∩C2 ] is similarly given by

E∗[e−δ(L+,2+L−,2)1B2∩C2 ] =

∫ cd

0
hδ,ZD

(y|0)(e−µy)dy

+

∫ cd

0

∫ y

0

∫ d− y
c

0
e−δvhδ,ZD

(y|0)(µe−µx)fUS
(v|y − x)dvdxdy. (3.11)

It is instructive to note that although our intermediate steps involve three densities fUD
(t, y|u), fUS

(t|u)
and fZD

(t, y|0), the dependence on fUD
(t, y|u) and fZD

(t, y|0) of the final expressions in (3.8)-(3.11) only
appears via the discounted densities hδ,UD

(y|u) and hδ,ZD
(y|0). These two discounted densities are given

in (2.11) and (2.9) respectively, and are much easier to evaluate compared to fUD
(t, y|u) and fZD

(t, y|0).
The remaining density fUS

(t|u) can be computed by (2.12).

With the four expectations appearing in (3.6) and (3.7) determined above, the Laplace transform of
the Parisian ruin time in (2.5) reduces to

ψδ,UD
(u) = Eu[e−δ(L+,1+d)1B1∩Cc

1
] +

Eu[e−δ(L+,1+L−,1)1B1∩C1 ]E∗[e−δ(L+,2+d)1B2∩Cc
2
]

1− E∗[e−δ(L+,2+L−,2)1B2∩C2 ]
.
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4 Number of periods of negative surplus

In this section, we look at the joint distribution of the numbers of periods of negative surplus that are
of duration more than d and less than d. This distribution is easily obtainable using the techniques and
intermediate functions introduced in Section 3. For illustrations, we only study the Sparre Andersen
insurance risk model (1.2) under the distributional assumptions in Section 3.1, i.e. the inter-arrival times
are general while the claims are exponential, and the loading condition cE[V1] > 1/µ is assumed to hold.
The ideas can clearly be accommodated to the dual model in Section 3.2, but the details are omitted.
Interested readers are also referred to e.g. Dickson and Li (2013, Section 4.2) for the analysis of the
distribution of the number of periods of negative surplus in a Sparre Andersen insurance risk model with
Erlang(2) inter-arrival times.

Let Q = sup{n ∈ {0} ∪ N : τ−,n
US

< ∞} be the total number of periods of negative surplus (assuming

that the surplus process {US(t)}t≥0 continues forever). Note that the case Q = 0 (as τ−,0
US

= 0) is simply
the situation where ruin does not occur (i.e. TUS

= ∞). In the present context, although a negative
surplus leads to ruin according to the traditional definition, it may or may not result in Parisian ruin.
Hence, we further define QP =

∑Q
n=1 1{τ+,n

US
−τ−,n

US
≥d} and QP =

∑Q
n=1 1{τ+,n

US
−τ−,n

US
<d} to be the numbers

of periods of negative surplus that are of duration more than d and less than d respectively (such that
Q = QP +QP ). We are interested in obtaining the joint probability mass function of the bivariate random
vector (QP , QP ), namely Pu{NP = m,NP = n} for m,n = 0, 1, 2, . . .. First, the case m = n = 0 is trivial
because it corresponds to the event {Q = 0} and hence

Pu{QP = 0, QP = 0} = 1− ϕ0e
−µ(1−ϕ0)u,

which is the traditional survival probability (see (3.2)). Concerning other values of (m,n), the same
arguments as in Section 3.1 are applicable. For m = 1, 2, . . ., we have

Pu{QP = m,QP = 0} = Pu{B1}(P∗{Cc
1 ∩B2})m−1P∗{Cc

1 ∩Bc
2}. (4.1)

The above equation allows for the following interpretation. In order for {US(t)}t≥0 to have m periods of
negative surplus (where m = 1, 2, . . .), all of which are of duration no less than d, the following should
happen.

• The process {US(t)}t≥0 should first drop below zero, and this happens with probability Pu{B1}.

• Recovery of the process to level zero should happen in no less than d time units (i.e. event Cc
1),

and then the process has to drop below zero again (i.e. event B2) in order for the next period of
negative surplus to kick in. This whole thing happens independently for a total of m − 1 times,
which explains the term (P∗{Cc

1 ∩B2})m−1.

• After the final period of negative surplus, which is also of time length no less than d, the process
drifts to infinity without ever dropping below zero. This constitutes the probability P∗{Cc

1 ∩Bc
2}.

While Pu{B1} in (4.1) is the traditional ruin probability which is a special case of (3.2) with δ = 0, the
other two probabilities are easily found to be

P∗{Cc
1 ∩B2} =

∫ ∞

0

∫ y

0

(∫ ∞

y
c
+d
fZD

(t, y|0)dt
)
(µe−µx)(ϕ0e

−µ(1−ϕ0)(y−x))dxdy
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+

∫ ∞

0

∫ ∞

y

(∫ ∞

y
c
+d
fZD

(t, y|0)dt
)
(µe−µx)dxdy

=

∫ ∞

0
e−µ(1−ϕ0)y

∫ ∞

y
c
+d
fZD

(t, y|0)dtdy.

P∗{Cc
1 ∩Bc

2} =

∫ ∞

0

∫ y

0

(∫ ∞

y
c
+d
fZD

(t, y|0)dt
)
(µe−µx)(1− ϕ0e

−µ(1−ϕ0)(y−x))dxdy

=

∫ ∞

0
(1− e−µ(1−ϕ0)y)

∫ ∞

y
c
+d
fZD

(t, y|0)dtdy.

Next, similar to (4.1), for n = 1, 2, 3, . . ., we arrive at

Pu{QP = 0, QP = n} = Pu{B1}(P∗{C1 ∩B2})n−1P∗{C1 ∩Bc
2},

where P∗{C1 ∩B2} is simply a special case of (3.3) with δ = 0, and P∗{C1 ∩Bc
2} can be evaluated as

P∗{C1 ∩Bc
2} =

∫ ∞

0

∫ y

0

(∫ y
c
+d

y
c

fZD
(t, y|0)dt

)
(µe−µx)(1− ϕ0e

−µ(1−ϕ0)(y−x))dxdy

=

∫ ∞

0
(1− e−µ(1−ϕ0)y)

∫ y
c
+d

y
c

fZD
(t, y|0)dtdy.

Finally, for m,n = 1, 2, . . ., we have

Pu{QP = m,QP = n} =

(
m+ n− 1

m

)
Pu{B1}(P∗{C1 ∩B2})n−1(P∗{Cc

1 ∩B2})mP∗{C1 ∩Bc
2}

+

(
m+ n− 1

n

)
Pu{B1}(P∗{C1 ∩B2})n(P∗{Cc

1 ∩B2})m−1P∗{Cc
1 ∩Bc

2}, (4.2)

where all probabilities have already been determined. Note that the total number of periods of negative
surplus is m+n. In the above expression, the first term is contributed by the case where the final period
of negative surplus is of length less than d. In this case, the first m + n − 1 periods of negative surplus
should consist of m periods of length no less than d along with n − 1 periods that are shorter than d,
resulting in the combinatorial factor. The second term in (4.2) can be interpreted in the same manner.

5 Random Parisian delay and occupation time in red

It is instructive to note that the techniques used in previous sections are also applicable to the case where
the Parisian delay d is random instead. Similar to Section 4, we only demonstrate the ideas through the
Sparre Andersen insurance risk model with exponential claims. Specifically, when {US(t)}t≥0 falls below
zero for the n-th time, a random variable dn representing the n-th Parisian delay is generated. The delays
are assumed to form an i.i.d. sequence independent of {US(t)}t≥0. The definition of the Parisian ruin

time (2.1) becomes τ rUS
= τ−,Lr

US
+ dLr , where Lr = inf{n ∈ N : τ+,n

US
− τ−,n

US
≥ dn} (and it is understood

that τ rUS
= ∞ if Lr = ∞), and the Laplace transform of Lr is denoted by ψr

δ,US
(u). Here the superscript

‘r’ means ‘random delay’. Then the arguments leading to (3.5) are still valid, and we only need to modify
the result by mixing the expectations in each excursion over d. In particular, if each delay is continuous
with density g(·), then ψr

δ,US
(u) can be represented as

ψr
δ,US

(u) = Eu[e
−δτ rUS 1{τ rUS

<∞}] =
Eu[e−δL+,11B1 ]

∫∞
0 E∗[e−δd1Cc

1
]g(d)dd

1−
∫∞
0 E∗[e−δ(L−,1+L+,2)1C1∩B2 ]g(d)dd

, (5.1)
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where the expectations involved are given by (3.2)-(3.4).

In the remainder of this section, it is assumed that each delay is exponentially distributed with mean
1/ω. Thanks to the memoryless property of exponential delay, such a model is equivalent to

• the Omega model (e.g. Gerber et al. (2012)) in which bankruptcy is declared at rate ω whenever
the surplus process {US(t)}t≥0 is negative (and bankruptcy corresponds to Parisian ruin); and

• a model with randomized observations (e.g. Albrecher et al. (2013)) in which ruin is only checked
at time points that are the arrival epochs of a Poisson process with rate ω.

Therefore, the present model can be used to analyze occupation times as follows. Denoting an exponential
random variable (independent of {US(t)}t≥0 and the delays) with mean 1/δ by eδ, it is known from e.g.
Gerber et al. (2012, Section 4) or Li and Zhou (2013, Equation (4.2)) that

Eu[e−ω
∫ eδ
0 1{US(t)<0}dt] = 1− ψe

δ,US
(u), (5.2)

where
∫ eδ
0 1{US(t)<0}dt counts (up to time eδ) the amount of time when {US(t)}t≥0 is negative, and

ψe
δ,US

(u) is the Laplace transform of the Parisian ruin time (with ‘e’ meaning exponential delay). While
the left-hand side of (5.2) represents the Laplace transform of the afore-mentioned occupation time (or
time in red) with Laplace transform argument ω, the quantity ψe

δ,US
(u) can be computed via (5.1) under

g(d) = ωe−ωd for d > 0. An important special case of (5.2) is obtainable by letting δ → 0+ so that

Eu[e−ω
∫∞
0 1{US(t)<0}dt] = 1− ψe

0,US
(u),

i.e. the Laplace transform of the time in red over an infinite time horizon equals the Parisian survival
probability.

Now, we shall explicitly evaluate the right-hand side of (5.1) when g(d) = ωe−ωd. First, substitution
of (3.4) followed by a change of order of integrations leads the integral in the numerator to∫ ∞

0
E∗[e−δd1Cc

1
]ωe−ωddd =

∫ ∞

0

∫ ∞

y
c

(∫ t− y
c

0
ωe−(ω+δ)ddd

)
fZD

(t, y|0)dtdy

=
ω

ω + δ

∫ ∞

0

∫ ∞

y
c

fZD
(t, y|0)dtdy − ω

ω + δ

∫ ∞

0

∫ ∞

y
c

e−(ω+δ)(t− y
c )fZD

(t, y|0)dtdy.

Note that the first double integral above equals one under the loading condition cE[V1] > 1/µ of the
insurance risk model. Further utilizing (2.8) and (2.9), we arrive at∫ ∞

0
E∗[e−δd1Cc

1
]ωe−ωddd =

ω

ω + δ
− ω

ω + δ

∫ ∞

0
e

ω+δ
c

yhω+δ,ZD
(y|0)dy

=
ω

ω + δ
− ωµ

ω + δ

∫ ∞

0

∫ ∞

y
c

e−(Rω+δ+
ω+δ
c )(ct−y)k(t)dtdy,

where Rω+δ is defined by the Lundberg’s equation (2.10) but with δ replaced by ω + δ. Straightforward
calculation of the double integral results in∫ ∞

0
E∗[e−δd1Cc

1
]ωe−ωddd =

ω

ω + δ
− ωµ

ω + δ

1

Rω+δ +
ω+δ
c

[1− k̃(cRω+δ + ω + δ)].
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Because of the Lundberg’s equation (2.10), the term inside the square bracket equals Rω+δ/µ, and
therefore the above expression can be simplified to yield∫ ∞

0
E∗[e−δd1Cc

1
]ωe−ωddd =

ω

cRω+δ + ω + δ
. (5.3)

Next, we omit the similar procedure and state that the integral in the denominator of (5.1) is found to
be ∫ ∞

0
E∗[e−δ(L−,1+L+,2)1C1∩B2 ]ωe

−ωddd =
c(Rω+δ −Rδ)

c(Rω+δ −Rδ) + ω
. (5.4)

Finally, (3.2), (5.3) and (5.4) are substituted into (5.1). After some simplifications along with the use of
ϕδ = (µ−Rδ)/µ, we obtain

ψe
δ,US

(u) =
c(Rω+δ −Rδ) + ω

cRω+δ + ω + δ

µ−Rδ

µ
e−Rδu, (5.5)

which is explicit in terms of model parameters and the Lundberg’s roots Rδ and Rω+δ.

Remark 2 If it is additionally assumed that the claims counting process {N(t)}t≥0 is a Poisson process

with rate λ (so that k(t) = λe−λt for t > 0 and k̃(s) = λ/(λ + s)), then our model is equivalent to the
one in Albrecher et al. (2013, Example 2.1). In this case, (5.5) reduces to

ψe
δ,US

(u) =

(
1− cRδ + δ

cRω+δ + ω + δ

)
µ−Rδ

µ
e−Rδu =

(
1−

λRδ
µ−Rδ

λRω+δ

µ−Rω+δ

)
µ−Rδ

µ
e−Rδu =

(
1− Rδ

Rω+δ

)
e−Rδu,

where the Lundberg’s equation (2.10) has been applied in the second equality. The above equation is
consistent with Equation (2.18) in Albrecher et al. (2013) when u ≥ 0. �

Remark 3 Suppose that each delay is more generally distributed as a combination of exponentials with
density g(d) =

∑m
i=1 piωie

−ωid for y > 0, where
∑m

i=1 pi = 1 and ωi’s are positive parameters. The
quantity ψr

δ,US
(u) in (5.1) can still be readily calculated using the above results. Utilizing (5.3) and (5.4),

one concludes that the two integrals in (5.1) are simply∫ ∞

0
E∗[e−δd1Cc

1
]g(d)dd =

m∑
i=1

pi
ωi

cRωi+δ + ωi + δ
.

∫ ∞

0
E∗[e−δ(L−,1+L+,2)1C1∩B2 ]g(d)dd =

m∑
i=1

pi
c(Rωi+δ −Rδ)

c(Rωi+δ −Rδ) + ωi
.

�

6 Example: Erlang(2) insurance risk model

In this section, we consider the Erlang(2) insurance risk model with exponential claims and demonstrate
how the Laplace transform of the Parisian ruin time ψδ,US

(u) can be computed. The results in Section
3.1 are applicable by assuming that the interclaim times follow an Erlang(2) distribution with density
k(t) = λ2te−λt for t > 0 and Laplace transform k̃(s) = [λ/(λ + s)]2. According to (3.5), we need to
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determine Eu[e−δL+,11B1 ], E∗[e−δ(L−,1+L+,2)1C1∩B2 ] and E∗[e−δd1Cc
1
] explicitly. The first term is simply

given by (3.2), where ϕδ (such that 0 < ϕδ < 1) can be solved from

ϕδ =

(
λ

λ+ δ + cµ(1− ϕδ)

)2

.

The evaluation of the remaining two expectations via (3.3) and (3.4) are more involved, as we need to
apply the density fZD

(t, y|0) given by (2.15). Because the n-fold convolution k∗n(·) corresponds to an
Erlang(2n) density, simplifications of (2.15) yield

fZD
(t, y|0)

= µe−µ(ct−y)

[
λ2te−λt +

∞∑
n=1

µn

n!
(ct− y)n−1

∫ t

y
c

(cz − y)

(
λ2n

(2n− 1)!
(t− z)2n−1e−λ(t−z)

)
(λ2ze−λz)dz

]

= µe−µ(ct−y)λ2e−λt

[
t+

∞∑
n=1

(µλ2c−2)n

(n+ 1)!(2n+ 1)!
(ct− y)3n

(
t+

n

c
y
)]

= µe−µ(ct−y)λ2e−λt
∞∑
n=0

(µλ2c−2)n

(n+ 1)!(2n+ 1)!
(ct− y)3n

(
t+

n

c
y
)
. (6.1)

Hence, (3.3) reduces to

E∗[e−δ(L−,1+L+,2)1C1∩B2 ]

=
∞∑
n=0

µn+1λ2n+2c−2n

(n+ 1)!(2n+ 1)!

∫ ∞

0
e−µ(1−ϕδ)y

∫ y
c
+d

y
c

e−(λ+δ)t−µ(ct−y)(ct− y)3n
(
t+

n

c
y
)
dtdy. (6.2)

The inner integral in the above equation can be expressed as∫ y
c
+d

y
c

e−(λ+δ)t−µ(ct−y)(ct− y)3n
(
t+

n

c
y
)
dt

=

∫ cd

0
e−

λ+δ
c

(x+y)−µxx3n
(
x+ y + ny

c

)
1

c
dx

=
1

c2
e−

λ+δ
c

y

(∫ cd

0
e−(

λ+δ
c

+µ)xx3n+1dx+ y(n+ 1)

∫ cd

0
e−(

λ+δ
c

+µ)xx3ndx

)
=

1

c2
e−

λ+δ
c

y

{(
c

λ+ δ + cµ

)3n+2

[Γ(3n+ 2)− Γ(3n+ 2, d(λ+ δ + cµ))]

+y(n+ 1)

(
c

λ+ δ + cµ

)3n+1

[Γ(3n+ 1)− Γ(3n+ 1, d(λ+ δ + cµ))]

}
, (6.3)

where

Γ(a) =

∫ ∞

0
ta−1e−tdt = (a− 1)!, a ∈ N,

is the Gamma function and

Γ(a, z) =

∫ ∞

z
ta−1e−tdt = (a− 1)!e−z

a−1∑
k=0

zk

k!
, a ∈ N,
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is the incomplete Gamma function. With (6.3), the double integral in (6.2) is given by∫ ∞

0
e−µ(1−ϕδ)y

∫ y
c
+d

y
c

e−(λ+δ)t−µ(ct−y)(ct− y)3n
(
t+

n

c
y
)
dtdy

=
c3n[Γ(3n+ 2)− Γ(3n+ 2, d(λ+ δ + cµ))]

(λ+ δ + cµ)3n+2

(
µ(1− ϕδ) +

λ+ δ

c

)−1

+ (n+ 1)
c3n−1[Γ(3n+ 1)− Γ(3n+ 1, d(λ+ δ + cµ))]

(λ+ δ + cµ)3n+1

(
µ(1− ϕδ) +

λ+ δ

c

)−2

=
c3n+1[Γ(3n+ 2)− Γ(3n+ 2, d(λ+ δ + cµ))]

(λ+ δ + cµ)3n+2[λ+ δ + cµ(1− ϕδ)]
+ (n+ 1)

c3n+1[Γ(3n+ 1)− Γ(3n+ 1, d(λ+ δ + cµ))]

(λ+ δ + cµ)3n+1[λ+ δ + cµ(1− ϕδ)]2
,

and therefore (6.2) becomes

E∗[e−δ(L−,1+L+,2)1C1∩B2 ] =
∞∑
n=0

λ2n+2(cµ)n+1[Γ(3n+ 2)− Γ(3n+ 2, d(λ+ δ + cµ))]

(n+ 1)!(2n+ 1)!(λ+ δ + cµ)3n+2[λ+ δ + cµ(1− ϕδ)]

+
∞∑
n=0

λ2n+2(cµ)n+1[Γ(3n+ 1)− Γ(3n+ 1, d(λ+ δ + cµ))]

n!(2n+ 1)!(λ+ δ + cµ)3n+1[λ+ δ + cµ(1− ϕδ)]2
. (6.4)

Similarly, use of (6.1) and (6.3) leads (3.4) to

E∗[e−δd1Cc
1
] = e−δd

(
1−

∫ ∞

0

∫ y
c
+d

y
c

fZD
(t, y|0)dtdy

)

= e−δd

(
1−

∞∑
n=0

µn+1λ2n+2c−2n

(n+ 1)!(2n+ 1)!

∫ ∞

0

∫ y
c
+d

y
c

e−λt−µ(ct−y)(ct− y)3n
(
t+

n

c
y
)
dtdy

)

= e−δd

(
1−

∞∑
n=0

λ2n+1(cµ)n+1[Γ(3n+ 2)− Γ(3n+ 2, d(λ+ cµ))]

(n+ 1)!(2n+ 1)!(λ+ cµ)3n+2

−
∞∑
n=0

λ2n(cµ)n+1[Γ(3n+ 1)− Γ(3n+ 1, d(λ+ cµ))]

n!(2n+ 1)!(λ+ cµ)3n+1

)
. (6.5)

To illustrate the computational tractability of our results, we consider a numerical example where
each claim is exponential with mean 4 (i.e. µ = 0.25) and each interclaim time is Erlang(2) with mean
5 (i.e. λ = 0.4). The incoming premium rate is assumed to be c = 1, so that the positive security
loading condition 2c/λ > 1/µ is satisfied. The Laplace transform of the Parisian ruin time ψδ,US

(u) is
given by formula (3.5) with the components computed via (3.2), (6.4) and (6.5). Using Mathematica,
we plot ψδ,US

(u) against the initial surplus u for δ = 0, 0.02, 0.04 in Figures 5-7 respectively. Note that
ψδ,US

(u) is the Parisian ruin probability when δ = 0. Each of Figures 5-7 shows five curves for the values
d = 0, 1, 2, 3, 4, where d = 0 corresponds to the traditional definition of ruin. From Figures 5-7, it is
clear that ψδ,US

(u) is decreasing in u, as an increase in the initial surplus level keeps the surplus process
{US(t)}t≥0 further away from (Parisian) ruin. Within each figure, we observe that ψδ,US

(u) decreases in
d as well. Intuitively, as d increases, the insurer has a longer buffer period d to recover from negative
surplus when the surplus drops below zero, thereby lowering ψδ,US

(u). Finally, comparison across Figures
5-7 reveals that ψδ,US

(u) is also decreasing in δ, which is clear from the definition (2.2).
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Figure 5: Parisian ruin probability
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Figure 6: Laplace transform of Parisian ruin time under δ = 0.02

7 Concluding remarks and open problems

In contrast to the compound Poisson or more generally Lévy risk models in the literature, this paper
analyzes the Parisian ruin problem in the (dual) renewal risk process with general inter-arrival times and
exponential jumps. New results concerning the Laplace transform of the Parisian ruin time are derived
under deterministic delays and then extended to random delays. Related formulas for the number of
periods of negative surplus and the occupation time in red are given as well.

There are several directions for future research in the renewal model. First, one may try to incorporate
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Figure 7: Laplace transform of Parisian ruin time under δ = 0.04

a lower default barrier −a < 0 in the spirit of Czarna (2014). In such a case, in addition to the possibility
of Parisian ruin, the surplus process is declared ruin immediately if it falls below −a. However, the
analysis of the modified ruin time shall involve a two-sided exit problem for a renewal risk process where
exact solutions are not easy to obtain. Second, it will also be interesting to study the distribution of
the amount of shortfall at the Parisian ruin time. For the insurance model in Section 3.1, the quantity
P{ZD(d) ∈ dy, TZD

> d|ZD(0
−) = 0} will be required. If the delay d is exponential instead, then we

need the Laplace transform (with respect to d) of the afore-mentioned quantity, which can be regarded
as a potential measure for the process {ZD(t)}t≥0 defined in Section 2.2. We leave these as open research
problems.
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[44] Schröder, M. 2003. Brownian excursions and Parisian barrier options: A note. Journal of Applied
Probability 40(4): 855-864.

[45] Seal, H.L. 1969. Stochastic Theory of a Risk Business. New York: Wiley.

[46] Sparre Andersen, E. 1957. On the collective theory of risk in the case of contagion between
claims. In: Proceedings of the Transactions of the XVth International Congress on Actuaries vol. II,
New York, pp. 219-229.
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